

Information Systems Development
ISD’2004

Proceedings of the Thirteenth International Conference on
Information Systems Development

Advances in Theory, Practice and Education

Vilnius, Lithuania, September 9–11, 2004

Edited by

Olegas Vasilecas
Vilnius Gediminas Technical University

Lithuania

Albertas Caplinskas
Institute of Mathematics and Informatics

Lithuania

Wita Wojtkowski
Boise State University

USA

W. Gregory Wojtkowski
Boise State University

USA

Joze Zupancic
University of Maribor

Slovenia

and

Stanislaw Wrycza
University of Gdansk

Poland

Springer

Information Systems
Development
Advances in Theory, Practice,
and Education

Information Systems
Development
Advances in Theory, Practice,
and Education

Edited by

Olegas Vasilecas
Vilnius Gedinimas Technical University
Vilnius, Lithuania

Albertas Caplinskas
Institute of Mathematics and Informatics
Vilnius, Lithuania

Wita Wojtkowski and W. Gregory Wojtkowski
Boise State University
Boise, Idaho, USA

Jože Zupančič
University of Maribor
Kranj, Slovenia

Stanisław Wrycza
University of Gdansk
Gdansk, Poland

Olegas Vasilecas
Vilnius Gedinimas Technical University
Sauletekio 11
LT-10223 Vilnius
Lithuania
olegas@fm.vtu.lt

Wita Wojtkowski
1910 University Drive
Boise State University
Boise, Idaho 83725
USA
wwojtkow@boisestate.edu

Jože Zupančič
Systems Development Laboratory
Faculty of Organizational Sciences
University of Maribor
4000 Kranj
Slovenia
Joze.Zupancic@POV.Uni-Mb.si

Albertas Caplinskas
Institute of Mathematics and Informatics
Akademijos 4
LT-08663 Vilnius
Lithuania
alcapl@ktl.mii.lt

W. Gregory Wojtkowski
1910 University Drive
Boise State University
Boise, Idaho 83725
USA
gwojtkow@boisestate.edu

Stanisław Wrycza
Department of Information Systems
University of Gdansk
81-824 Sopot
Armii Krajowej 119/121
Poland
swrycza@univ.gda.pl

Proceedings of 13th International Conference on Information Systems Development—Advances in Theory,
Practice, and Education (ISD 2004), held in Vilnius, Lithuania, September 9–11, 2004

Library of Congress Control Number: 2005925766

ISBN-10: 0-387-25026-3
ISBN-13: 978-0387-25026-7

�2005 Springer Science�Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science�Business Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade
names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken
as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America (BS/DH)

9 8 7 6 5 4 3 2 1

springeronline.com

PREFACE

This volume contains papers presented during 13th International Conference on Infor-
mation Systems Development – Advances in Theory, Practice and Education (ISD’2004),
held in Vilnius, Lithuania, September 9–11, 2004. The intended audience for this book
comprises researchers and practitioners interested in current trends in the Information Sys-
tems Development (ISD) field. Papers cover a wide range of topics: ISD methodologies,
method engineering, business and IS modelling, web systems engineering, database related
issues, information analysis and data mining, quality assessment, costing methods, security
issues, impact of organizational environment, and motivation and job satisfaction among
IS developers. The selection of papers was carried out by the International Program Com-
mittee. All papers were reviewed in advance by three reviewers and evaluated according
to their relevance, originality and presentation quality. Papers were evaluated only on their
own merits, independent of other submissions. Out of 117 submissions Program Commit-
tee selected 75 research papers to be presented at the Conference. 39 best papers and 5
papers presented by invited speakers are published in this volume.

The 13th International Conference on Information Systems Development continues the
tradition started with the first Polish-Scandinavian Seminar on Current Trends in Informa-
tion Systems Development Methodologies, held in Gdansk, Poland in 1988. Through the
years this seminar has evolved into one of most prestigious conferences in the field. ISD
Conference provides an international forum for the exchange of ideas between the research
community and practitioners and offers a venue where ISD related educational issues are
discussed.

ISD progresses rapidly, continually creating new challenges for the professionals in-
volved. New concepts and approaches emerge in research as well as in practice. Emerging
ideas need to be disseminated in order to stimulate the exploration of new solutions. Ad-
vanced ISD curricula and new teaching and learning approaches need to be developed. That
is why ISD’2004 Conference theme was Advances in Theory, Practice, and Education. In
addition to regular presentations and invited talks, the Conference provided two discussion
panels: Issues of Business Rules Approach in IS Development and Issues in Information
Systems Education: Capitalizing on Recent Advances in Learning Theory.

Many people contributed to the organization of the ISD’2004. We would like to ex-
press our thanks to all authors, members of the Program Committee, and external reviewers

v

vi PREFACE

for their efforts. We also wish to acknowledge the support of the members of the Organiz-
ing Committee, the administration of Vilnius Gediminas Technical University, Institute of
Mathematics and Informatics (Vilnius, Lithuania), Lithuanian Science and Studies State
Foundation, Lithuanian Ministry of Education and Science, and all other institutions that
actively supported the Conference.

Olegas Vasilecas
Albertas Caplinskas

Wita Wojtkowski
W. Gregory Wojtkowski

Joze Zupancic
Stanislaw Wrycza

ACKNOWLEDGEMENTS

The following acknowledges the organizations, tradenames, trademarks and products
referenced throughout this book:

Tradename Organisation

BEA® BEA Systems, Inc.
Borland® Borland International, Inc.
Casewise® Casewise Ltd.
Cisco Systems® Cisco Systems, Inc.
DCMI® Dublin Core Metadata Initiative
DMTF Distributed Management Task Force, Inc.
EDS® Electronic Data Systems
EMC® EMC Corporation
HP® Hewlett-Packard Company
IBM® IBM Corporation
IDC® International Date Corporation
Information Builders Information Builders, Inc.
ISACA® Information Systems Audit and Control Association
ISACF® Information Systems Audit and Control Fundation
ISO® International Organization for Standardization
META®group META group, Inc.
Microsoft® Microsoft Corporation
Nokia® Nokia Corporation
OCLC® OCLC Online Computer Library Center, Inc.
OMG® Object Management Group, Inc.
Oracle® Oracle Corporation
PeopleSoft® PeopleSoft, Inc.
PMI® Project Management Institute, Inc.
RightNow® RightNow Technologies, Inc.

PREFACE vii

Salesnet® Salesnet, Inc.
SAP® SAP AG.
SAS® SAS Institute, Inc.
SCITOR® Scitor Corporation
SGI™ Silicon Graphics, Inc.
Siebel® Siebel Systems, Inc.
SPSS® SPSS, Inc.
STG® Structured Technology Group, Inc.
Sun®, Sun Microsystems® Sun Microsystems, Inc.
VERITAS® VERITAS Software Corporation
W3C® World Wide Web Consortium (MIT, INRIA, Keio)

Abreviation Organisation

BMBF Bundesministerium für Bildung und Forschung
BRG Business Rules Group
CICYT Comisión Interministerial de Ciencia y Tecnologı́a
DARPA Department of Advanced Research Projects Agency
CEN European Committee for Standardization
FIPA The Foundation for Intelligent Physical Agents
GGF The Global Grid Forum
ICAR-CNR L’Istituto di Calcolo e Reti ad Alte Prestazioni del

Consiglio Nazionale delle Ricerche
ISOC The Internet Society
MIT Massachusetts Institute of Technology
NASA National Aeronautics and Space Administration
NCSA National Center for Supercomputing

Applications (University of Illinois)
NISO National Information Standards Organization
NLB Nova Ljubljanjska banka d.d.
OASIS Organization for the Advancement of Structured

Information Standards
OGC Office of Government Commerce
Salesforce.com Salesforce.com Foundation
SIGWEB ACM Special Interest Group on Hypertext,

Hypermedia and the Web (former SIGLINK)
UN/CEFACT United Nations Centre for Trade Facilitation and

Electronic Business’

Trademark, Product Name, Organisation
Project Name

ABR IBM
ADO Microsoft
ADONIS® BOC Information Systems GmbH

viii PREFACE

Agent Factory ICAR-CNR, Agentcities.NET
Ant The Apache Software Foundation
Apache™ HTTP Server The Apache Software Foundation
APM The EXTERNAL Consortium
APM BoK Association for Project Management
Argo/UML TIGRIS Open Source Comunity
Aris® IDS-Scheer AG
ASP® Microsoft
Atlas database™ ATLAS Database Group
Axiom-SYS™ STG
Balanced Scorecard® Balanced Scorecard Collaborative
BML™ IBM
BPEL4WS BEA, IBM, Microsoft, SAP, Siebel
BPML™ The Business Process Management Initiative
BP Win™ Unitek Information Technologies
BRBeans IBM
BROCOM Institut fur Wirtschaftsinformatik

(University of Bern)
Casewise Corporate Modeler™ Casewise
Chimaera Knowledge Systems Laboratory

(Stanford University)
CIMOSA™ AMICE Consortium, CIMOSA association
Clementine® SPSS, Inc.
Cloudscape® Cloudscape, Inc.
COBIT ISACA, ISACF, IT Governance Institute
COSA® Workflow TRANSFLOW AG
CVS JBoss, Inc.
CWM™ OMG
C++™ American Telephone and Telegraph, Inc.
DAML DARPA, Joint US/EU ad hoc Agent Markup

Language Committee
DB2 OLAP Server® IBM
Dewey Decimal Classification® OCLC
DOORS® Telelogic AB
DSDM® Dynamic Systems Development Method Ltd.
DTF W3C
Dublin CoreSM OCLC
ebXML United Nations, OASIS
Eclipse™ Eclipse Foundation
Enterprise JavaBeans® Sun Microsystems
Excel® Microsoft
EXTERNAL The EXTERNAL Consortium
FLINTS™ West Midlands Police
FrameSolutionsTM Computas AS

PREFACE ix

GATE™ NLP group (University of Sheffield)
GERAM™ IFIP/IFAC Task Force on Architectures for

Enterprise Integration
GME Institute for Software Integrated Systems
GRADE™ Grade Development Group, INFOLOGISTIK GmbH
GRAI-GIM University of Bordeaux
HTML W3C
HTTP™ W3C
IDC® International Data Group, Inc.
IDEF IDEF Information
IEM Fraunhofer Institute for Production Systems and

Design Technology
IMPRESS™ NLP group (University of Sheffield)
Intelligent Miner™ IBM
ISAC™ Indicus Software Pvt. Ltd.
ISDM™ Insource IT Consultancy Ltd.
ITIL® The Office of Government Commerce
Java® Sun Microsystems
JBoss® JBoss, Inc.
JDBC® Sun Microsystems
JMining Vilnius Gediminas Technical University
JMS Sun Microsystems
JSP™ Sun Microsystems
J2EE® Sun Microsystems
KACTUS KACTUS consortium
KIF InterLingua Working Group

(DARPA Knowledge Sharing Initiative)
LCSH Library of Congress
LegoDB™ Lucent Bell Labs, Indian Institute of Science
Linux™ Linus Torvalds
LOCARD™ Advantage Systems Solutions Ltd.
Lotus Notes® IBM, Lotus Development Corporation
MDA® OMG
MediNET® MediNet Systems, Inc.
METIS® Computas AS
Microsoft Access® Microsoft
Microsoft Internet Explorer® Microsoft
Microsoft.NET™ Microsoft
Microsoft Solutions Framework® Microsoft
Microsoft.NET Microsoft
MineSet™ SGI
MOFTM OMG
MS Project® Microsoft
MSQM Microsoft

x PREFACE

MS Word® Microsoft
MySQL® MySQL AB
NCSA™ University of Illinois Board of Trustees
Netscape Navigator® Netscape Communications Corp.
NetSuite™ NetSuite Inc.
OCL OMG
ODBC® Microsoft
OMT++ Nokia
OntoEdit™ Ontoprise GmbH
On-To-Knowledge On-To-Knowledge Consortium
Ontolingua Knowledge Systems Laboratory

(Stanford University)
Ontosaurus Information Sciences Institute

(University of Southern California)
OPEN Open Consortium
Opera® Opera Software AS
Oracle CASE*Method™ Oracle Corporation
Oracle Designer™ Oracle Corporation
OS/390™ IBM
PERA Purdue Laboratory for Applied Industrial Control

(Purdue University)
PMBOK® PMI
Power Point® Microsoft
Prometheus Computer Science and IT School (RMIT University)
PROSIT™ WM Data
Protégé Stanford Medical Informatics
ProVision® Proforma Corporation
QStudio® QA Systems BV.
Rational Rose® IBM, Rational Software Corporation
RequisitePro® IBM, Rational Software Corporation
Reuters-21578 Carnegie Group Inc., Reuters Ltd.
RFC Network Working Group
RUP® IBM, Rational Software Corporation
SADT® Softec, Inc.
SAS IDP SAS
SCITOR® Process Scitor Corporation
SDLC™ IBM
SILVERRUN®-BM CSA Research Pte Ltd.
SIMULA® The Norwegian Computing Center
SimVision The EXTERNAL Consortium
SOAP W3C
SPSS for Windows® SPSS, Inc.
SSADM® OGC
SWEBOK IEEE Computer Society,

PREFACE xi

Association of Computing Machinery
Telelogic DOORS® Teleologic AB
TGN The J. Paul Getty Trust
TOVE Enterprise Integration Laboratory

(University of Toronto)
UDDI OASIS
UEML IFAC TC5.3 WG UEML
UML™ OMG
UNIX® The Open Group
URL The Internet Society
Visio® Microsoft
WAP® Wireless Application Protocol Forum Ltd.
WebML Stefano Ceri, Piero Fraternali, Aldo Bongio
WebOnto™ The Open University
Weka™ The University of Welkato
Workflow BPR™ IBM, HOLOSOFX
WORKWARE The EXTERNAL Consortium
WSCI W3C
WSDL W3C
XCHEAPS The EXTERNAL Consortium
XMI® OMG
XML® Massachusetts Institute of Technology,

World Wide Web Consortium
XSL™ World Wide Web Consortium
YSM™ Yourdon, Inc.

Invention Developer

ANOVA Ronald Fisher
AOM Joseph W. Yoder, Fedenco Balaguer, Ralph Johnson
Cassiopeia Alexis Drogoul, Jean-Daniel Zucker
Coordination Contract Luı́s Filipe A. Andrade, José Luiz L. Fiadeiro
CoPaV2 M. Hacid, C. Decleir, J. Kouloumdjian
CPI D. Lee, W. W. Chu
EAR Peter P-S Chen
EORM Michael Lang
ETHICS Enid Mumford
FOOPS Joseph A. Goguen, David A. Wolfram
FTP MIT
Gaia Michael Wooldridge, Nicholas R. Jennings,

David Kinny
HTML Tim Berners-Lee
IE Clive Finkelstein, James Martin
IPSD Willibrordus M. P. van der Aalst, Kees M. van Hee
IRC Jarkko Oikarinen

xii PREFACE

ISAC M. Lundeberg
JCM J. R. Hackman, G. R. Oldham
JUnit Erich Gamma, Kent Beck
JSD Michael A. Jackson
Language Action Perspective F. Flores, J. J. Ludlow, T. Winograd
(Communicative Action Perspective)
MASE Mark F. Wood, Scott A. DeLoach
MAVIS ChingMiin Duh, LiarnRurng Wen, John Sillince,

Masoud Saeedi
MERISE Hubert Tardieu
Multiview David Avison, Trevor Wood-Harper
NIAM G. M. Nijssen
OMT James R. Rumbaugh, Michael R. Blaha, William

Premerlani, Frederick Eddy, William Lorensen
OntoWeber J. Yuhui, S. Decker, G. Wiederhold
OOHDM Daniel Schwabe, Gustavo Rossi
QUICKethics Enid Mumford
RMM T. Isakowitz, E. A. Stohr, P. Balasubramanian
RPC A. D. Birrell, B. J. Nelson
Rule Object Ali Arsanjani
SSM Peter Checkland
TCP/IP Bob Kahn, Vinton Cerf
TOOR Francisco A. C. Pinheiro, Joseph A. Goguen
Tropos Jaelson Castro, Manuel Kolp, John Mylopoulos
VHDM H. Lee, J. Kim, Y. G. Kim, S. H. Cho
Workflow Evolution F. Casati, S. Ceri, B. Pernici, G. Pozzi
WSDM O. M. F. De Troyer, C. J. Leune

ABBREVIATIONS

The following abbreviations are used throughout this book:

Abbreviation Full text

ABC Activity-Based Costing
ABM Activity-Based Management
ABR Accessible Business Rules
ADO ActiveX Data Objects
AF Agent Factory
AI Artificial Intelligence
AIFS Australian Integrated Forecast System
AMICE European CIM Architecture
ANOVA ANalysis Of VAriance
AO Agent-Oriented
AOM Adaptive Object Model

PREFACE xiii

APL Agent Programming Language
APM Action Port Modeling
APM BoK Body of knowledge of the Association for Project

Management
ASP 1. Active Server Pages

2. Application Service Providing
ATM Asynchronous Transfer Mode
BDI Belief-Desire-Intention
BML Bean Markup Language
BPEL4WS Business Process Execution Language for Web

Services
BPI Business Process Improvement
BPML Business Process Modeling Language
BPN Backpropagation Neural Network
BPO Business Process Outsourcing
BPR Business Process Reengineering
BPWin Business Processes for Windows
BRBeans Business Rule Beans
BROCOM Business Rule-Oriented Conceptual Modeling
BRP Business Rules Propagation
BSC Balanced Scorecard
B2B Business-to-Business
CASE Computer-Aided Software Engineering
CB Codebook
CIM 1. Computer Integrated Manufacturing

2. Computational Independent Model
CIMOSA CIM Open System Architecture
CIO Chief Information Officers
CM Conceptual Modeling
CMS Content Management System
COBIT Control Objectives for Information and related

Technology
COTS Commercial Off the Shelf Software
CPI Constraints-Preserving Inlining
CRM Customer Relationship Management
CRO Chief Resource Officer
CRUD Create, Read, Update, Delete
CSCW Computer-Supported Cooperative Work
CSF Critical Success Factors
CSV Comma-Separated Value
CVS Concurrent Versions System
CWM Common Warehouse Metamodel
DAML DARPA Agent Markup Language
DAML-S DAML Services
DBMS Data Base Management System

xiv PREFACE

DC Dublin Core
DCSV Dublin Core Structured Value
DIM Design Independent Model
DM Data mining
DoI Diffusion of Inovations
DSDM Dynamic Systems Development Method
DSS Decision Support System
DTD Document Type Definition
DTF Date Time Format
ebXML Electronic Business XML
EAR Entity-Attribute-Relationship
ECA Event-Condition-Action
ECG ElectroCardioGram
EEG ElectroEncephaloGram
EER Extended Entity–Relationship
EGS Electronic Grocery Store
EM Enterprise Modeling
EORM Enhanced Object-Relationship Model
EPC Engineering, Procurement & Construction
ER Entity-relationship (model)
ERP Enterprise Resource Planning
ETHICS Effective Technical and Human Implementation of

Computer-based Systems
EUIS End-User Information System
EUC End-User Computing
EXTERNAL EXTended Enterprise Resources, Network

Architectures and Learning
FD Facet Data
FLINTS Force Linked Intelligence System
FOOPS Functional Object Oriented Programming System
FTP File Transfer Protocol
GATE General Architecture for Text Engineering
GERAM Generalised Enterprise Reference Architecture and

Methodology
GIS Geographical Information Systems
GME The Generic Modeling Environment
GRAI-GIM GRAI Integrated Methodology
GRAI Graphes et Résultats et Activités Interreliés
HASSIP Harmonic Analysis and Statistics for Signal and

Image Processing
HCP Healthcare provider
HLA High Level Architecture
HPRN High Plains Research Network
HR Human Resource
HTML HyperText Markup Language

PREFACE xv

HTTP HyperText Transfer Protocol
HW Hardware
IC Information Centre
ICT Information and Communications Technology
IDEF Integrated DEFinition Language
IDP Information Delivery Portal
IE Information Engineering
IEM Integrated Enterprise Modelling
IMPRESS IMPRession Evidence & Serial-crime profiling

System
Info Mgt Information Management
IPSD Interactive, Process-Oriented system development
IRC Internet Relay Chat
IRM Information Resource Management
ISAC Information Systems Work and Analysis of Changes
IS/ICT Information Systems and Information and

Communications Technology
ISAD Information Systems Analysis and Design
ISD Information Systems Development
ISDM 1.Information Systems Development Methodology

2. Insource Software Development Method
IT Information Technology
JCM Job Characteristics Model
JDBC Java Data Base Connectivity
JIT Just In Time
JMS Java Message Queue Service
JSD Jackson Systems Development
JSP Java Server Pages
J2EE Java 2 Platform, Enterprise Edition
KDD Knowledge Discovery in Databases
KIF Knowledge Interchange Format
LCSH Library of Congress Subject Headings
LDAP Light-weight Directory Access Protocol
LOC Lines of Code
LOC/PM Lines of Code per Person-Month
LPR Longitudinal Process Research
LVO Learning Virtual Organization
MAIS Multi-Agent Information System
MARC Machine-Readable Cataloging
MASE Multiagent Systems Engineering
MAVIS Multi-Agent Virtual Seminar System
MBRM Manchester Business Rules Management
MDA Model Driven Architecture
MDL Minimum Description Length
MDU Multimedia Description Unit

xvi PREFACE

ME Method Engineering
MEG MyoElectroGraph
MERISE Methode d’Etude et de Realisation Informatique

pour les Systemes d’Enteprise
MGS Mars Global Surveyor
MISQ Management Information Systems Quarterly
MO Modus Operandi
MOF The Meta-Object Facility
MPEG Moving Picture Experts Group
MSF Microsoft Solutions Framework
MSG Meteosat Second Generation
MSMQ Microsoft Message Queuing
NDA National Digital Archive (Hungary)
NIAM Natural Language Information Analysis Method
NWP Numerical Weather Predictions
OAG Office of the Auditor General
OAI Open Archives Initiative
OB Organisational Behaviour
OCL Object Constraint Language
ODBC Open Data Base Connectivity
ODC Orthogonal Defect Classification
OPEN Object-Oriented Process, Environment and Notation
OLAP Online Analytical Processing
OMT Object Modeling Technique
OO Object-Oriented
OOA&D Object-Oriented Analysis and Design
OOHDM Object-Oriented Hypermedia Design Model
OOISD Object-Oriented Information System Development
OPEN Object-Oriented Process, Environment and Notation
OTK On-To-Knowledge
OSAD Object Systems Analysis and Design
P2P Peer-to-peer
PC Personal Computer
PDA Personal Digital Assistant
PDOM Persistent Document Object Model
PERA Purdue Enterprise-Reference Architecture
PIM Platform Independent Model
PLA Piece-Linear Formalism
PLS Partial Least Square
PM Process Management
PMBOK Project Management Body of Knowledge
PO2 Professional Officer Level 2
PROSIT PROcesS oriented IT audit support
PSM Platform-Specific Model
QA Quality Assesment

PREFACE xvii

QUICKethics Quality Information from Considered Knowledge
ETHICS

RAD 1. Role Activity Diagram
2. Rapid Application Development

RAM Random Access Memory
RE Requirements Engineering
REAL Resources, Events, Agents and Locations
RFC 1. Request For Comments

2. Regional Forecasting Centre
RMM Relationship Management Methodology
R.O. Regional Office
RPC Remote Procedure Call
RUP Rational Unified Process
R&D Research and Development
SADT Structured Analysis and Design Technique
SD System Development
SDLC Synchronous Data Link Communication
SI Statuary Instrument
SIV Standard Systems in Enterprises

(“Standardsystem i Verksamheter” in Swedish)
SLA Service Level Agreement
SME 1. Situational Method Engineering

2. Small and Medium size Enterprises
SMTP Simple Mail Transfer Protocol
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SPOC Senior Professional Officer Grade C
SPSPR Strategy, business Processes, Service, information

Processes and information Recourses
SPSS Statistical Package for the Social Sciences
SQL Structured Query Language
SSADM Structured Systems Analysis and Design

Methodology
SSM Soft System Methodology
SW Software
SWEBOK Software Engineering Body of Knowledge
SWOT Strengths, Weaknesses, Opportunities and Threats
S3 Strategy-Service-Support
TAM Technology Acceptance Model
TbKM Task-based Knowledge Management
TCO Total Cost of Ownership
TCP/IP Transmission Control Protocol / Internet Protocol
TGN Thesaurus of Geographic Names
TIB Time-Interval-Based model
TLOCS Tanker Loading Operative Control System

xviii PREFACE

TOOR Traceability of Object-Oriented Requirements
TQM Total Quality Management
TSV Tab Separated Value
UDA User-Developed Application
UDDI Universal Description Discovery and Integration
UDT User-Defined Type
UEC User-End Computing
UEML Unified Enterprise Modeling Language
UI User Interface
UML Unified Modeling Language
UML/UP Unified Modeling Language/Unified Process
UoD Universe of Discourse
UP Unified Process
URI Uniform Resource Identifiers
URL Uniform Resource Locator
VaR Value at Risk
VHDM View-Based Hypermedia Design Methodology
VO Virtual Organization
VQ Vector Quantization
WADM Workflow Application Development Method
WAP Wireless Application Protocol
WebML Web Modeling Language
WfMS Workflow Management System
WIS Web-based Information System
WM Workflow Modeling
WSCI Web Service Choreography Interface
WSDL Web Services Description Language
WSDM Web Site Design Method
WWW World Wide Web
XMI XML Metadata Interchange
XML Extensible Markup Language
XP eXtreme Programming
XQL Extensible Query Language
XSL Extensible Stylesheet Language
YSM Yourdon Structured Method

Organisation

The Thirteenth International Conference on Information Systems Development
(ISD’2004) held on September 9–11, 2004 in Vilnius, Lithuania, was organised by Vil-
nius Gediminas Technical University and Institute of Mathematics and Informatics.

Conference Chair
Olegas Vasilecas Vilnius Gediminas Technical University Lithuania

Local Organising Committee members
Algirdas Ciucelis Vilnius Gediminas Technical University Lithuania
Olegas Vasilecas Vilnius Gediminas Technical University Lithuania
Albertas Caplinskas Institute of Mathematic and Informatics Lithuania
Sergejus Sosunovas Vilnius Gediminas Technical University Lithuania
Saulius Maskeliunas Institute of Mathematic and Informatics Lithuania
Dale Dzemydiene Law University of Lithuania,

Institute of Mathematics and Informatics Lithuania
Audrone Lupeikiene Institute of Mathematic and Informatics Lithuania
Diana Bugaite Vilnius Gediminas Technical University Lithuania
Arunas Ribikauskas Vilnius Gediminas Technical University Lithuania

Program Committee

Gary Allen University of Huddersfield United Kingdom
David Avison ESSEC Business School France
Janis Barzdins University of Latvia Latvia
Juris Borzovs Information Technology Institute Latvia
Frada Burstein Monash University Australia
Rimantas Butleris Kaunas University of Technology Lithuania
Sharma Chakravarthy The University of Texas at Arlington USA
Heitor Augustus Xavier Universidade Federal de Lavras Brazil
Costa
Darren Dalcher Middlesex University United Kingdom
Vitalijus Denisovas Klaipeda University Lithuania

xix

xx PROGRAM COMMITTEE

Klaus R. Dittrich Institut für Informatik – Universität Zürich Switzerland
Julie Fisher Monash University Australia
Chris Freyberg Massey University New Zealand
John Gammack Griffith University Australia
Janis Grundspenkis Riga Technical University Latvia
Fitzgerald Guy Brunel University United Kingdom
Remigijus Gustas Karlstad University Sweden
Janis Eiduks Riga Technical University Latvia
Hele-Mai Haav Institute of Cybernetics at Tallinn Estonia

Technical University
G. Harindranath University of London United Kingdom
Igor Hawryszkiewycz Sydney University of Technology Australia
Alfred Helmerich Research Institute for Applied Technology Germany
Juhani Iivari University of Oulu Finland
Mirjana Ivanovic University of Novi Sad Serbia and

Montenegro
Marius Janson University of Missouri – St. Louis USA
Leonid Kalinichenko Institute for Problems of Informatics of the Russia

Russian Academy of Science
Roland Kaschek Massey University New Zealand
Marite Kirikova Riga Technical University Latvia
Gabor Knapp Budapest University of Hungary

Technology and Education
John Krogstie Norwegian University of Norway

Science and Technology
Marian Kuras Cracow Academy of Economics Poland
Rein Kuusik Tallinn Technical University Estonia
Sergei Kuznetsov Institute for System Programming of Russia

Russian Academy of Science
Robert Leskovar University of Maribor Slovenia
Henry Linger Monash University Australia
Björn Lundell University of Skoevde Sweden
Audrone Lupeikiene Institute of Mathematic and Informatics Lithuania
Kalle Lyytinen Case Western Reserve University USA
Leszek A. Maciaszek Macquarie University Australia
Yannis Manolopoulos Aristotle University Greece
Sal March Vanderbilt University USA
Majed Al-Mashari King Saud University Saudi Arabia
Heinrich C. Mayr University of Klagenfurt Austria
Elisabeth Métais CNAM University France
Mike Metcalfe University of South Australia Australia
Giorgio De Michelis University of Milano Italia
Daniel Moody Czech Technical University Czech Republic
Robert Moreton University of Wolverhampton United Kingdom
Pavol Navrat Slovak University of Technology Slovakia

PROGRAM COMMITTEE xxi

Lina Nemuraite Kaunas University of Technology Lithuania
Anders G. Nilsson Karlstad University Sweden
Jorgen F. Nilsson Technical University of Denmark Denmark
Jacob Norberg Copenhagen Business School Denmark
Jari Palomaki Massey University New Zealand
Malgorzata Pankowska The Karol Adamiecki University of Poland

Economics In Katowice
George A. Papadopoulus University of Cyprus Cyprus
Olga L. Perevozchikova Glushkov Institite of Cybernetics Ukraine
Alain Pirotte University of Louvain Belgium
Jaroslav Pokorny Charles University in Prague Czech Republic
Boris Rachev Technical University of Varna Bulgaria
Vaclav Repa Prague University of Economics Czech Republic
J. W. Schmidt Technische Universität Hamburg-Harburg Germany
David Schwartz Bar-Ilan University Israel
Timothy K. Shih Tamkang University Taiwan
Klaas Sikkel Universiteit Twente Netherlands
Guttorm Sindre Norwegian University of Norway

Science and Technology
Ignas Skucas VytautusMagnus University Lithuania
Arne Soelvberg Norwegian University of Norway

Science and Technology
Carsten Sorensen London School of Economics United Kingdom
Larry Stapleton Waterford Institute of Technology Republic of

Ireland
Eberhard Stickel Bonn University of Applied Sciences Germany
Uldis Sukovskis Riga Technical University Latvia
Janis Tenteris Riga Technical University Latvia
Bernhard Thalheim Kiel University Germany
Jacek Unold Wroclaw University Of Economics Poland
Douglas Vogel City University of Hong Kong Hong Kong
Jiri Vorisek Prague University of Economics Czech Republic
Gottfried Vossen University of Münster Germany
Gert-Jan de Vreede University of Nebraska at Omaha USA
Benkt Wangler University of Skoevde Sweden
Roel Wieringa University of Twente Netherlands
Carson C. Woo University of British Columbia Canada

Additional Reviewers
Manu Aery The University of Texas at Arlington USA
Akshay Arora The University of Texas at Arlington USA
Per Backlund University of Skoevde Sweden
Christos Berberidis Aristotle University Greece
Dhawal Bhatia The University of Texas at Arlington USA

xxii PROGRAM COMMITTEE

Antanas Cenys Semiconductor Physics Institute Lithuania
Pascal van Eck University of Twente Netherlands
Ajay Eppili The University of Texas at Arlington USA
Rik Eshuis University of Twente Netherlands
Matt Germonprez Case Western Reserve University USA
Jaap Gordijn Vrije University Netherlands
Sari Hakkarainen Norwegian University of Norway

Science and Technology
Algimantas Juozapavicius Vilnius University Lithuania
Yun Lin Norwegian University of Norway

Science and Technology
Antanas Mitasiunas Vilnius University Lithuania
Didier Nakache CNAM University France
Alexandros Nanopoulos Aristotle University Greece
Vamshi Pajjuri The University of Texas at Arlington USA
Rimantas Plestys Kaunas University of Technology Lithuania
A. Raman The University of Texas at Arlington USA
Adam Rechbinder University of Skoevde Sweden
Sunit Shreshta The University of Texas at Arlington USA
Michael Skusa Technische Universität Hamburg-Harburg Germany
Darijus Strasunskas Norwegian University of Norway

Science and Technology
David Tilson Case Western Reserve University USA
Anders Toms University of Skoevde Sweden
Grigoris Tsoumakas Aristotle University Greece
Tarmo Veskioja Tallinn Technical University Estonia

Co-Editors
Olegas Vasilecas Vilnius Gediminas Technical University Lithuania
Albertas Caplinskas Institute of Mathematics and Informatics Lithuania
Wita Wojtkowski Boise State University USA
W. Gregory Wojtkowski Boise State University USA
Joze Zupancic University of Maribor Slovenia
Stanislaw Wrycza University of Gdansk Poland

CONTENTS

1. SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS
SPECIFICATION . 1

Pericles Loucopoulos

2. INFORMATION SYSTEMS AS A DESIGN SCIENCE: SOME
CONCERNS . 15

Juhani Iivari

3. INFORMATION SYSTEMS DEVELOPMENT (ISD): PAST, PRESENT,
FUTURE TRENDS . 29

Anders G. Nilsson

4. CARS OF THE FUTURE: COMPUTERS AT THE WHEEL 41
Michel Parent

5. INTEGRATING ENTERPRISE AND IS DEVELOPMENT USING A
MODEL DRIVEN APPROACH .. 43

John Krogstie

6. ISSUES IN INFORMATION SYSTEMS EDUCATION: CAPITALIZING
ON RECENT ADVANCES IN LEARNING THEORY 55

Geoffrey Black, Wita Wojtkowski, W. Gregory Wojtkowski, and Cristianne Lane

7. XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE
SYSTEMS . 63

Irena Mlynkova and Jaroslav Pokorny

8. TOWARDS A PRIVACY FRAMEWORK FOR INFORMATION
SYSTEMS DEVELOPMENT . 77

Peter J. Carew and Larry Stapleton

xxiii

xxiv CONTENTS

9. IS DEVELOPMENT AS THE MUTUAL ADAPTATION OF
TECHNOLOGY AND BUSINESS PROCESS . 89

Bendik Bygstad

10. RETHINKING ISD METHODS: FITTING PROJECT TEAM
MEMBERS PROFILES . 103

Isabelle Mirbel

11. PRE-REQUISITES FOR SUCCESSFUL ADOPTION OF THE ASP
MODEL BY USER ORGANIZATION . 115

George Feuerlicht and Jiri Vorisek

12. ISD AS KNOWLEDGE WORK – AN ANALYSIS OF HOW A
DEVELOPMENT METHOD IS USED IN PRACTICE 125

Per Backlund

13. CUSTOMIZING TRACEABILITY IN A SOFTWARE DEVELOPMENT
PROCESS . 137

Patricio Letelier, Elena Navarro, and Víctor Anaya

14. AGENT-ORIENTED INFORMATION SYSTEMS DEVELOPMENT
USING OPEN AND THE AGENT FACTORY . 149

B. Henderson-Sellers, Q.-N. N. Tran, J. Debenham, and C. Gonzalez-Perez

15. MOTIVATION AND JOB SATISFACTION AMONG INFORMATION
SYSTEMS DEVELOPERS – PERSPECTIVES FROM FINLAND,
NIGERIA AND ESTONIA: A PRELIMINARY STUDY 161

Princely Ifinedo

16. A COMBINED NEURAL NETWORK AND DECISION TREE
APPROACH FOR TEXT CATEGORIZATION . 173

Nerijus Remeikis, Ignas Skucas, and Vida Melninkaite

17. WORKING WITH METHODS: OBSERVATIONS ON THE ROLE OF
METHODS IN SYSTEMS DEVELOPMENT . 185

Päivi Ovaska

18. JMINING – INFORMATION DELIVERY WEB PORTAL
ARCHITECTURE AND OPEN SOURCE IMPLEMENTATION 199

Algirdas Laukaitis, Olegas Vasilecas, and Raimondas Berniunas

19. CONCEPTUAL FRAMEWORK FOR INTEGRATION OF
MULTIAGENT AND KNOWLEDGE MANAGEMENT
TECHNIQUES IN INTELLIGENT TUTORING SYSTEMS 207

Janis Grundspenkis

CONTENTS xxv

20. COMBINING SIMULATION MODELS WITH THE INFORMATION
SYSTEM FOR AN OPERATIVE CONTROL OF THE OIL
TERMINAL . 217

Henrikas Pranevicius and Vytautas Pilkauskas

21. ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY
BASED COSTING . 229

Arjan Visser and Kees van Slooten

22. ON CODING AND CODEBOOKS IN MULTIMEDIA INFORMATION
SYSTEMS . 243

Moshe Porat

23. LINKING AND PROPAGATING BUSINESS RULE CHANGES TO IS
DESIGN . 253

Wan M. N. Wan Kadir and Pericles Loucopoulos

24. USING ENTERPRISE MODELING FOR IDENTIFICATION AND
RESOLUTION OF HOMONYM CONFLICTS IN VIEW
INTEGRATION . 265

Peter Bellström

25. A CRITICAL REVIEW OF CHALLENGES IN HYPERMEDIA
SYSTEMS DEVELOPMENT . 277

Michael Lang

26. TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION
OF REQUIREMENTS . 289

Lina Ceponiene and Lina Nemuraite

27. FROM USE CASES TO WELL STRUCTURED CONCEPTUAL
SCHEMAS . 303

Lina Nemuraite and Bronius Paradauskas

28. A MODEL OF INFORMATION SYSTEMS DEVELOPMENT FOR
LEARNING VIRTUAL ORGANIZATIONS . 315

Mart Roost, Rein Kuusik, Karin Rava, and Tarmo Veskioja

29. SURVEY OF REQUIREMENTS ENGINEERING PRACTICE IN
LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 327

Raimundas Matulevičius

30. FUNCTIONALITY OF INFORMATION SYSTEMS SPECIFICATION
LANGUAGE: CONCEPT, EVALUATION METHODOLOGY, AND
EVALUATION PROBLEMS . 341

Albertas Caplinskas and Jelena Gasperovic

xxvi CONTENTS

31. TEMPORAL SEMANTIC ABSTRACTION BASED ON LAYERED
MULTIMEDIA DATA MODEL . 353

Yan Jian-feng, Li Zhan-huai and Guo Chen-juan

32. NEW METHODS FOR ENHANCING THE EFFECTIVENESS OF THE
DUBLIN CORE METADATA STANDARD USING COMPLEX
ENCODING SCHEMES . 365

István Szakadát, László Lois, and Gábor Knapp

33. FROM ANALOG INFORMATION TO DIGITAL DATABASES – DOES
IT KEEP EVERYTHING INTACT? . 377

Hagai Kirshner and Moshe Porat

34. MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED
DEVELOPMENT: AGREEMENT BASED APPROACH 389

Darijus Strašunskas and Yun Lin

35. RENAISSANCE OF BUSINESS PROCESS MODELLING 403
Marite Kirikova and Janis Makna

36. DOES THE PERCEIVED QUALITY OF AN ELECTRONIC GROCERY
STORE EXPLAIN THE BUYING BEHAVIOR OF ITS
CUSTOMERS? AN EXPLORATORY FIELD STUDY 415

Osmo Kurkela and Juhani Iivari

37. ONTOLOGY-BASED DECISION SUPPORT SYSTEM FOR CRIME
INVESTIGATION PROCESSES . 427

Dale Dzemydiene and Egle Kazemikaitiene

38. VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED
INFORMATION SYSTEM DEVELOPMENT . 439

Ilona Box and Raymond Lister

39. END-USER COMPUTING IN BANKING INDUSTRY: A CASE STUDY
OF A LARGE SLOVENIAN BANK .. 453

Janko Hriberšek, Borut Werber, and Joze Zupancic

40. WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES: A
MULTIPROJECT EXPERIMENT . 463

Darren Dalcher, Oddur Benediktsson, and Helgi Thorbergsson

41. A MODEL FOR A METHOD ADAPTATION PROCESS . 477
Mehmet N. Aydin, Frank Harmsen, Kees van Slooten, and Robert A. Stegwee

42. ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS
IN DATA MINING . 487

Mykola Pechenizkiy, Seppo Puuronen, and Alexey Tsymbal

CONTENTS xxvii

43. FILLING THE KNOWLEDGE MANAGEMENT SANDWICH: AN
EXPLORATORY STUDY O F A COMPLEX WORK
ENVIRONMENT . 501

Henry Linger and Jeremy Aarons

44. DETERMINING AN APPROPRIATE APPROACH TO THE
IMPLEMENTATION OF A WFMS . 515

Mehmet N. Aydin

45. ADDRESSING TACIT KNOWLEDGE IN ISD METHODOLOGIES 527
Fiona M. Murphy and Larry Stapleton

AUTHOR INDEX . 539

INDEX . 541

SYSTEM CO-DEVELOPMENT THROUGH
REQUIREMENTS SPECIFICATION

Pericles Loucopoulos∗

1. INTRODUCTION

The relatively recent emphasis on process-centred approaches has highlighted the need
for appropriate mechanisms for the elicitation, representation and validation of require-
ments that focus on the co-development activity whose aim is to ensure alignment between
business processes and support technical systems.

A key challenge in the development of systems is the engagement of domain experts in
their articulation, agreement, and validation of requirements. This challenge is particularly
pronounced at the so-called early requirements phase when multiple stakeholders from
different divisions and often different organisations need to reach agreement about the
intended systems. Decisions taken at this stage have a profound effect on the technical
and economic feasibility of the project. It is no longer appropriate for information systems
professionals to focus only on functional and non-functional aspects of the intended system
and somehow assume that organisational context and needs are outside their remit.

Traditional requirements engineering (RE) techniques that have emerged over the
years in the field of information systems engineering are also being applied to business
process modelling. In both cases modelling is advocated as a way of facilitating analyst-
client communication. In both cases the focus of the modelling paradigm is on require-
ments for support systems rather than on co-development issues. In neither case does a
modelling paradigm is specifically deployed to facilitate communication between stake-
holders and since early requirements elicitation is founded on the need for stakeholders to
co-operatively reach agreement on the interactive and inter-dependent nature of all require-
ments in their totality, neither class fully tackles the problems of early requirements.

This paper examines contemporary approaches to early requirements modelling, dis-
cusses the main issues that should be addressed by modelling and proposes an approach
that arguably provides a solid and usable framework for addressing the key problem of

∗ Department of Computation, University of Manchester Institute of Science and Technology, P.O. Box 88,
Manchester, M60 1QD, U.K., pl@co.umist.ac.uk, http://www.co.umist.ac.uk/~pl.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 1

2 P. LOUCOPOULOS

early requirements namely, engaging stakeholders in defining, exploring and validating
early requirements.

Section 2 introduces the topic of early requirements and discusses the needs for meth-
ods and tools for this critical development activity. Section 3 introduces a framework,
known as the S3 framework, that addresses early requirements from three viewpoints. Sec-
tion 4, describes a large industrial-strength application that made use of the S3 approach,
and discusses and the lesson learned from it.

2. EARLY REQUIREMENTS

There is a high degree of consensus amongst information systems researchers and
practitioners that the development of systems is not solely a technical activity but rather or-
ganisational factors very often have a profound effect on both the delivered system and the
design process. This is particularly acute in today’s turbulent business environment where
powerful forces such as deregulation, globalisation, mergers, advances in information and
telecommunications technologies, and increasing education of people provide opportuni-
ties for organising work in ways that have never before been possible.1

Traditional requirements engineering (RE) techniques that have emerged over the
years in the field of information systems engineering are also being applied to business
process modelling. Some pay attention to procedural matters2–5 whilst others adopt an in-
tentional viewpoint.6–12 The emphasis of the former is on support systems whereas that of
the latter is on organisational issues.

In both cases modelling is advocated as a way of facilitating analyst-client communi-
cation. In both cases the focus of the modelling paradigm is on requirements for support
systems rather than on co-development issues. In neither case does a modelling paradigm
is specifically deployed to facilitate communication between stakeholders and since early
requirements elicitation is founded on the need for stakeholders to co-operatively reach
agreement on the interactive and inter-dependent nature of all requirements,13 in their to-
tality, neither class fully tackles the problems of early requirements.

What distinguishes early requirements from late (or support system) requirements, is
the degree of involvement of client stakeholders. Early requirements are almost exclusively
driven by client stakeholders’ communication. Issues of early requirements include: (a) the
customer profiles of a business process, (b) the likely demand for product or service made
by each type of customer, (c) the level of desirable service that the business process should
strive to achieve, (d) the resources that are required in order to achieve these levels of
service and (e) the trade-off between levels of service and requisite resource between all
client stakeholders of a business process. Only when these issues have been resolved can
one then begin to develop specifications of requirements for support systems. The analyst
will need to know how the support system interacts with other systems, what kind of levels
of service it must achieve and so on before engaging into further analysis on functional and
non-functional properties of the intended system.

These issues of early requirements are specifically tackled by the strategy-service-
support (referred to as S3) modelling approach.14 It is based on the premise that informal
(c.f.,15, 16 semi-formal (c.f.12, 17 or formal approaches (c.f.18, 19 to business process mod-
elling do not fully address the issues relating to early requirements. The S3 modelling

SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS SPECIFICATION 3

approach advocates a process cycle of hypothesis formulation, testing, and re-formulation
until stakeholders have enough confidence about the efficiency of the proposed design. Es-
sentially, one is developing theories, externalised as conceptual models, about the Universe
of Discourse and tests these theories for their validity. In terms of the 6 classes of require-
ments elicitation techniques identified in20 (i.e. traditional, group, prototyping, model-
driven, cognitive and contextual), the contribution of S3 is in the model-driven and group
classes. In S3 models are used to establish the structural aspects of a business process.
These models are subsequently subjected to scenario generation in consensus-building
stakeholder workshops.

3. THE S3 APPROACH TO SYSTEM CO-DEVELOPMENT

In terms of methodology the S3 approach supports a reasoning cycle of hypothesis for-
mulation, testing, and re-formulation. Within this reasoning cycle, S3 deals with strategic,
service and support issues.

a. Strategic issues are organisational and stakeholder goals for improving the organ-
isation’s performance.

b. Service issues are the levels of improvement considered by the organisation.
c. Support issues are the resources policies and actions required to reach the desired

service levels.

The approach is summarised in terms of its philosophy, models delivered and proces-
ses adopted, in Figure 1.

The S3 approach is motivated by four ‘principles: (a) Systems thinking considers in-
dependent components that form a unified whole21, 22; for example the business process

Figure 1. The S3 methodology.

4 P. LOUCOPOULOS

spectator services involves arrival handling, security checking,
crowd management, services etc and the behaviour of each component affects all
others, potentially in a profound manner. (b) Abstract thinking implies that one moves away
from the physical manifestation of processes.23 (c) Operational thinking considers the dy-
namics of a business process and in particular its behaviour over time.24, 25 (d) Solution-
first thinking implies that in attempting to identify requirements one generates a provisional
design whose purpose is to highlight potential functionality.26

On the basis of these four fundamental principles, three types of model may be devel-
oped: (a) domain ontologies27 that scope the problem space and define the key business
objects that participate in a business process; (b) stakeholder goals28 that determine the
high-level intentions of each class of stakeholder; (c) processes29 that fall into the two sub-
categories of customer-oriented processes and support-oriented processes where the former
provides the basis for defining the level of service and the latter the manner in which this
will be met.

In terms of processes involved there are essentially two activities: (a) model build-
ing and critiquing30, 31 and (b) simulation and group deliberation.32, 33 Models are mainly
built by analysts with input from domain experts but are critiqued and revised by stakehold-
ers. Analysts also facilitate simulation sessions where model parameters are instantiated by
stakeholders. Consensus building stakeholder workshops develop scenarios that facilitate
deliberation of alternative future realizations.

4. AN EXAMPLE OF USING THE S3 APPROACH

4.1. The Problem Domain

All the issues with early requirements, outlined in Section 2, were present in a project
regarding the design of systems supporting venue operations for the Athens 2004 Olympic
Games. The action research on which this paper is based was carried out at the Organ-
ising Committee for the Athens 2004 Olympic Games (ATHOC). The project underwent
3 phases during a period of 2 years and involved 175 person months of effort. Initially, elic-
itation of early requirements was attempted using informal stakeholder facilitation. This
was followed by the use of a traditional business process modelling approach which in
turn gave way to the S3 approach that eventually became the main vehicle for eliciting
early requirements for 21 applications. In preparing towards the staging of the Games,
ATHOC planed, coordinated and designed for systems most of which were delivered by
external contractors. The problem domain is one of process integration the characteristics
of which may be summarised as follows:

◦ There are many different co-operating agents (systems, ATHOC functional ar-
eas, sub-contractors, personnel and procedures). For example, the distribution of
results involves the co-ordination of systems concerned with timing, information
structuring, information communication, reprographics, and physical distribution.

◦ Different stakeholders have distinct goals and expectations of systems. For exam-
ple, transportation is solely concerned with safe and timely arrival and departure
of spectators whereas catering is concerned with meeting demand during the op-
eration of a venue.

SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS SPECIFICATION 5

◦ Although different stakeholders have their own distinct concerns, from a total
venue perspective all these need to be considered holistically. For example, the
demand on catering is influenced by the behaviour of spectators in terms of their
arrival and departure, their attendance of sports events etc.

The effect of these characteristics is the transformation that every Games Organising
Committee needs to undertake. An Organising Committee is established a few years prior
to the staging of the Games. Functional areas such as transportation, security, logistics,
marketing etc. are established approximately 5–6 years prior to the staging of the Games,
in order to organise and develop the necessary human, information and physical resources
for the Games. Whilst at the outset the structure of an Organising Committee is hierarchical
and function-oriented, this needs to gradually get transformed, as the Games approach, to
a venue-based process orientation in order to shift emphasis away from internal organisa-
tional efficiency towards venue operation efficiency. The term ‘venue operations’ concerns
the systems, actors and procedures that will be implemented in a venue (be it a competi-
tion venue or a support venue) within spatial and temporal constraints, for different types
of service e.g. security control, crowd management, catering etc. The design of systems
supporting venue operations needs to address both their functional requirements (the re-
sources and procedures for their management) and their non-functional requirements (the
quality of service provision).

A central issue is the interaction and coordination of domain experts from 27 different
functional areas in order to design systems that interact properly and are fully co-ordinated.
For example, transportation needs to be co-ordinated with crowd queuing control which in
turn need to co-ordinate with security etc. Typically, the stakeholders involved are experts
from the Organising Committee, technical suppliers and subcontractors.

The complexity of venue operations increases as the variability of demands increases
according to different ‘customer’ demands. For example, coordinating the processes con-
cerned with spectator services involves many stakeholders from the 27 functional areas of
ATHOC and for large venues there are in excess of 100 factors that influence the behaviour
of the system.

Co-development of business processes and support systems for this problem led to a
number of complex decision making activities during early requirements. The following
are few examples of frequently faced, typical questions:

◦ What are the appropriate types and level of resources that will be needed by each
functional area for each venue?

◦ What are the interrelationships and interdependencies of the various functional
areas in providing the required services to the various customer groups?

◦ What is the trade-off between the desired service level and the resource alloca-
tion / requirements for each activity involved in a process?

◦ What is the optimal operational smoothing / resource levelling for the overall
process pertaining to a given customer group?

Ultimately, ATHOC had to specify the physical infrastructure (e.g. building works,
public transportation etc), support systems (e.g. security systems, reporting systems, cater-
ing systems, ATMs etc) and procedures (e.g. protocols for dissemination of results, crowd

6 P. LOUCOPOULOS

control etc) in such a way so as to satisfy both the individual requirements of each func-
tional area and the systemic requirements that arise from the process-oriented view of venue
operations. It was therefore, profoundly important to reach agreement between stakehold-
ers from all 27 functional areas on the way that their interdependent requirements were to
be dealt in the most transparent, quantifiable and effective way possible.

4.2. Model Building and Critiquing

In conceptual modelling two viewpoints are accommodated: (a) stakeholder goals that
determine the high-level intentions of each class of stakeholder and (b) business processes
that determine the service that should be provided and the support mechanisms for provid-
ing the service.

4.2.1. Stakeholders’ Goals

Goal modelling is about describing the causal structure of a system (be it a business
system, or a software system, etc.), in terms of the goals-means relations from the “in-
tentional” objectives that control and govern the system functions to the actual “physical”
processes and activities available for achieving these objectives. Goal modelling aims at
providing the means for describing the purpose of the system under consideration, why it
came into being.

In eliciting the goals for the venue operations system, the aim was to understand what
determined the successful operation of the system. This involved helping the various stake-
holders externalise the (sometimes implicit) goals that they had, capturing these goals, and
synthesising that knowledge with information from other sources, such as existing docu-
mentation, abstract descriptions of various systems and procedures, and so forth. Stake-
holders’ goals were thus an initial, high-level expression of system requirements viewed
from the perspective of ATHOC, i.e. the service provider (as opposed to that of the user).

With respect to goal categorisation, we found that it was often relatively straightfor-
ward to capture goals about the functions that the system should provide (i.e. the functional
requirements), while in most cases it was difficult to accurately define goals regarding the
quality of venue operations. In both cases, the multitude of stakeholders (i.e. functional
areas) involved in the requirements specification often resulted to competing, and some-
times clearly conflicting, goals about the system. Furthermore, it was especially difficult for
stakeholders to express their goals in specific (i.e. measurable) terms. Indeed, while each
functional area found it relatively easy to identify distinct functional/quality aspects of the
system, it was much more difficult to quantify each of these aspects. This difficulty unfail-
ingly complicates subsequent stages of system design because it has a decisive influence on
the type and amount of resources required, and by extension on the final cost of the system.

To deal with the complex situation of goal elicitation we progressed in a stepwise,
cyclical manner, starting from high-level, sometimes fuzzy, goals. We then elaborated
on these goals with the help of the functional areas affected by them. By modelling the
processes that the venue operations system comprises, and by testing different scenarios
on how quality goals can be implemented in each of these processes, we could identify
different ways of refining goals into specific quality requirements on the basis of which the
system could be developed.

SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS SPECIFICATION 7

An example of a high-level goal that all functional areas invariably expressed was
related to the quality of service provision to various customer groups. Irrespective of cus-
tomer group and service type, the goal was usually expressed in this form: ‘Minimise the
time that a customer has to wait in order to get serviced’. This translates into goals such as
‘minimise the time that a spectator has to wait in order to go through security checking’ or
‘minimise the time that a staff member has to wait in order to check in upon arrival to the
venue’.

This type of goal does not translate very well into operational terms because it does
not specify a concrete target for the waiting time. To complicate matters further, there is
not a single acceptable waiting time as that depends on the service type and the customer
group for which it is intended. What is acceptable for spectators or staff, for instance, may
not be acceptable for members of the Olympic family or for athletes. In other words, what
is the level of service that each functional area is aiming to offer to the customers it is going
to service? Should we be happy with 30 seconds waiting time or with 15 minutes? In some
cases even that answer was not ready, so it had to be negotiated.

A different type of high-level goal was expressed with respect to the overall presence
of spectators in a venue. Given that a venue may hold more than one event (e.g. competition
session) during a day, at any time there may be spectators arriving at the venue area for
one of the upcoming sessions, spectators leaving the venue from one of the past sessions,
and spectators participating in a current session. The total number of spectators present
has to be somehow controlled for practical reasons such as the availability of resources
(e.g. space), but also due to safety concerns. This translates into the goal ‘manage the
total presence of spectators in the venue area’. Again this is an abstract goal that needs to
be made more specific; to refine it, the stakeholders examined the factors influencing the
presence of spectators in the venue and their distribution in the various areas of which it
consists. These factors include the competition schedule at each venue, the transportation
capabilities to/from the venue, the availability of open spaces and/or service areas within
the venue, and so forth. Addressing issues such as those concerning these two high-level
goals was the first step towards visualising an operational system.

4.2.2. Business Processes

There was a wide range of process-related problems to be studied while addressing the
issue of venue operations. At one end of the spectrum, there were problems with ‘local’
impact, i.e. affecting a single customer group, a small area of the venue, and a small part of
venue resources (workforce, machinery, consumables). At the other end of the spectrum,
there was the problem of the ‘behaviour’ of an entire venue as a complex, interconnected
system. This corresponds to process models focusing on the dynamic profiling of all venue
components, over an extended time frame (e.g. an entire day of the Games), possibly with
respect to the needs of more than one customer group. A distinguishing feature of this type
of situation is the large number of different service types that the model must represent,
since the behaviour of the venue operations system is affected by each of these service
sub-components. As a result, the degree of complexity in the resulting process model rises
dramatically.

To demonstrate the use of business process modelling, consider the application of
spectators’ processes.

8 P. LOUCOPOULOS

Figure 2. Model fragment regarding venue service facilities.

The behaviour of specific components of the system is examined by model compo-
nents like the one presented in Figure 2.

The behaviour of the services component is determined by two issues: the demand
for each type of service and the supply offered by the service provider. The demand is
determined in part through the pct of specs per service type variable, which
expresses the number of customers expected at each type of service facility per unit of
time as a percentage of total spectator presence. Total spectator presence depends on
overall spectators’ behaviour in the venue area, which interacts with this model fragment
through a number of feedback loops (not shown here due to the complexity of the complete
model).

The supply is determined by two parameters: the number of Service Points avail-
able (e.g. 10 stands selling food), and the specs per channel per minute ser-
vice rate (e.g. two spectators serviced per service point per minute). According to this rep-
resentation, spectators arrive at the service facility (going to facilities), queue
there for a while if no service point is available (Specs Queue at Facilities),
and eventually get serviced (servicing).

Using this model fragment we can elaborate on the way that stakeholder goals were
refined through the use of process modelling. We previously mentioned the high-level goal
‘Minimise the time that a customer has to wait in order to get serviced’. The realisation
of this goal for a given type of service facility, and for a given demand, depends on the
availability of supply for that facility. Supply is composed of two independent factors,
the number of service points and the service rate. Therefore, the initial goal was decom-
posed into two complementary (i.e. non-competing) goals: ‘Maximise the number of service
points’ and ‘maximise the service rate’. These goals are more accurate than the initial one,
however they need to be analysed further in order to become quantifiable.

SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS SPECIFICATION 9

Figure 3. Stakeholder-defined parameters for service.

4.2.3. Scenarios Building

The generation of different scenarios concerning each problem studied, and the simu-
lation of these scenarios with the help of the process models developed, is an essential part
of requirements definition. In our experience, scenarios are an indispensable tool for truly
understanding the implications of stakeholders in their deliberation of requirements. In
our application, as the models were being developed and the stakeholders were becoming
more aware of the different factors influencing each problem, the range of possible values
for each of these factors became more evident, thus creating the initial ideas for different
scenarios.

For example, in the components of the system model that deals with services (ATMs,
merchandising, catering, etc), fragment of which is shown in Figure 2, we find a plethora
of stakeholder defined assumptions regarding demand and supply for each service facil-
ity. One set of parameters is to do with the expected percentage of spectators demanding
the service and the expected productivity per unit of service. An example of the system
developed to support scenarios is shown in Figure 3.

For merchandising, for example, stakeholders have defined that 15% of the
spectators will seek this service and that on average it takes 2 minutes to ser-
vice each spectator. These values, just like all other stakeholder-defined values are ob-
viously assumptions on their part. But given that there is some past experience from
previous Olympics, stakeholders can begin their scenarios from a reasonably defendable
position.

10 P. LOUCOPOULOS

Figure 4. Simulation results for the ‘Merchandising’ service.

An additional set of parameters that influence the behaviour of the system focus on the
resources that support the service provision e.g. “how many merchandising outlets?”, or
“how many ATMs?” etc. An example of such parameters for merchandising in the north
area is shown in Figure 4. This also shows the simulation that results from the instantia-
tion of parameters for the demand and supply set by stakeholders.

A key point about the simulation process was the realisation by stakeholders that their
specific requirements and their specific decisions influenced those of others. Merchandis-
ing for example, does not exist in isolation. It is influenced by other components and in
turn it influences others. Other relevant factors, such as spectators’ arrival and departure
patterns, were taken into account. The stakeholders involved in scenario generation investi-
gated the range of probable values for each of these parameters, as well as some ‘extreme’
values that were less probable but worth investigating nonetheless. Each scenario was char-
acterised by the values of all independent variables; the number of possible scenarios thus
depended on the number of their feasible combinations.

The models were subjected to testing through simulation sessions, in workshops in-
volving stakeholders in groups ranging from 5 to as many as 40. In all workshops the
models were presented to project stakeholders together with the corresponding scenarios
and simulated runs. These features enabled stakeholders to reach a consensus about the
underlying processes and the implications that each choice would have on overall system
behaviour. The first type of result, i.e. results concerning specific components of the sys-
tem, helped to answer operational questions concerning the rational allocation of resources
and the resulting service provision capabilities of the system. The second type of result

SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS SPECIFICATION 11

proved useful for understanding the overall behaviour of a venue, thus answering higher-
level, management questions concerning customer presence and distribution, arrival and
departure patterns etc.

5. CONCLUSIONS

Requirements engineering is considered by many as the most critical of all devel-
opment activities for socio-technical systems. The sensitive area of early requirements is
only recently beginning to be addressed in a methodological sense. Considerable effort
is required to bridge the semantic islands that are often formed between different com-
munities of client stakeholders, designers, regulators, etc. Indeed the entire system de-
velopment process seems to be disadvantaged by lack of techniques to assist with effec-
tive communication.13, 34 An in-depth study on industrial practice35 provides evidence that
communication is crucial to the entire design process.

In early requirements, when there is a great deal of vagueness and uncertainty about
system goals that are often set against a background of social, organizational and political
turbulence, the need for a systematic and systemic way of dealing with all co-development
aspects seems to be of paramount importance.

The work presented in this paper is an attempt to highlight this need from experiences
from a substantial project that involved many stakeholders. These experiences confirm that
informal and textual descriptions need to give way to conceptual modelling languages with
clear semantics and intuitive syntax so that an application can be defined at an appropriate
level of abstraction. This would greatly enhance visualisation of processes that will in turn
contribute to a more informed discussion and agreement between stakeholders.

Whilst qualitative-based conceptual modelling approaches seem to be an improve-
ment on purely linguistic-based approaches, they fail to bridge the communication gap
between client stakeholders and analysts. The issue of analyst-client relationship has been
highlighted by many authors.36, 37 This type of modelling paradigm that has evolved from
work on Databases, Software Engineering or Object-oriented Design, with its analyst ori-
entation, does little to enhance communication.

Empirical evidence from the Athens 2004 Olympics Games project on early require-
ments concurs with the premise on which the S3 approach is based namely, that qualitative
models need to be enhanced with quantitative capabilities. These capabilities provide op-
portunities for the generation and evaluation of alternative scenarios with respect to stake-
holder choices on their requirements. In the ATHOC application, the S3 approach proved to
encourage group brainstorming through which participants could focus on alternative so-
lutions and to envision potential behaviour of the system prior to its implementation. This
way of working supports the way experts work on ill-structured problem settings such as
planning and design.26

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his many colleagues, analysts and stake-
holders, at the Athens 2004 Olympic Games Organising Committee. In particular to Nikos

12 P. LOUCOPOULOS

Prekas for managing the team of analysts and liaising with stakeholders in the most effec-
tive manner and to Dimitris Beis and Gregory Vgontzas for having the insight to adopt new
innovative approaches towards the design of venue operations. The author would also like
to acknowledge the contribution of Kostas Zografos of the Athens University of Economics
and Business for the work on the design framework.

REFERENCES

1. T. W. Malone, R. Laubacher, and M. S. S. Morton, Inventing the Organizations of the 21st Century (MIT
Press, Cambridge, Massachusetts, 2003).

2. A.-W. Scheer and A. Hars, Extending data modelling to cover the whole enterprise, Communications of the
ACM 35(9), 166–175 (1992).

3. A. W. Scheer, ARIS – Business Process Frameworks (Springer, 1999).
4. M. Lundeberg, “The ISAC approach to specification of information systems and its application to the organi-

sation of an IFIP working conference,” in: Information Systems Design Methodologies: A Comparative
Review, edited by T. W. Olle, H. G. Sol, and A. A. Verrijn-Stuart (IEEE Computer Society Press,
North-Holland, 1982), pp. 273–234.

5. IDEF0, “Integration Definition for Function Modeling (IDEF0),” Computer Systems Laboratory, National
Institute of Standards and Technology FIPS Pub 183 (December 21, 1993).

6. E. S. K. Yu and J. Mylopoulos, Using goals, rules and methods to support reasoning in business process
reengineering, Intelligent Systems in Accounting, Finance and Management 5(2) (1996).

7. A. I. Anton, W. M. McCracken, and C. Potts, Goal Decomposition and Scenario Analysis in Business Process
Reengineering, in: Proceedings of 6th International Conference on Advanced Information Systems En-
gineering (CAiSE’94), edited by G. Wijers, S. Brinkkemper, and T. Wasserman (Utrecht, The Nether-
lands, 1994), 94–104.

8. A. van Lamsweerde, Goal-Oriented Requirements Engineering: A Guided Tour, in: Proceedings of 5th IEEE
International Symposium on Requirements Engineering, RE’01 (Toronto, 2001), pp. 249–263.

9. C. Rolland, C. Souveyet, and C. Ben Achour, Guiding goal modeling using scenarios, IEEE Trnansactions
on Software Engineering 24(12), 1055–1071 (1998).

10. C. Rolland, G. Grosz, and K. Regis, Experience with Goal-Scenario Coupling in Requirements Engineering,
in: Proceedings of IEEE International Symposium on Requirements Engineering (Limerick, Ireland,
1999), pp. 74–83.

11. P. Loucopoulos and E. Kavakli, Enterprise modelling and the teleological approach to requirements engi-
neering, International Journal of Intelligent and Cooperative Information Systems 4(1), 45–79 (1995).

12. V. Kavakli and P. Loucopoulos, Goal-driven business process analysis – application in electricity deregula-
tion, Information Systems 24(3), 187–207 (1999).

13. J. Coughlan and R. D. Macredie, effective communication in requirements elicitation: a comparison of
methodologies, Requirements Engineering 7(2), 47–60 (2002).

14. P. Loucopoulos, The S3 (Strategy-Service-Support) Framework for Business Process Modelling, in: Pro-
ceedings of Workshop on Requirements Engineering for Business Process Support (REBPS’03), edited
by J. Eder, R. Mittermeir, and B. Pernici (Klagenfurt/Velden, Austria, 2003), pp. 378–382.

15. R. D. Galliers, Towards a flexible information architecture: integrating business strategies, information sys-
tems strategies and business process redesign, Journal of Information Systems 3(3), 199–213 (1993).

16. F. Leymann and W. Altenhuber, Managing business processes as an information resource, IBM Systems
Journal 33(2), 326–348 (1994).

17. M. Ould, Business Processes: Modelling and Analysis for Re-engineering and Improvement (Chichester,
John Wiley & Sons, 1995).

18. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos, Specifying and Analysing Early Require-
ments: Some Experimental Results, in: Proceedings of 11th IEEE International Conference on Re-
quirements Engineering (Monterey Bay, California, USA, 2003), pp. 105–116.

19. A. Fuxman, J. Mylopoulos, M. Pistore, and P. Traverso, Model Checking Early Requirements Specifica-
tions in Tropos, in: Proceedings of 5th IEEE International Symposium on Requirements Engineering
(Toronto, Canada, 2001), pp. 174–181.

SYSTEM CO-DEVELOPMENT THROUGH REQUIREMENTS SPECIFICATION 13

20. B. Nuseibeh and S. Easterbrook, Requirements Engineering: A Roadmap, in: Proceedings of 22nd Interna-
tional Conference on on Software Engineering (Limerick, Ireland, 2000), pp. 35–46.

21. P. B. Checkland, Soft Systems Methodology: A 30-year Retrospective, New edition (Chichester, Wiley, 1999).
22. B. M. Richmond, Systems Thinking: Critical Thinking Skills for the 1990s and beyond, System Dynamics

Review 9(2), 113–133 (1993).
23. G. Walsham, Virtual organization: an alternative view, Information Society 10(4), 289–292 (1994).
24. J. D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World (Irwin/McGraw-

Hill, Boston, 2000).
25. J. W. Forrester, Principles of Systems (Waltham, MA, Pegasus Communications Inc., 1999).
26. J. M. Carroll, Scenarios and Design Cognition, in: Proceedings of IEEE Joint International Conference on

Requirements Engineering (RE’02), edited by E. Dubois and K. Pohl (Essen, Germany, 2002), pp. 3–5.
27. B. Aune, Knowledge of the External World (Routledge, London, New York, 1991).
28. E. Kavakli and P. Loucopoulos, “Goal Modelling in Requirements Engineering: Analysis and Critique

of Current Methods,” in: Information Modeling Methods and Methodologies, edited by J. Krogstie,
T. Halpin, and K. Siau (IDEA Group Inc., 2004).

29. P. Loucopoulos and N. Prekas, A Framework for Requirements Engineering Using System Dynamics, in:
Proceedings of 21st International Conference of the System Dynamics Society, New edition (York City,
2003).

30. D. F. Andersen, G. P. Richardson, and J. A. M. Vennix, Group model building: adding more science to the
craft, System Dynamics Review 13(2), 187–201 (1997).

31. J. A. M. Vennix, Group model-building: tackling messy problems, System Dynamics Review 15(4), 379–401
(1999).

32. A. Fowler, Simulations’s Evolving Role in Management, in: Proceedings of 1996 International System Dy-
namics Conference, edited by G. P. Richardson and J. D. Sterman (Cambridge, Massachusetts, 1996),
pp. 162–165.

33. E. F. Wolstenholme, Decision Analysis Using Dynamic Simulation, in: Proceedings of System Dynamics
’95, edited by T. Shimada and K. Saeed (Tokyo, 1995), pp. 937–945.

34. C. Urquhart, Analysts and clients in organisational contexts: a converstational perspective, Strategic Infor-
mation Systems 10(3), 243–262 (2001).

35. B. Curtis, H. Krasner, and N. Iscoe, A field study of the software design process for large systems, CACM
31(11), 1268–1287 (1988).

36. S. Kennedy, Why users hate your attitude, Informatics, pp. 29–32 (February 1994).
37. B. Bashein and M. I. Markus, A credibility equation for IT specialists, Sloan Management Review 38(4),

35–44 (1997).

INFORMATION SYSTEMS AS A DESIGN SCIENCE
Some concerns

Juhani Iivari∗

1. INTRODUCTION

There are increasing concerns about the relevance and identity of Information Systems
(IS) as a scientific discipline (Benbasat and Zmud, 1999; 2003; Galliers, 2004; Hirschheim
and Klein, 2003; Markus, 1999; Weber, 2003; Whinston and Geng, 2004). Benbasat and
Zmud (2003, p. 191) suggest that the IT artefact and related immediate nomological net
should form the core of the discipline:

“our focus should be on how to best design IT artifacts and IS systems to increase their
compatibility, usefulness, and ease of use or on how to best manage and support IT or
IT-enabled business initiatives”. [italics added by JI]

To this end, the IS discipline should produce knowledge to support IS development
(Iivari, 2003).† But how can we provide this knowledge? The North American IS research
community seems to believe that the best way to support practice is to focus on descriptive-
explanatory theories, hoping that they will lead to practical implications relevant to prac-
titioners.‡ To increase the direct utilization of research results in practice, Benbasat and
Zmud (1999) recommend that we should

“develop cumulative, theory-based, context-rich bodies of research to be able to make pre-
scriptions and be proactive” (p. 14).

∗ Department of Information Processing Science, University of Oulu, P.O. Box 3000, 90014 Oulun yliopisto,
Finland, juhani.iivari@oulu.fi.

† I use the term “development” in a broader sense than “design”, to cover all the “life-cycle” activities of require-
ments construction, design, technical implementation and organizational implementation of an IS artefact and
its re-development (evolution). Note also that I interpret development as being capable of taking place in-house
or being based on application packages.

‡ An alternative explanation is that the major objective of the IS community was to achieve legitimacy in terms
of the criteria applied in organization/management studies, without much concern for practical relevance.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 15

16 J. IIVARI

Even though desirable in principle, it seems that this theory-driven research has seri-
ously failed to produce results which are of real interest in practice. A pilot analysis of the
practical recommendations made in articles in MISQ between 1996 and 2000 showed that
these were weak (Iivari et al., 2004). As a consequence, it is no wonder that practitioners
are not interested in these major IS journals (Kock et al., 2002).

Iivari (2003) proposes three reasons for the IS discipline’s perceived lack of prac-
tical relevance: overemphasis on the “theory-with-practical-implications” research strat-
egy (Benbsat and Zmud, 1999, 2003), underemphasis on the nature of IS as an applied
engineering-like discipline, as a science of the artificial or as a design science (Simon,
1969; March and Smith, 1995; Hevner et al., 2004), and underemphasis on constructive
research (Iivari, 1991; Nunamaker et al., 1991, Burstein and Gregor, 1999). Interestingly,
similar concerns have also been expressed in business economics (Kaasanen et al., 1991)
and management research (van Aken, 2004).

This paper continues some of the argumentation in Iivari (2003). It is structured in
terms of four concerns:

1. What are the core artefacts built and studied in IS when viewed as a discipline of
computing (Section 2)?

2. Is the concept of “IT artefact” too design-oriented (Section 3)?
3. Are systems development methods valid methods of constructive research (Sec-

tion 4)?
4. How can one theorize about “IT artefacts” (Section 5)?

2. WHAT ARE THE CORE ARTEFACTS BUILT AND STUDIED IN
INFORMATION SYSTEMS?

It is currently quite popular in the IS literature to talk about IT artefacts rather than
about information systems. Dahlbom (1996) suggested the name “Informatics” instead of
“Information Systems”, interpreting the latter as covering only a certain era of computer
use (or type of application).∗ He argued that our focus should be on Information Technol-
ogy (IT) rather than information systems, because the latter do not easily cover, personal
computing, communication, electronic publishing, air traffic control or intelligent houses,
for instance. More specifically, he claims that we should conceive of our discipline in terms
of “using information technology” instead of “developing information systems” (p. 34).
Contrary to Dahlbom (1996), I see development as primary if we emphasize IS as an ap-
plied discipline. The work of most practitioners, including our students, is in practice not
only to study the use of information technology, but to develop new IT artefacts. We as
researchers and the practitioners on the field attempt to understand the use of IT artefacts
in order to be able to develop “better” ones. In fact, the difference in emphasis between
the view of Dahlbom (1996) and my own is not so great, as he also points out that we are
interested in “the use of technology because we are interested in changing that use” mainly
by designing/developing the technology concerned (p. 42).

∗ The name “Informatics” has been widely adopted in Scandinavian universities instead of “Information Sys-
tems”.

INFORMATION SYSTEMS AS A DESIGN SCIENCE 17

Although Dahlbom (1996) suggested that our focus should be on Information Tech-
nology (IT) artefacts rather than information systems, it was Orlikowski and Iacono (2001)
who popularized the phrase “IT artefact” within the IS research community. They define
IT artefacts as “those bundles of material and cultural properties packaged in some so-
cially recognizable form such as hardware and/or software” (p. 121), and based on the 188
articles published in Information Systems Research in the decade beginning in 1990 and
ending in 1999, they distinguish 13 views of IT artefacts. Most of these conceptualizations
treat IT artefacts as black boxes without looking inside them. They simply focus on the
computational capabilities of IT artefacts (the computational view of technology), their
intended uses (the tool view of technology), technology as a variable (the proxy view of
technology), how technologies come into being or how technologies come to be used (the
ensemble view of technology).

If we conceive of Information Systems as a design science that also builds IT arte-
facts, a natural question is what sort artefacts we build, especially if we wish to distinguish
Information Systems from Computer Science and Software Engineering. IT artefacts ob-
viously include various computer hardware and software products. Gorgone et al. (2002)
identify seven areas of knowledge in information technology: computer architectures, al-
gorithms and data structures, programming languages, operating systems, telecommunica-
tions, databases and artificial intelligence. If one looks more at IT applications, one can
identify embedded computer systems and non-embedded applications. Embedded systems
may be totally invisible to human beings, such as the computer controlling fuel injection
in a car.

One way to conceptualize existing applications is to distinguish different roles or func-
tions that IT applications may serve (Table 1). The first four functions of Table 1 are close
to “technology as a labour substitution tool”, “technology as a productivity tool”, “tech-
nology as a social relations tool” and “technology as an information processing tool” in
the view of Orlikowksi and Iacono (2001). The roles “to automate” and “to informate”
come from Zuboff (1988). Computer games illustrate the capability of IT applications to
entertain. Finally, IT applications may also attempt to arouse artistic experience, and one
can easily imagine a new sort of art that is essentially built on the interactive character of
computer technology.

A single application may include several functions. For example, a word processor is
primarily a tool intended to augment text production. At the same time it is a medium that

Table 1. Functions of IT applications

18 J. IIVARI

may make use of the specific nature of computer technology as a medium (e.g. links) and
it automates some aspects of text production (e.g. spelling). Zuboff (1988) claimed that
to automate also allows one to informate. This can obviously be extended to cover other
uses of IT applications, so that computer games, for example, could at least in principle
collect information about the users’ actions and reactions during playing. This can be used
to develop the game further. A second point is that many IT applications with the primary
role of automating, augmenting, entertaining or possibly artisticizing may include an in-
formation system that supports the use of the primary functionality. E-mail, for example,
with the original function of communicating messages, includes mailboxes that allow one
to build a directory to informate about previous communications. Thus it can be developed
into a fairly sophisticated information system about one’s electronically mediated social
network and one’s electronic communication within that network.

The major point in Table 1, however, is that the core purpose of an information system
is to informate. In my vocabulary, information systems form a subcategory of IT artefacts.
I interpret an information system as being a system whose purpose “is to supply its groups
of users (...) with information about a set of topics to support their activities.” (Gustafsson
et al., 1982). The definition implies that an information system is specific to the organiza-
tional (or inter-organizational) context in which it is implemented. In the terms of Walls et
al. (1992), March and Smith (1995) and Lee (1999), an information system is an instantia-
tion of more general information technology. As a consequence, no prefabricated commer-
cial software product is an information system as such. An information system cannot be
bought, only software and hardware (and possibly data) to be used in its implementation
can be bought.

Analysing the above definition, one can identify three levels of abstraction in an in-
formation system (Iivari, 1983; Iivari and Koskela, 1987), which closely correspond to the
three contexts identified by Lyytinen (1987):

organizational level (organizational context):∗ Users and their activities

conceptual/infological level (language context): Information about a set of topics

datalogical /technical level (technology context): Technology

Alter (2003) proposes that work systems, and especially IT-reliant work systems,
should be taken as “units of analysis” in our field instead of IT artefacts. I agree with
him that we often attempt when developing information systems to enhance work systems.
Work systems represent users and their activities at the organizational level in the above
framework, but to define the core and identity of our discipline in terms of IT-reliant work
systems would be an attempt by IS experts to monopolize the development of work sys-
tems. I see the enhancement of work systems more as an interdisciplinary effort in which
experts from different fields are required (expertise in organizations, expertise in the appli-
cation domain, and expertise in IT). IS experts represent only IT-related expertise in this
enhancement effort.

∗ It is not necessary to confine organizations here to “formal organizations” such as companies, for organiza-
tions may include various inter-organizational arrangements and informal organizations such as families, for
example.

INFORMATION SYSTEMS AS A DESIGN SCIENCE 19

Weber (2003) proposes that information systems rather than IT artefacts should form
the core of the IS discipline, and more specifically he puts forward the idea of information
systems as representations that enable ‘faithful‘ tracking of other systems. An information
system as a state tracking system refers to the conceptual/infological level above, where
the information system is assumed to include faithful information about the state of things
(topics) in another system. One should note, however, that I do not confine information
systems to “after-the-fact” tracking systems, but also allow them to include information
about the future (e.g. forecasting).

Agreeing with Weber (2003), I am ready to suggest that information systems should
form the core of the IS discipline rather than IT artefacts. In fact, I interpret the some-
what convoluted definitions of IT artefacts provided by Orlikowski and Iacono (2001)∗
and Benbasat and Zmud (2003)† as attempts to limit the focus to IT artefacts that are
close to information systems. I have a number of reasons for this suggestion. First, this is
consistent with the name of our discipline. Second, as pointed out above, the concept of
information systems allows us to incorporate the ideas of Alter (2003) and Weber (2003)
and more or less those of Orlikowski and Iacono (2001) and Benbasat and Zmud (2003) as
well. Third, the concept of information system as defined above implies that information
is a significant part of the system. Thus this fundamental concept (Alter, 2003) is not just
an empty word in the name of a discipline as it often is in the case of IT.‡ Finally, I agree
with Alter (2003) that even though the core of the discipline may be defined narrowly, the
borders may be broad.

3. IS THE CONCEPT OF “IT ARTEFACT” TOO DESIGN-ORIENTED?

Simon (1969/1996) makes a distinction between artificial, or man-made things and
natural things. He associates artefacts with design, in that they are designed (synthesized)
by human beings, even though not necessarily with full forethought. Since theories can
also be considered “artefacts” in a sense, I exclude them from the extension of the concept
of artefact by presuming that artefacts do not have any truth or truth-like value as theories
do (Niiniluoto, 1999)§ but are more or less useful as means of achieving certain ends.

I feel that the dichotomy between designed artefacts and natural objects is too simple.
Many “artefacts” are only partly the work of a designer. Figure 1 aims at describing this
continuum of “artefacts”, starting from completely designable artefacts such as mathemat-

∗ “Bundles of material and cultural properties packaged in some socially recognizable form such as hardware
and/or software.”

† “The application of IT to enable or support some task(s) embedded within a structure(s) that itself is embedded
within a context(s).” (p. 186).

‡ Space does not allow me to discuss here the concept of information and its relationship to knowledge. Note,
however, that the often adopted view of “data” as pure raw inputs (facts) and “information” as processed, cooked
output is totally untenable.

§ Even though Sutton and Staw (1995) point out that there is more consensus about what theory is not than
about what theory is, I dare to characterize my interpretation of “theory” as a systematic explanation of certain
phenomena that allows existing empirical findings about the phenomena to be explained and/or hypotheses to
be generated which can at least in principle be subjected to empirical testing. By a truth value I mean that
theories more or less approximate to the truth (Niiniluoto, 1999).

20 J. IIVARI

Figure 1. Natural-artificial as a continuum.

ical theories and ending with “natural” objects in our environment which are nevertheless
partly man-made because of factors such as cultivation, breeding, genetic engineering and
training.

The position of the phenomena on the continuum of Figure 1 is only an example. Soft-
ware is interpreted as a system of algorithms close to mathematical structures. Computers
have their physical implementations, which introduce a natural element into them. In addi-
tion to software and computers, information systems comprise an information base, which
is only partially designable and additionally makes information systems organic/emergent.
On the opposite side, trained organisms (such as human beings and some animals) are con-
sidered less “designed” than cultivated ones, because the influence of training is merely
ontogenetic while the influence of cultivation and breeding is phylogenic. One should also
note that there may be internal variation within each phenomenon, so that some societies
may be more designed than others, for example. Similarly, organizations may also differ in
the degree to which they are designed.

The purpose of the above exercise is to illustrate that the dichotomy between artificial
and natural is a simplification. It is obvious that the term “artefact” emphasizes the artifi-
cial, designed end of the continuum, but unfortunately, I am unable to find a better term
than “artefact”. “Technology”, when interpreted as “a design for instrumental action that
reduces the uncertainty in the cause-effect relationship involved in achieving a desired out-
come” (Rogers, 1995, p. 12), might be an alternative term, but it may have too technical a
connotation. Järvinen (2002) prefers to speak about “innovations” rather than “artefacts”,
but the concept of “innovation” may lose the connotation of artificiality in contrast to the-
ories.

At the same time, Figure 1 suggests that information systems differ in their degree
of artificiality from other IT artefacts such as software and computers. Many IT artefacts
are only partly the work of a designer. They may exhibit emergent features as an outcome
of numerous local actions (e.g. use, interpretation, negotiation and redesign), but these

INFORMATION SYSTEMS AS A DESIGN SCIENCE 21

emergent features cannot be anticipated by reference to any a priori design. At a more
theoretical level, the literature on the social construction of technology (Bijker et al., 1989;
Bijker and Law, 1992; Orlikowski and Gash, 1994) discusses this emergent aspect of many
artefacts. The provocative article of Truex et al. (1999) suggests that emergent organiza-
tions need continuous redevelopment of their systems, but in spite of the title of their pa-
per “Growing systems in emergent organizations”, the authors fail to recognize emergent
information systems which grow without any continuous redevelopment. More recently,
Markus et al. (2002) have analysed the provision of IT support for emergent knowledge
processes (EKPs), which they define as organizational activity patterns characterized by
(1) an emergent process of deliberations with no best structure or sequence, (2) an actor
set that is unpredictable in terms of job roles or prior knowledge, and (3) knowledge re-
quirements for general and specific distributed expertise. Unfortunately, they are not very
explicit in formulating the characteristics of EKP support systems (see Section 6). On the
other hand, Knowledge Management Support Systems provide good examples of emer-
gent information systems in which the support provided by the information system is much
more dependent on the growth of the system than on its design. Answer Garden (Acker-
man, 1998) provides a good example of this kind of growing information system. If a user
does not find an answer to his/her question or is not satisfied with the answer, he/she may
trigger the system to route to an appropriate human expert. The expert answers the user
directly, but may also insert the answer with related diagnostic questions into the database.
In that way Answer Garden provides a mechanism for growing a body of information over
time.

4. ARE SYSTEMS DEVELOPMENT METHODS VALID METHODS OF
CONSTRUCTIVE RESEARCH?

Benbasat and Zmud (1999) note that “Academic work could impact practice through
the development of tools, techniques, and practices”, noting that such research contribu-
tions are infrequently observed [in major journals such as MISQ and ISR] (p. 9). The
development of such “meta-artefacts” to support the development of IS artefacts is a com-
plementary approach to the “theory-with-practical-implications” type of research. Follow-
ing Walls et al. (1992), meta-artefacts can be divided into meta-artefacts for the IS prod-
uct and meta-artefacts for the ISD (information systems development) process. The former
comprise technical implementation resources such as application domain-specific software
components, application frameworks, application packages, ERP systems, development
environments, IS generators, or their prototypes, which can be used in the technical imple-
mentation of an IS artefact,∗ and also more abstract models and principles such as various
architectural models, analysis and design patterns, and application-dependent design prin-
ciples for use in the design and implementation of the IS product.† The latter correspond

∗ Of course, meta-artefacts for the IS product also include programming languages, DBMSs, UIMSs, etc. I as-
sume, however, that they belong more to the province of Computer Science and Software Engineering.

† Programming patterns, normal forms in relational databases, principles of modularization and information hid-
ing may be more familiar examples, but again I interpret them as belonging more to Computer Science and
Software Engineering.

22 J. IIVARI

to the “design process” in the information system design theory of Walls et al. (1992) and
comprise systems development approaches, methods, techniques and tools, for example.

These “meta-artefacts” are often relatively complex, and their development involves
constructive research (Iivari, 1991) for building the artefacts (March and Smith, 1995;
Hevner et al., 2004). It is clear that constructive research is badly neglected in the IS
field. Well-known classifications of IS research methods such as those of Benbasat (1985),
Jenkins (1985) and Galliers and Land (1987), for example, do not recognize anything re-
sembling constructive research methods. It also seems that the building of artefacts is also
poorly understood. Hevner et al. (2004), for example, propose a number of guidelines for
design science research and methods for design evaluation, but these are poor in addressing
building activity.

Many authors associate constructive research with action research (e.g. Kaasanen et
al., 1991; Burnstein and Gregor, 1999; Järvinen, 2002) or clinical research based on multi-
ple case studies (van Aken, 2004). Authors such as Kaasanen (2001) and van Aken (2004)
do not pay any special attention to the construction of complex artefacts. The implicit focus
of van Aken (2004), for example, lies in improvement problems rather than construction
problems. Action and clinical research, of course, provide an opportunity to evaluate the
resulting artefacts and even to build them in close contact with the real context in which
they are to be used. Most constructive research in Computer Science, Software Engineer-
ing and Information Systems has taken place outside this real context of use, however.
Furthermore, action research and the typical engineering type of research are quite differ-
ent philosophically.

Nunamaker et al. (1990) propose systems development as a specific research method
to be used for constructing the meta-artefacts discussed above. If systems development
methods are really to be applicable, this should put an end to the regression of meta-levels
between artefacts. Systems development methods as meta-artefacts for the ISD process
could be employed for developing other meta-artefacts. The question is, however, whether
they allow sufficient room for creativity and serendipity, which are essential in research.

5. HOW CAN ONE THEORIZE ABOUT IT ARTEFACTS?

Simon (1969/1996) assumes artefacts to be interfaces between an “inner” and an
“outer” environment, both being subject to natural laws. This idea would provide a promis-
ing starting point for a theory of artefacts. Weber (1987) also remarks that

“it would be a strange quirk of nature if human assemblies of natural objects did not mani-
fest order in the same way that natural assemblies of natural objects manifest order” (p. 13),

and then proceeds to outline a theory of discrete artefacts. Referring to Brooks (1987),
one can claim, however, that software systems contain arbitrary complexity, because they
are designed at will by different people. It is only constraints on current technology, other
resources, and above of all imagination that limit software products. Thus the big question
mark for me is whether we are able to combine theories of artefacts with theories of their
inner, and more especially of their outer, environments.

INFORMATION SYSTEMS AS A DESIGN SCIENCE 23

March and Smith (1995) discuss research as a design and natural science, suggesting
four research activities: build, evaluate, theorize and justify.∗ Building means the construc-
tion of an artefact for a specific task, demonstrating that such an artefact can be constructed.
Evaluation is the process of determining whether the artefact represents any progress rela-
tive to the performance of existing artefacts. Theorizing explains why and how the effects
occurred, i.e. why and how the artefact works, and justification performs empirical and/or
theoretical research to test the theories proposed. According to March and Smith, theoriz-
ing can be ex post activity: given that the performance of an artefact has been evaluated,
it is important to theorize on why and how it worked or did not work in its environment.
Building and evaluation represent design science activities, and theorizing and justification
natural science activities.

Walls et al. (1992) propose the interesting idea of an “IS design theory”. This would
be divided into two parts: the design product and the design process. They suggest that
an IS design theory for a product should consist of meta-requirements (the class of goals
to which the theory applies), meta-design (the class of artefacts hypothesized to meet the
meta-requirements)†, kernel theories (theories from the natural and social sciences govern-
ing design), and testable design product hypotheses (used to test whether the meta-design
satisfies the meta-requirements). An IS design theory for a process would comprise a de-
sign method (a description of the procedures for artefact construction)‡, kernel theories
and testable design process hypotheses (used to verify whether the design method results
in an artefact which is consistent with the meta-design).

It is difficult for Walls et al. (1992) to find any good examples of such IS meta-artefacts
with well-defined kernel theories, however.§ Markus et al. (2002) adopt a simplified idea
of design theory to introduce a design theory for systems that support emergent knowledge
processes (EKPs). They propose three requirements for IT support of EKPs: 1) systems
cannot target specific user roles, depend on training, or assume motivation to use the tool,
2) systems must accommodate complex, distributed, evolving knowledge bases, and 3) sys-
tems must support an unstructurable, dynamically changing process of deliberations and
tradeoffs. Markus et al. (2002) do not clearly distinguish design theory for an IS design
product from design theory for the IS design process, but suggest six principles for EKP
support and the design process: 1) design for customer engagement by seeking out naïve
users, 2) design for knowledge translation through radical iteration with functional pro-
totypes, 3) design for offline action, 4) integrate expert knowledge with local knowledge
sharing, 5) design for implicit guidance through a dialectical development process, and 6)
componentize everything, including the knowledge base. They do not propose any testable
design product and design process hypotheses.¶ Markus et al. (2002) also seem to play

∗ Natural science in March and Smith (1995) covers traditional research in the physical, biological, social and
behavioural domains (p. 253).

† Meta-designs correspond to meta-artefacts for the IS product in Section 5.
‡ Design methods correspond to meta-artefacts for the ISD process in Section 5.
§ They suggest that the relational database theory is the best-developed design theory in the IS discipline.
¶ Markus et al. (2002) suggest that their design principles can be restated as a set of hypotheses to be tested

empirically in other situations where the same theoretical conditions hold. One should not confuse these with
testable design product and design process hypotheses.

24 J. IIVARI

Figure 2. A hierarchy of conceptual, descriptive and prescriptive levels of research.

down the significance of kernel theories, claiming that these may be academic theories or
practitioner theories-in-use. They suggest a kernel theory of EKPs with three characteris-
tics: 1) it is almost impossible to predict in advance who will participate in the process and
what tools they will use, 2) knowledge is distributed and includes both general expertise
and local context knowledge, and 3) the process is emergent.

I would consider the existence of a kernel theory to be a key component of a design
theory. To allow any practitioner theory-in-use to serve as a kernel theory implies that a
design theory is not necessarily based on any scientifically validated knowledge. Further-
more, a “design theory” as introduced in Walls et al. (1992) does not necessarily include
any explanation of why the “meta-design” satisfies the meta-requirements and the “design
method” results in an artefact that is consistent with the meta-design (cf. theorizing and
justification in March and Smith (1995)). It may therefore be misleading to regard “design
theories” as a category of theories. Taking a cynical viewpoint, there is a danger that the
idea of a “design theory” will be (mis)used just to make our field sound more scientific
without any serious attempt to strengthen the scientific foundation of the meta-artefacts
proposed.

Gregor (2002) proposes a hierarchy of five theories: 1) a theory for analysing and de-
scribing, 2) a theory for understanding, 3) a theory for predicting, 4) a theory for explaining

INFORMATION SYSTEMS AS A DESIGN SCIENCE 25

and predicting, and 5) a theory for design and action. Theories for analysing and describ-
ing name and classify units of analysis (individuals, groups, situations, or events) based on
commonalities found in the specific dimensions and characteristics of the units. Theories
for predicting aim at foreseeing outcomes from a set of predictors, without necessarily un-
derstanding the causal connection. A theory for explaining and predicting represents the
traditional view of theory, in that it implies both prediction and understanding of the under-
lying causes. A theory for design and action says “how to do things“, and finally, theories
for understanding refer to quite general conjectures or theories such as structuration the-
ory and actor-network theory that can be used as “sensitizing devices“. Because of their
generality theories for understanding are not falsifiable.

Although it is again arguable whether all these should be called “theories”, they nicely
illustrate different types of knowledge involved in our discipline. Apart from the theory
of understanding, they can easily be mapped on the three-layer model of the IS discipline
proposed in Iivari (1983), a model influenced by Lehtovuori (1973) and more indirectly
by Chmielewicz (1970).∗ The hierarchy of descriptive research is based on Törnebohm
(1975). Concepts and conceptual frameworks at the conceptual level aim at identifying
essences in the research territory and their relationships. The descriptive level aims at de-
scribing, understanding and explaining how things are, whereas the prescriptive level is
interested in how to achieve the specified ends in an effective manner. Note, however, that
artefacts and recommendations as such do not have a truth or truth-like value, but only
statements about their efficiency and effectiveness do.

6. FINAL COMMENTS

This paper has argued that in order to increase the practical relevance of the IS dis-
cipline we should emphasize more the nature of Information Systems as a design science
that develops various “meta-artefacts” to support the construction of information systems
and other IT artefacts. The paper argues that, if we regard Information Systems as a design
science, we should consider what sort of IT artefacts we are focusing on, and suggests
that information systems form core objects of our research. If we accept that Information
Systems is a design science, then the question of how to construct meta-artefacts becomes
essential. Is it enough that the meta-artefacts are just invented, or should their develop-
ment be made transparent (just as the development of novel theories is). Finally, the paper
discussed how to theorize about IT artefacts. Even though the term “design theory” may
be misleading, the idea that a design theory should be based on a kernel theory makes it
possible to link the IT artefacts to theories. Unfortunately, it seems that, as the IS com-
munity, we lack good examples of design theories. In order the promote IS as a design
science and constructive research into the building of meta-artefacts, we should take stock
of good examples of design theories, reconstruct how the meta-artefacts were developed
(invented and elaborated) and assess the role of kernel theories in their development. This
could provide examples of how to do high-quality constructive research in practise.

∗ Lehtovuori (1973) and Chmielewicz (1970) also have a fourth, normative level. I have excluded this from
consideration because it is still a controversial question whether one can make “ought-to” conclusions based on
“what is”.

26 J. IIVARI

REFERENCES
Ackerman, M., 1998, Augmenting organizational memory: A field study on Answer Garden, ACM Transactions

on Information Systems 16(3):203–224.
Alter, S., 2003, Sidestepping the IT artifact, scrapping the IS silo, and laying claim to ‘systems in organizations’,

Communications of the AIS 12:494–526.
Benbasat, I., 1985, An analysis of research methodologies, in: The Information Systems Research Challenge,

F. W. McFarlan, ed., Harvard Business School Press, Boston, pp. 47–85.
Benbasat, I., and Zmud, R. W., 1999, Empirical research in information systems: The practice of relevance, MIS

Quarterly 23(1):3–16.
Benbasat, I., and Zmud, R. W., 2003, The identity crisis within the discipline: Defining and communicating the

discipline’s core properties, MIS Quarterly 27(2):183–194.
Bijker, W. E., Hughes, T. P., and Pinch, T. J. (eds.), The Social Construction of Technological Systems, New

Directions in the Sociology and History of Technology, The MIT Press, Cambridge, MA, 1989.
Bijker, W. E., and Law, J. (eds.), Shaping Technology/Building Society, The MIT Press, Cambridge, MA, 1992.
Brooks, F. P. Jr., 1987, No silver bullet: Essence and accidents of software engineering, Computer 20(4):10–19.
Burstein, F., and Gregor, S., 1999, The systems development or engineering approach to research in information

systems: An action research perspective, in: Proceedings of the 10th Australasian Conference on Informa-
tion Systems, B. Hope and P. Yoong, eds., Victoria University of Wellington, New Zealand, pp. 122–134.

Chmielewicz, K., 1970, Forschungskonzeptionen der Wirtschaftswissenschaft, Stuttgart.
Dahlbom, B., 1996, The new informatics, Scandinavian Journal of Information Systems 8(2):29–48.
Galliers, R. D., and Land, F. F., 1987, Choosing appropriate information systems research methodologies, Com-

munications of the ACM 30(11):900–902.
Galliers, R. D., 2004, Change as crisis or growth? Toward a trans-disciplinary view of information systems as a

field of study: A response to Benbasat and Zmud’s call for returning to the IT artifact, Journal of the AIS
4(6):337–351.

Gregor, S., 2002, A theory of theories in information systems, in: Information Systems Foudations: Building the
Theoertical Base, S. Gregor and D. Hart, eds., Australian National University, Canberra, pp. 1–20.

Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi, H., Feinstein, D. L., and Longenecker, H. E., Jr., 2002, IS
2002, Model Curriculum and Guidelines for Undergraduate Degree Programs in Information Systems,
Association for Computing Machinery (ACM), Association For Information Systems (AIS), Association
for Information Technology Professionals; (http://www.acm.org/education/curricula.html#IS2002).

Gustafsson, M. R., Karlsson, T., and Bubenko, J. Jr., 1982, A declarative approach to conceptual information
modelling, in: Information Systems Design Methodologies: A Comparative Review, T. W. Olle, H. G. Sol,
and A. A. Verrijn-Stuart, eds., North-Holland, Amsterdam, pp. 93–142.

Hevner, A. R., March, S. T., Park, J., and Ram, S., 2004, Design science in information systems research, MIS
Quarterly 28(1):75–105.

Iivari, J., 1983, Contributions to the theoretical foundations of systemeering research and the PIOCO model, Acta
Universitatis Ouluensis, Ser. A 150, Oulu.

Iivari, J., 1991, A paradigmatic analysis of contemporary schools of IS development, European Journal of Infor-
mation Systems 1(4):249–272.

Iivari, J., 2003, The IS core – VII: Towards information systems as a science of meta-artifacts, Communications
of the AIS 12:568–581.

Iivari, J., Hirschheim, R., and Klein, H., 2004, Towards a distinctive body of knowledge for information systems
experts: Coding ISD process knowledge in two journals, Information Systems Journal 14(4):313–342.

Iivari, J., and Koskela, E., 1987, The PIOCO model for is design, MIS Quarterly 11(3):401–419.
Jenkins, A. M., 1985, Research methodologies and MIS research, in: Research Methods in Information Systems,

E. Mumford, R. Hirschheim, G. Fitzgerald, and A. T. Wood-Harper, eds., North-Holland, Amsterdam, pp.
103–117.

Järvinen, P., 2001, On Research Methods, Opinpajan kirja, Tampere, Finland.
Kaasanen, E., Lukka K., and Siitonen, A., 1991, Konstruktiivinen tutkimusote liiketaloustieteissä, Liiketaloudelli-

nen Aikakausikirja 3:301–327.
Kock, N., Gray, P., Hoving, R., Klein, H., Myers, M., and Rockart, J., 2002, IS research relevance revisited: Subtle

accomplishment, unfulfilled promise, or serial hypocrisy?, Communications of the AIS 8:330–346.
Lee, A. S., 1999, Researching MIS, in: Rethinking Management Information Systems, W. L. Currie and B. Gal-

liers, eds., Oxford University Press, pp. 7–27.
Lehtovuori, J., 1973, Liiketaloustieteen metodologista taustaa, Turun kauppakorkeakoulun julkaisuja, AI-6.

INFORMATION SYSTEMS AS A DESIGN SCIENCE 27

Lyytinen, K., 1987, A taxonomic perspective of information systems development: theoretical constructs and
recommendations, in: Critical Issues in Information Systems Research, R. Boland and R. Hirschheim, eds.,
John Wiley & Sons, Chichester, pp. 3–41.

March, S. T., and Smith, G. F., 1995, Design and natural science research on information technology, Decision
Support Systems 15:251–266.

Markus, M. L., 1999, Thinking the unthinkable: What happens if the IS field as we know it goes away?, in:
Rethinking Management Information Systems, W. L. Currie and B. Galliers, eds., Oxford University Press,
Oxford, pp. 175–203.

Markus, M. L., Majchrzak, A., and Gasser, L., 2002, A design theory for systems that support emergent knowl-
edge processes, MIS Quarterly 26(3):179–212.

Niiniluoto, I., 1999, Critical Scientific Realism, Oxford University Press, Oxford.
Nunamaker, J. F., Chen, M., and Purdin, T. D. M., 1990, System development in information systems research,

Journal of Management Information Systems 7(3):99–106.
Orlikowski, W. J., and Gash, D. C., 1994, Technological frames: Making sense of information technology in

organizations, ACM Transactions on Information Systems 12(2):174–207.
Orlikowski, W. J., and Iacono, C. S., 2001, Research commentary: Desperately seeking the “IT” in IT research –

A call theorizing the IT artifact, Information Systems Research 12(2):121–134.
Rogers, E. M., 1995, Diffusion of Innovations, fourth edition, The Free Press, New York.
Simon, H., 1969/1981/1996, The Sciences of Artificial, MIT Press, Cambridge, MA.
Sutton, R. I., and Staw, B. M., 1995, What theory is not, Administrative Science Quarterly 40:371–384.
Törnebohm, H., 1975, Tieteellisestä tutkimusprosessista, in: Yhteiskuntatieteiden abstrakti metodologia,

R. Tuomela, ed., Gaudeamus Ab, Hämeenlinna, Finland.
Truex, D. P., Baskerville, R., and Klein, H., 1999, Growing systems in emergent organizations, Communications

of the ACM 42(8):117–123.
van Aken, J. E., 2004, Management research based on the paradigm of design sciences: The quest for field-tested

and grounded technological rules, Journal of Management Studies 41(2):219–246.
Walls, J., Widmeyer, G. R., and El Sawy, O. A., 1992, Building an information system design theory for vigilant

EIS, Information Systems Research 3(1):36–59.
Weber, R., 1987, Toward a theory of artifacts: A paradigmatic base for information systems research, Journal of

Information Systems 1:3–19.
Weber, R., 2003, Still desperately seeking for the IT artifact (editor’s comments), MIS Quarterly 27(2):iii–xi.
Whinston, A., and Geng, X., 2004, Opertionalizing the essential role of the information technology artifact in

information systems research: Gray area, pittfalls, and the importance of strategic ambiguity, MIS Quartelly
8(2):149–159.

Zuboff, S., 1988, In the Age of the Smart Machine, The Future of Work and Power, Heineman, Oxford.

INFORMATION SYSTEMS DEVELOPMENT (ISD):
PAST, PRESENT, FUTURE TRENDS

Anders G. Nilsson∗

1. INFORMATION SYSTEMS DEVELOPMENT AS AN ACADEMIC FIELD

By information systems development we mean analysis, design and implementation of
useful IT systems to support some kind of business in organisations (cf. Avison and Fitzger-
ald, 2003; Nilsson and Pettersson, 2001). By IT systems we mean the use of hardware and
software solutions to improve the business activities within and between organisations.
The IT systems can be of a various character – for example we can create information
systems in organisations by using bespoke (tailor-made) software, application packages or
component-based solutions. We are here focusing on computer-based systems for develop-
ing and changing the situation in concrete business cases.

Research on information systems development (ISD) has its roots back in the mid
1960ies. Scandinavian researchers have had a great influence on the evolution of infor-
mation systems development as an academic field (see Iivari and Lyytinen, 1998; Davis,
2003). Personally, I had the privilege of being a member of the Scandinavian school and
tradition of information systems development (Langefors, 1973; 1995). My main expe-
riences are based from working with the ISAC approach for requirements specifications
(Lundeberg et al., 1981), the SIV method for purchasing standard application packages
(Nilsson, 1990), the Business Modelling framework for studying method combinations
(Nilsson et al., 1999) and the ISD perspectives on multimedia development (Burnett et al.,
2003). After practising in the ISD area for more than 30 years, as both a researcher/teacher
(for the academia) and an advisor/counsellor (to the industry), I feel a great need to make
some reflections on my findings.

This paper will focus on important trends in the area of Information Systems Develop-
ment (ISD) from three time perspectives: the past (yesterday), the present (today) and the
future (tomorrow) situation. The method for comparison is driven from ten important and
relevant dimensions: philosophical approach, modelling area, view of model aspects, sys-

∗ Karlstad University, Information Systems, SE-65188 Karlstad, Sweden, Anders.Nilsson@kau.se.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 29

30 A. G. NILSSON

tems scope, methodology package, actor orientation, IT perspective, subject matter focus,
development strategy and range of work. My review is of course strongly biased of how
I perceive the trends in our ISD field. The research work is a continuation of two earlier
studies on evolution of ISD methodologies (Nilsson, 1995) and change work with ISD in
organisations (Nilsson, 2003). The paper will follow the ten dimensions for comparison of
trends in the ISD field. For each dimension the three time perspectives are presented with
a focused area for the past, present and future trends respectively.

2. PHILOSOPHICAL APPROACH

The philosophical standpoint for the ISD field has changed over time from a pure
systems approach to include relevant knowledge from network theories and recently from
multi-perspective approaches.

2.1. Systems Approach – Past Trend

The systems approach has historically had a great impact on construction of metho-
dologies for ISD. Characteristic for such a view is that ISD is accomplished in a systematic
manner trying to do different tasks in a natural and logical order. The ISD work is therefore
partitioned in a set of manageable phases and steps for building and acquiring new IT-
systems. Each phase requires different types of specialist or expert knowledge. The systems
approach has been regarded as a core theory for the ISD field.

2.2. Network Approach – Present Trend

The network approach is a school of thought which is developed by industrial mar-
keting within the business administration area. Different actors or interest groups establish
strong networks within or between companies. This view has shown a great relevance
for extending the present methodologies for ISD work. As an example we can mention
the construction of ISD approaches for taking care of issues regarding inter-organisational
systems and outsourcing of IT-systems. The network approach can in a wider sense be seen
as a special case of the systems approach.

2.3. Multi-Perspective Approach – Future Trend

A rather new view which has evolved more recently within the ISD field is labelled
the multi-perspective approach. It could be a major future trend for our area! ISD work is
placed in a larger context as part of organisational and cultural changes in companies. The
methodologies for ISD will open up for looking at IT systems and the connected business
processes from different angels or perspectives. For example human-centred and market-
driven factors will heavily influence the development work. A multi-perspective view is
a generic approach where systems and network thinking should be essential perspectives
for analysis and design of new IT-systems in organisations.

INFORMATION SYSTEMS DEVELOPMENT (ISD): PAST, PRESENT, FUTURE TRENDS 31

3. MODELLING AREA

The practice of ISD has from the beginning been oriented towards modelling of some
concrete subject of interest. The modelling area has been broader and broader over the
years. Methodologies for ISD have originated in an information modelling paradigm which
have evolved in a business modelling framework and now will be facing the challenges of
modelling virtual markets.

3.1. Information Modelling – Past Trend

The justification for starting up the new field of ISD in the mid 1960ies was to propose
the work with information analysis before “jumping down” to program construction and
database design. Information modelling was invented as an efficient tool for analysing in-
formation flows in organisations which after that would be realised by so called computer-
based systems. Information modelling is still an important kernel or corner-stone in the
today’s theories of ISD work.

3.2. Business Modelling – Present Trend

The present focus area in ISD research has been shifted to what is called business
modelling or enterprise modelling. By business modelling we mean the use of models to
understand and change business operations together with IT-systems in organisations. The
area of interest is more on studying the business demands and commercial effects of IT-
systems rather than analysing the information flows per se. Information support has been
a more integrated part of business operations and, in many cases, a vital part of the business
mission itself.

3.3. Virtual Modelling – Future Trend

In the future ISD will be oriented to model how companies will operate in the on-
coming virtual markets. The modelling area of interest will become how different kinds
of inter-organisational IT-systems can support electronic commerce applications and web-
based business solutions. The future trend is towards more service-based operations in
companies which mean that virtual modelling will be a necessary extension to the earlier
tools of information and business modelling. There is a challenge to integrate work with
ISD and service development in business settings of tomorrow.

4. VIEW OF MODEL ASPECTS

A closely related dimension to the “modelling area” is the issue regarding “view of
model aspects”. Methodologies for ISD are emphasising some kind of model aspect when
describing business operations and their supporting IT-systems. This ends up in a useful
document labelled requirements specification. In the ISD area the evolution of trends for
model aspects has gone through a resource view to a more comprehensive process view
and in the future to stress strategically a more intention view.

32 A. G. NILSSON

4.1. Resource View – Past Trend

Historically IT-systems have been regarded as a resource to make the business oper-
ations more efficient in a company or organisation. We have in the ISD area developed
techniques for e.g. Conceptual Modelling (CM) and Information Resource Management
(IRM). From a resource viewpoint we can model concrete aspects of data, concepts, com-
ponents and objects together with their relationships. In other words a resource view illu-
minates the users’ constructs and professional language. Resource-driven methodologies
consider data or information as a valuable resource or asset for a company.

4.2. Process View – Present Trend

In the today’s situation we see IT-systems in a broader sense as a part or way for
making a purposeful process orientation of a company. We have in the ISD area developed
techniques for e.g. Business Process Reengineering (BPR) and Process Management (PM).
From a process viewpoint we can model concrete aspects of activities, events, rules, tasks
and functions together with their logical order or sequence. In other words a process view
illuminates coordination of organised activities in companies and the triggers for initiating
different work tasks in business. Process-driven methodologies consider the business and
information flows as a valuable platform for finding good structures in a firm.

4.3. Intention View – Future Trend

In the future we have to even more stress the strategic importance of guiding the IT-
systems in the right direction; this will be done through carefully specifying the intentions
behind the development work. We have to use techniques for e.g. SWOT analysis and Bal-
anced Scorecard (BSC). We are in the ISD area also developing techniques for e.g. situation
graphs and means/ends diagrams. From an intention viewpoint we can model concrete as-
pects of goals, visions, critical success factors (CSF), problems, strengths, measures, actors
and force fields. In other words an intention view has the special role to “make life” to and
change the prerequisites for the business operations. Intention-driven methodologies con-
sider the business mission and the purpose of IT-systems as a valuable driving force for
performing ISD in a right manner.

5. SYSTEMS SCOPE

The systems scope for studying IT-systems during ISD has evolved over the years
from data systems to enterprise systems and in the future to what would be called global
systems. The focus area for IT-systems has gradually widened up starting with systems
for delimited business activities, moving to company wide solutions and then shifting to
globally oriented measures.

5.1. Data Systems – Past Trend

The development work is focused on designing a set of well-specified data systems
each supporting a certain type of business activity. These systems are interacting in a busi-
ness context and the systems interfaces are therefore important to outline and specify.

INFORMATION SYSTEMS DEVELOPMENT (ISD): PAST, PRESENT, FUTURE TRENDS 33

The data systems could be implemented by tailor-made solutions or application packages.
A productivity or cost-reducing motive lies behind the development work.

5.2. Enterprise Systems – Present Trend

Enterprise systems or ERP-systems are a recent trend since mid 1990ies with the aim
of offering companies mega-based systems for their business operations. By enterprise
systems we refer to large application packages that fully cover the provision of information
required in a company. An important criterion is that the included parts or data systems
are closely integrated with each other through a central database. A possible strategy for
a company is to acquire best-of-breed solutions through selecting the most excellent parts
from different enterprise systems on the market. An integration or coupling motive lies
behind the development work with enterprise systems.

5.3. Global Systems – Future Trend

The challenge for the future is to design IT solutions for so called global systems.
The overall purpose is to link or connect different companies’ IT-systems to each other
according to the value chain in a proper and effective manner. The global systems com-
prise solutions for the company and their suppliers, customers and business partners. Also
a company group could have global systems for connecting IT-systems from their includ-
ing business units. A transformation or enhanced value-creating motive lies behind the
development work.

6. METHODOLOGY PACKAGE

Methodologies for ISD are launched as more or less packaged products. The first
approaches were designed as formalised methodologies. Today we face a situation with
a more flexible or softer use of methodologies. In the future more of a hands-on-practice
will govern the use of methodologies for ISD.

6.1. Formalised Methodologies – Past Trend

The use of formalised methodologies builds on an engineering paradigm for ISD. The
methodologies are precisely defined in coherent work steps and well-formulated descrip-
tion techniques for documentation. The development work is formalised in a planned or
predictive manner. A requirements specification should reflect the user needs in a com-
plete and consistent way. ISD is performed with a harmony perspective where actors are
regarded to have common goals for the development work.

6.2. Soft Methodologies – Present Trend

The use of soft methodologies builds on a human-centred paradigm for ISD. Today
we propose a more flexible application of methodologies taking into account the specific
knowledge and prerequisites of the participating actors. The soft methodologies consist of
both generic parts and situation specific constituents. These methodologies are extendable

34 A. G. NILSSON

in character with a basic approach as a starting point and the possibility to use a set of
advanced versions for special cases within ISD.

6.3. Hands-On Methodologies – Future Trend

The use of so called hands-on-methodologies builds on a rather pragmatic oriented
paradigm for ISD. The leading idea behind this future trend is to use a combination of ex-
isting methodologies available on the market instead of innovating totally new ones. In this
scenario it is useful to apply tool boxes of methodologies where you select suitable com-
binations adapted to specific development situations. These combinations can be worked
out in different ways for example using the concepts of methodology chains (through the
development cycle) or methodology alliances (across the same development phase).

7. ACTOR ORIENTATION

There are usually a lot of actors performing on the “stage” during the ISD process.
The ISD trends have gone through a strong user orientation phase into recent ideas about
customer orientation as a base for a more comprehensive view of stakeholder orientation.

7.1. User Orientation – Past Trend

From the ISD area we have for a long time learnt the lesson to proceed from user needs,
requirements and terms during the development work. The simple argument is that there
are the real users who in their daily work should live with the new IT-systems. They have
the best knowledge of the business activities for creating efficient systems solutions. The
principle of user orientation goes back to professor Börje Langefors’ infological approach
to the ISD field. The theory of infology states the significance of designing and operating
IT-systems from a user point of view in order to achieve desired results in organisations.

7.2. Customer Orientation – Present Trend

From services marketing within the business administration area we have learnt the
lesson to proceed from customer needs and demands during the development work. The
motive behind this is that the customer of a specific service has the excellent knowledge
of the business setting and is regarded as the “king” of the market arena. A customer
orientation has also been influential for the ISD area during recent years. The customers
behind an IT-system are identified and regarded as the main users. The ISD work delivers
services for new IT-solutions with the aim to meet or satisfy the customers’ expectations.

7.3. Stakeholder Orientation – Future Trend

Development work in organisations can be seen as a social field of forces between dif-
ferent interest groups or stakeholders. There usually exist communication gaps or misun-
derstandings when people from various interest groups try to deal with ISD issues. There-
fore it is important to find constructive ways to bridge the communication gaps between
key actors during the development process. One way to achieve this is to highlight and illu-
minate the needs and demands from each stakeholder’s point of view. A future trend with

INFORMATION SYSTEMS DEVELOPMENT (ISD): PAST, PRESENT, FUTURE TRENDS 35

a stakeholder orientation is a more general principle for ISD and in this sense includes the
former ways of user and customer orientation for development work.

8. IT PERSPECTIVE

The perspective of the role of IT-systems is changing over the time. The original per-
spective has been to regard IT as a support for the business activities. The business world
of today is looking at IT as a potential enabler for new market opportunities. In the future
the role of IT will be more offensive and integrated with the business mission of a company
or organisation.

8.1. IT as a Support – Past Trend

The focus of the development efforts in ISD has traditionally been on designing IT-
solutions in order to support the various business operations in companies or firms. The
IT-systems are regarded as resources in development work. Starting with the needs of the
users, a business operation specification is made which provides both content-based and
structural requirements on the IT-systems. IT is not an end in itself but rather a efficient
tool to gain expected business effects!

8.2. IT as an Enabler – Present Trend

Since the mid 1990ies we have tried to devote a lot of efforts in ISD for designing
information in our systems to create new business opportunities for the organisation, and
hence strengthen the competitive edge on the market. The IT-systems are regarded as en-
ablers for change. Here the focus is on the potential that a new IT-system represents for the
company. The IT-system becomes an enabler for renewing the business. New technolog-
ical innovations in multimedia, the Internet and electronic commerce become new value-
adding enablers to the business of the firm. Instead of a detailed requirements specification
we outline a scenario description for analysing the potentials of IT-systems.

8.3. IT as a Business Mission – Future Trend

The future trend will be to further stress that IT-systems are an essential part of the
business mission itself for a firm. The mission statement for the company together with
a description of management visions of the business operations will govern the develop-
ment work towards more aggressive use of IT-systems. The perspective of viewing IT as
a business mission unites the earlier ISD trends of looking at IT as a support and enabler
for change. We need a combined or mixed strategy of supporting and enabling features
when designing the IT-systems for professional use in new business mission contexts.

9. SUBJECT MATTER FOCUS

In the ISD area the focus of the subject matter under study has over the time evolved
from a computer focus (past situation) to a organisation focus (present situation) and is

36 A. G. NILSSON

now moving more to a people focus (future situation). This seems to be a natural progress
or growth of the ISD area to comprise both technical, business and human conditions.

9.1. Computer Focus – Past Trend

In the beginning the IT-systems were developed with a computer focus in mind. Such
an orientation is focused on an “inside out” way of working for ISD with the computer-
based system as the core of interest. The development task is devoted to find out a nice
technical solution that could, but not automatically, have good effects for the business
activities. It is true that fundamental and strategic technical choices for a company put lim-
itations and constraints for the freedom of action during the ISD process. The lesson learnt
from the past trend with a computer focus is that technical considerations are necessary but
not sufficient for a successful ISD work.

9.2. Organisation Focus – Present Trend

When developing IT-systems today an organisation focus is prevalent. Such an orien-
tation is focused on the interplay between people and computers in appropriate business
settings. The ISD work is concentrated on how to develop the work tasks for individuals
and their communication pattern (social system) as well as to construct IT solutions in an
efficient manner (technical system). This is done for creating desired business effects in an
organisational context. The social interplay in the organisation is put in the foreground and
the technology is subordinated to the needs of human beings. The present situation with
an organisation focus for ISD is a result of a long tradition of research in socio-technical
design.

9.3. People Focus – Future Trend

The future development of IT-systems will take into account more thoroughly a people
focus. Such an orientation highlights the persons or individuals as the main focus for the
ISD work. ISD will be regarded as a successive formalisation of the people’s needs and
desires of a new IT-system. The dialogue between different actors, who are affected by the
changes, will have a crucial impact on the degree of success of ISD. The dialogue is facil-
itated if we during the ISD work pay more attention to how we specify and articulate the
different professional languages in practical use by the various actors. A people focus puts
the human-centred interest of ISD in the foreground with the motive for a better anchorage
of and deeper commitment to the IT-systems in organsiations.

10. DEVELOPMENT STRATEGY

By a development strategy we mean the way of implementing and launching IT-
systems in organisations. Traditionally a strategy for a full-scale development was the
dominating paradigm. Gradually a new strategy for rapid development with a prototyp-
ing approach emerged. The future situation will be characterised by more of a strategy for
evolutionary development.

INFORMATION SYSTEMS DEVELOPMENT (ISD): PAST, PRESENT, FUTURE TRENDS 37

10.1. Full-Scale Development – Past Trend

The idea behind the strategy of full-scale development is to deliver and implement the
whole IT-system simultaneously in one turn. It is more or less a “big bang” implementa-
tion! Characteristic for this situation is a revolutionary approach where the old IT-system
is totally discarded at a sharp moment where a wholly new IT solution opens up for use.
In other words the new IT-system is implemented in a full scale. This fact implies that our
requirements specification needs to be complete and “frozen” before the implementation
may begin. In a full scale development we rely on the principle that it is better to carry out
large investments in IT-systems through a radical change in the organisation.

10.2. Rapid Development – Present Trend

The idea behind rapid development is the benefit to launch IT-systems rather quick
in the organisation in order to gain immediate results for the business. Rapid development
is often realised through using a prototyping approach. By making rapid prototypes of
a desired future business situation in reality or daily life, the various actors or interest
groups have the possibility to discover the effects of introducing new IT-systems. They
can react to the prototype solutions and give valuable feedback for further specification
of the system. A prototype gives a concrete picture of a business solution and implies a
rich learning environment for the actors. In rapid development with prototyping there is
interplay between specification and implementation, sometimes in several rounds.

10.3. Evolutionary Development – Future Trend

The idea behind a strategy for evolutionary development is to implement a new IT-
system in minor parts which are distributed over a certain period of time. Characteristic
for this situation is that the IT-system will be delivered step by step in smaller turns. The
launching of the new IT-system is therefore performed in a number of manageable steps. It
is regarded as a safer strategy to have a successive renewal of the business operations than
to dramatically change the whole organisation. The border lines between development and
maintenance would be more or less erased. In an evolutionary development we rely on the
principle that it would be better to have a continuous improvement of the business instead
of more risky “big bang” solutions.

11. RANGE OF WORK

In the ISD area the range of work has expanded over the years. The development
work is in this respect oriented to three various kinds of focus areas labelled systems work,
change work and business promotion work.

11.1. Systems Work – Past Trend

Information systems or nowadays IT-systems have been a natural construct to start
from when establishing the practice of systems work. The construct of “systems work”

38 A. G. NILSSON

was preferred in order to illuminate both systems development and maintenance manage-
ment. The ISD field is traditionally defined in a rather broad sense to also include relevant
issues of software maintenance. A significant feature for setting out a genuine practice of
systems work has been the innovative research of useful methodologies for ISD. The pro-
fession of ISD has over the years shown to be heavily dependant on practically oriented
methodologies such as the ISAC, YSM, SADT, EAR, NIAM, JSD, IE, SSM, UML and
RUP approaches for systems work.

11.2. Change Work – Present Trend

The ISD practice has gradually evolved to regard systems work in a larger context
as a fraction of more comprehensive change work in today’s companies. Development of
new IT-systems leads to a major change for affected people and their business operations.
Change work implies a purposeful growth and development of organisations and means
that we are advancing the business towards some concrete visions or goals. Changes of
different kinds should be a starting-point for discussions between different actors in busi-
ness development. In the ISD field we have learnt the significance to start up development
work from a change analysis (cf. the ISAC approach) which builds a platform for further
development of e.g. IT-systems.

11.3. Business Promotion Work – Future Trend

The next challenge for the future is to focus the change work in organisations to create
IT-systems for really giving improved and sustainable business results. There are many dif-
ferent types of change programs in practice spanning over approaches from radical changes
(e.g. BPR) to incremental changes (e.g. TQM). The most likely evolvement for the ISD area
is to have approaches with the aim of trying to make business improvements in distinct and
manageable steps. The size of changes required in business operations will be dependant
on the specific situation. With this kind of change approach we strive for promoting the
business on a regular basis in order to achieve our visions and goals. Such a business pro-
motion work will give the potentials for a more positive change attitude together with a
constructive development process.

12. CONCLUDING REMARKS ON ISD TRENDS

My main conclusion of the research is that the ISD discipline is going in a right di-
rection towards great challenges in the new economy and for future business potentials.
There are some interesting observations from the accomplished study of ISD trends that
are worthy to highlight:

• The focus areas for the specific dimensions could remain and be recurring over
the time as a general pattern for evolution of the ISD field – learn from history!

• There are some focus areas for the same time perspective but from different di-
mensions that are concurrent and interacting leading to an extra driving force.

• This review shows that the ISD discipline has more and more broaden up the
study field to include various issues of engineering, business and human aspects.

INFORMATION SYSTEMS DEVELOPMENT (ISD): PAST, PRESENT, FUTURE TRENDS 39

• ISD has as an academic field evolved from regarding IT systems as an isolated
phenomenon to a comprehensive/holistic thinking of IT investments in firms.

• It seems that the research view on ISD has changed from efficiency studies (cost
focus) to inquiries about effectiveness (benefit focus) of IT systems.

These concluding remarks on ISD trends show the necessity for emphasising even
more the need for strong multidisciplinary research on information systems development.
Information Systems is a real “relationship” subject trying to integrate knowledge from
behavioural science, computer science and business administration. The mission is to in-
vestigate how people develop and use IT solutions to support and improve activities in their
organisations and social life (cf. Lundeberg et al., 1995; Nilsson and Pettersson, 2001). We
will in this sense end up our study by referring to a well-known formula for performing
success in business (cf. Likert, 1961, p. 212) by applying it to the ISD area:

Degree of success in ISD = f (Quality × Acceptance × Value)

The success formula states that to attain a successful result, we must have both sufficient
quality in the designed solutions (i.e. the IT-systems) and a good acceptance among the ac-
tors (i.e. users) to give them a motivation for using the solution as well as that the designed
solutions should create a business value to the ultimate beneficiaries (i.e. the customers to
the company). A low figure in either quality, acceptance or value will lead to an unsuccess-
ful result – hence the multiplication signs in the formula.

REFERENCES

Avison, D. E., and Fitzgerald, G., 2003, Information Systems Development: Methodologies, Techniques and Tools,
3rd Edition, McGraw-Hill, London.

Burnett, R., Brunstrom, A., and Nilsson, A. G., eds., 2003, Perspectives on Multimedia: Communication, Media
and Information Technology, Wiley, London.

Davis, G. B., 2003, Building an international academic discipline in Information Systems, in: Exploring Patterns
in Information Management: Concepts and Perspectives for Understanding IT-Related Change, Festschrift
in honour of Mats Lundeberg’s 60th birthday, B. Sundgren, P. Mårtensson, M. Mähring, and K. Nils-
son, eds., EFI, Stockholm School of Economics, Stockholm, chapter 16, pp. 273–290; electronic version:
http://www.hhs.se/im/exploringpatterns.

Iivari, J., and Lyytinen, K., 1998, Research on information systems development in Scandinavia – unity in plural-
ity, Scandinavian Journal of Information Systems 10:135–186.

Langefors, B., 1973, Theoretical Analysis of Information Systems (THAIS), Auerbach, Philadelphia and Stu-
dentlitteratur, Lund.

Langefors, B., 1995, Essays on Infology: Summing Up and Planning for the Future, Studentlitteratur, Lund.
Likert, R., 1961, New Patterns of Management, McGraw-Hill, New York.
Lundeberg, M., Goldkuhl, G., and Nilsson, A. G., 1981, Information Systems Development: A Systematic Ap-

proach, Prentice Hall, Englewood Cliffs, and New Jersey.
Lundeberg, M., Mårtensson, P., Sannes, R., and Sundgren, B., 1995, Information Management as a field, in:

The Infological Equation: Essays in Honor of Börje Langefors, B. Dahlbom, ed., Gothenburg Studies in
Information Systems, Göteborg University, Gothenburg, pp. 195–209.

Nilsson, A. G., 1990, Information systems development in an application package environment, in:
ISD’1990, Proceedings of The Second International Conference on Information Systems Developers Work-
bench, Gdansk, Poland, 25–28 September, 1990, S. Wrycza, ed., University of Gdansk, pp. 444–466.

Nilsson, A. G., 1995, Evolution of methodologies for information systems work: a historical perspective, in: The
Infological Equation: Essays in Honor of Börje Langefors, B. Dahlbom, ed., Gothenburg Studies in Infor-
mation Systems, Göteborg University, Gothenburg, pp. 251–285, also in: ISD’1996, Proceedings of The

40 A. G. NILSSON

Fifth International Conference on Information Systems Development, Gdansk, Poland, 24–26 September,
1996, S. Wrycza, and J. Zupancic, eds., University of Gdansk, pp. 91–119.

Nilsson, A. G., Tolis, C., and Nellborn, C., eds., 1999, Perspectives on Business Modelling: Understanding and
Changing Organisations, Springer, Berlin.

Nilsson, A. G., and Pettersson, J. S., eds., 2001, On Methods for Systems Development in Professional Organisa-
tions: The Karlstad University Approach to Information Systems and its Role in Society, Studentlitteratur,
Lund.

Nilsson, A. G., 2003, Change work in organisations: some lessons learned from information systems develop-
ment, in: Exploring Patterns in Information Management: Concepts and Perspectives for Understanding
IT-Related Change, Festschrift in Honour of Mats Lundeberg’s 60th birthday, B. Sundgren, P. Mårtensson,
M. Mähring, and K. Nilsson, eds., EFI, Stockholm School of Economics, Stockholm, chapter 6, pp. 83–99;
electronic version: http://www.hhs.se/im/exploringpatterns.

CARS OF THE FUTURE:
COMPUTERS AT THE WHEEL

Michel Parent∗

We are now observing the very rapid arrival of computer technologies in modern cars
with all kinds of functions, which are now handled by computer systems. Nowadays, com-
puter technology can account for close to 30% of the cost of a vehicle. However, one has
to realise that computers are now taking over more and more of the driving chores of the
driver with numerous assistance such as ABS, ESP, Steering assistance, Parking assistance,
ACC, Emergency brake assistance, Lateral guidance,

We are now close to hand the driving task fully to computers and the first vehicles
with fully automated driving are now on the road in limited applications. To generalise
this approach, one has to find an acceptable path to this future. One of the biggest hurdles
is the development, certification and maintenance of this complex software. Technologies
derived from the aerospace industry are now finding their ways in the automotive industry
to reach this goal.

∗ The French National Institute for Research in Computer Science and Control, BP 105, F78153 Le Chesnay,
France, Michel.Parent@inria.fr.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 41

INTEGRATING ENTERPRISE AND
IS DEVELOPMENT USING A MODEL

DRIVEN APPROACH

John Krogstie∗

1. INTRODUCTION

Going back to the beginning of the eighties, there has been numerous accounts of
model-generated information systems being touted as the silver bullet to attack problems
regarding software productivity and quality (Balzer, 1985). The CASE-tools of the late
eighties were oversold on their ‘complete’ code-generation capabilities. Today similar ar-
guments are found relative to the use of OMG’s Model-driven Architecture (MDA) ap-
proach (Thomas, 2004), using and integrating UML models on computational indepen-
dent, platform independent, and platform specific models. Also a number of other areas,
including enterprise modeling, workflow modeling, ontologies, and Service Oriented com-
puting are proposed by their proponents as the direction to go to achieve model-generated
solutions for tomorrows business applications.

In the newly started EU IST Integrated Project ATHENA (Athena, 2004), we are inves-
tigating all of these approaches in parallel, specifically to address problems of business and
system interoperability across organizational borders. This paper will outline the different
approaches, and illustrating how they can be combined to support integrated and parallel
enterprise and IS development, within and across enterprise boundaries, by supporting the
development and evolution of appropriate models of high quality

The rest of the paper is organized as follows. Section 2 overviews briefly the differ-
ent modeling approaches. Section 3 gives an overview of the ATHENA project, whereas
Section 4 presents aspects of how to integrate enterprise and IS development by combin-
ing these different model-driven approaches. This is not finalized in the project, thus the
views on this that is expressed are those of the author, not of the Athena project. Section 5
concludes the paper and describes shortly work ahead on this approach.

∗ IDI, NTNU and SINTEF, Forskningsveien 1, N-0314 Oslo, Norway, John.Krogstie@sintef.no.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 43

44 J. KROGSTIE

2. BACKGROUND ON MODEL-DRIVEN DEVELOPMENT

In the context of model-driven enterprise and system development, we refer to models
developed in languages which have the following characteristics:

• The languages are diagrammatic, with a limited vocabulary (states, processes etc).
• The languages utilize powerful abstraction mechanisms.
• The languages have a formal syntax. The semantics is either operational enabling

e.g. generation of other models including executable programs or mathematical
enabling advanced analyses.

• The languages are meant to have general applicability across problem domains.

Although most software developers are aware of model-driven methodologies they are
seldom followed in great detail in practice, and mostly only in initial development stages.
What differentiates model-driven development from using models in this fashion are:

• Models are utilized throughout development, use, and evolution of the systems.
• Models are made both of the system, and of the environment of the system.

To approach this problem area one need to attack and integrate aspects of five differ-
ent research traditions: Enterprise Modeling (EM), workflow modeling (WM), Ontologies,
Service-oriented Architecture (SOA), and Model-Driven Architecture (MDA).

2.1. Enterprise Modeling (EM) and Workflow Modeling (WM)

Enterprise modeling (Fox and Grüninger, 1998) is useful for externalizing, making and
sharing enterprise knowledge, which is again vital to support enterprise systems evolution.
A crucial problem for the successful evolution of enterprise systems (and thereby of enter-
prises) is that management have a limited understanding of their own business processes
(Dalal et al., 2004), and it is argued that this can be helped by making processes explicit in
models. For the support of knowledge workers, who need more flexible support than what
can be given by traditional workflow systems, it is important that emergent and interactive
work processes can be captured and supported (Jørgensen, 2001; Krogstie and Jørgensen,
2004). The most comprehensive theoretical approach to this field is Peter Wegner’s inter-
action framework (Wegner, 1997; Wegner and Goldin, 1999). The primary characteristic
of an interaction machine is that it can pose questions to users during its computation. The
process can be a multi-step conversation between the user and the machine, each being able
to take the initiative. The importance of EM is also evident in the increasing interest for
enterprise architecture (e.g., Pereira and Sousa, 2004), which has revitalized past research
on information systems architecture (Zachman, 1987).

2.2. Ontologies

Though various related ontologies exist (e.g. TOVE (Fox, 1992)), their suitability for
application in industry is quite limited. Enterprise ontologies have been proposed as a way
of solving the communication problems arising from different interpretative frameworks
in different organizations). For many problem areas, this is too limiting, and one has to
involve dynamic ontologies (Kahng, 1998) as interactive models as descry bed above.

INTEGRATING ENTERPRISE AND IS DEVELOPMENT 45

In general, there is a need for the development of methods and tools for enterprise
ontology management, with a focus on supporting enterprise knowledge integration and
interoperability for enterprises and software applications. Enterprise knowledge can be di-
vided in two main categories. The first category comprises the knowledge represented by
all sorts of documents: from technical reports to emails, from scientific papers to circuit
blueprints; this category is mainly conceived to be used by human users. A second cate-
gory is represented by formal symbolic knowledge, e.g., modeled by using semantic nets
or description logics, stored in way that is mainly organized to be exploited by a com-
puter.

Semantic annotation is based on a reference ontology that is used to construct anno-
tation expressions, aimed at giving a clear, agreed, unambiguous meaning to documen-
tal (human oriented) knowledge or to enterprise software elements used in co-operative
processes. Semantic annotation can be used to associate a formal meaning to enterprise
models and in particular to information structures and Business Processes in order to real-
ize a semantic interoperability platform.

Semantic annotation is one of the key enabling technologies to implement a number
of solutions for achieving interoperability, e.g., from service discovery to matchmaking, to
the linking of Business Processes to computable services.

2.3. Service-Oriented Architecture

Service-Oriented Architectures are being viewed as the next wave of technology to im-
pact business computing by enabling the utilization of distributed components by allowing
software vendors to provide not only applications to the market but a suite of services that
can be utilized by a wider audience and charged for through an access or usage business
model.

Many projects are concerned with the development of service-oriented solutions that
can be more easily planned and then later customized when they are being deployed. This
is intended to provide better industry focused solutions that can be adapted better for de-
ployment into client environments. This is to directly counter the problem of high costs of
customization and integration of highly generic industry solutions.

Research challenges in this field are

• to develop modeling and specification systems that accurately express services
and service-oriented architectures and particularly assist in the planning of solu-
tions and the marking of intended customizations for the better deployment of a
solution into a wide range of client environments;

• to develop technologies that enable the easier composition of services and the bro-
kering, mediation and ultimately the negotiation of pre-specified but customizable
services;

• to develop an execution framework for planned and customizable service-oriented
architectures

With respect to supporting dynamically networked organizations, most B2B E-business
frameworks including ebXML and BPML (Shim et al., 2000) focus on information ex-
change and business transactions. They lack support for the dynamic and knowledge-

46 J. KROGSTIE

intensive parts of inter-organizational processes, which is address in more detail within
enterprise and workflow modeling.

2.4. Model-Driven Architecture (MDA), Based on Design Modeling in UML

Model-driven development is concerned with using the appropriate set of models and
modeling techniques, supported by the appropriate tools, to provide sufficient help for rea-
soning about our systems. Model-driven architecture (MDAtm) has become OMG’s notion
of doing model-driven development, and has gained a lot of interest recently (Miller et
al., 2003). The main idea in MDA is to describe systems in a platform-independent man-
ner in what is called a platform-independent model (PIM) in the MDA (Exertier et al.,
2004). From this model, transformations (or mappings) to different platform-specific mod-
els (PSM) are defined. A third level, CIM (computational independent model) has recently
been introduced, which is meant to be a way to integrate enterprise models with system
models. While still a new approach, MDA has begun being used in some practical case
studies in industry, even on the enterprise level (Günther and Steenbergen, 2004).

3. OVERVIEW OF ATHENA

Athena is an Integrated Project Sponsored by the European Commission (Athena,
2004). Its objective is to be the most comprehensive and systematic European research
initiative in the field of enterprise application interoperability, removing barriers to the
exchange of information in and among organizations. It will perform research and apply
results in numerous industrial sectors, cultivating and promoting the “networked” business
culture. Research and development work will be carried out hand in hand with activities
conceived to give sustainability and community relevance to the work done. Research will
be guided by business requirements defined by a broad range of industrial sectors and in-
tegrated into Piloting and Training. Athena will be a source of technical innovations lead-
ing to prototypes, technical specifications, guidelines and best practices, trailblazing new
knowledge in this field. Athena will mobilize a critical mass of interoperability stakehold-
ers and lay the foundation for a permanent, world-class hub for interoperability.

The Athena consortium is made up of 19 leading independent research centers, work-
ing together as partners in a single venture. The project has an initial estimated duration
of 3 years and has an overall horizon of 5 years. Its expected budget is approximately 26,
6 million Euros of which 14, 4 million Euros will be funded by the European Commission.

4. INTEGRATING ENTERPRISE AND IS DEVELOPMENT

The different approaches to model-driven development described in Section 2 are ap-
propriate for supporting different types of processes, from very static, to very dynamic,
even emergent processes. The different process types decide the extent to which the un-
derlying technology can be based on hard-coded, predefined, evolving or implicit process
models. This gives a number of development approaches as illustrated in Figure 1, on one
extreme; systems are manually coded on top of a traditional runtime environment, and on
the other enterprise models are used directly to generate solutions. An example of the latter

INTEGRATING ENTERPRISE AND IS DEVELOPMENT 47

Figure 1. Overview of different execution environment for different process models.

Figure 2. Interoperability between different platforms.

is found later in this section. In between these, we have the approaches typically described
in MDA, namely the development of PIMs for code-generation (e.g. on top of a UML
Virtual Machine), or for PSMs for more traditional code-generation.

In Figure 2, we outline the different types of interoperability-possibilities across this
pyramid. Whereas traditional systems use special APIs and approaches such as EDI for
interchange of data, on the next level (PSM), we can identify Web Services Interfaces.
Above this level, there is a lot of work being performed on specific business process exe-

48 J. KROGSTIE

Figure 3. How modeling approaches in different ATHENA projects cover the framework.

cution platform, with a possibility to exchange directly using a BPI. Finally, projects such
as EXTERNAL and UEML (see below) has provided solutions for how to interoperate
on the enterprise model level, potentially using different modeling languages and different
tools in the process. Standards and ontologies can be used across all levels, and also be-
tween levels to make the interoperation happen more smoothly. Finally, Figure 3 illustrates
the different research projects with the ATHENA IP, and what modeling techniques they
are pursuing to fulfill this picture.

• In A1: Collaborative enterprise modeling, the focus is as the name says on en-
terprise modeling, but then on models across the spectrum, from models used
in system development with a long development cycle (e.g. in connection to de-
velopment of an ERP system), shorter cycles, and even supporting concurrent
modeling and execution using the interactive model approach.

• A2 Cross-organizational business processes focuses on more formal process mod-
eling on top of a business process execution platform, to enable relatively short
development cycles.

• A5 Planned and Customized Service Oriented Architecture looks upon models on
both the PIM and PSM level to run on top of a web-service execution platform

• A6 Model driven and adaptive Interoperability Architecture is specifically fo-
cused on the MDA approach, modeling on all levels, to support a more general
system development process when this is appropriate

• A3 Knowledge support and knowledge meditation finally is meant as indicated
above to support the interoperability between the different levels and organiza-
tions using ontology-oriented techniques

We will try to clarify this picture with an example which originally had focus on the
enterprise level and cross-organizational business processes. The infrastructure to support
networked organizations developed in the EXTERNAL project (which is one basis technol-

INTEGRATING ENTERPRISE AND IS DEVELOPMENT 49

ogy for the technology for this to be developed in ATHENA) can be described as consisting
of three layers. These layers are identified as:

• Layer 1, the information and communication technology (ICT) layer: – defin-
ing and describing the execution platform, software architectures, tools, software
components, connectivity and communication (as outlined in Figure 1).

• Layer 2, the knowledge representation layer: – defining and describing constructs
and mechanisms for modeling (as outlined in Figure 3).

• Layer 3, the work performance and management layer; – modeling and imple-
menting customer solutions, generating work environments as personalized and
context-sensitive user interfaces available through portals.

4.1. The ICT Layer

The ICT-infrastructure is an integration of the enterprise and process modeling tools
that was brought into the EXTERNAL project by the partners:

• METIS (Lillehagen, 1999), a general purpose enterprise modeling and visualiza-
tion tool,

• XCHIPS (Haake and Wang, 1997), a cooperative hypermedia tool integrated with
process support and synchronous collaboration,

• SimVision (previously Vite) (Kuntz et al., 1998), a project simulator used to ana-
lyze resource allocation, highlighting potential sources of delay and backlogs.

• WORKWARE (Jørgensen, 2001; Jørgensen 2004) a web-based emergent work-
flow management system with to-do-lists, document sharing, process enactment
and awareness mechanisms.

• FrameSolutions (Kallåk et al., 1998), a commercially available framework for
building automated workflow applications.

Figure 4 depicts the technical infrastructure. The architecture has 3-tiers, clients, ap-
plication servers, and data servers. The implementation is web-based, utilizing HTTP both
for control and data integration, and exchanging data with XML format. The integration
work in EXTERNAL proceeded in three steps.

1. Data-centered integration: based on a common EXTERNAL XML DTD, XML
importing/exporting utilities are implemented in each of the enterprise modeling
tools for data exchange between the tools or between an XML repository and the
tools.

2. Control-centered integration: this is done by using the APIs provided by the tools
and the repository to be integrated. With the APIs, the tools can call each other
and access the shared repository. Some of the APIs may have parameters for de-
noting content objects and the implementation of them requires the data-centered
integration capability as developed in step one.

3. Worktop-based integration: this is a service-oriented integration at the user-inter-
face level which makes use of both data-centered integration and control-centered
integration methods to access shared models, information objects, and to invoke
individual tools.

50 J. KROGSTIE

Figure 4. The architecture and components of the EXTERNAL infrastructure, ICT layer.

New components can be developed on as needed basis, using the approaches of ser-
vice oriented architecture or model-driven architecture. This was not the focus of the EX-
TERNAL project thought. Thus, although it is not in its present form an example of a
full-fledged service-oriented architecture approach, this can be developed on this basis.

4.2. The Knowledge Representation Layer

The knowledge representation layer defines how models, meta-models and meta-data
are represented, used and managed. A version of Action Port Modeling (APM) (Carlsen,
1998; Jørgensen, 2004) constitutes the core of EXTERNAL’s modeling language (EEML).
The kernel concepts are shown in Figure 5 as a simplified logical meta-model of EEML.
The process logic is mainly expressed through nested structures of tasks and decision
points. The sequencing of the tasks is expressed by the flow relation. Roles are used to
connect resources of various kinds (people, organizations, information, and tools) to the
tasks. Hence, modeling the networked organization in EEML results in models that cap-
ture an extensive set of relationships between the goals, organizations, people, processes
and resources. This is particularly useful considering the dynamic nature of networked or-
ganizations. For new partners joining the network, the rich enterprise models provide a
valuable source of knowledge on how to “behave” in the network.

Moreover, the interactive nature of the models, meaning that the users are free to re-
fine them during execution, increases their potential as sources of experience and knowl-
edge. As such they document details on how the work was actually done, not only how
it was once planned. EEML can be extended to link into for formal process modeling
(E.g. BPMN) as well as languages used in the SOA and MDA approaches, particularly

INTEGRATING ENTERPRISE AND IS DEVELOPMENT 51

Figure 5. Simplified meta-model of EEML.

UML, through the meta-modeling features of METIS, which is the main implementation
platform for the visual language.

From a knowledge management perspective, process models are carriers of process
knowledge; knowledge of how to do things. But through the possibility in EEML of attach-
ing information resources to the tasks at any level, such a model also imposes a structure
upon the set of information resources relevant for the work described by the process model.
That way, the process models themselves form the basis for information management.
Further extensions with semantic annotations applying results from the ontology-oriented
project A3 would enhance this even further.

4.3. The Work Performance and Management Layer

Users access their solutions through project portals. A project portal for a networked
organization must have support for methodology adaptation and for communication, co-
ordination and collaboration in teams. Project work management, reporting and other ser-
vices must be offered, and finally project work must be performed with possibilities for
repetition, providing security and privacy for knowledge workers.

In the EXTERNAL infrastructure, the web-based portal registers and qualifies users,
and invokes other tools through WORKWARE. The modeled tasks are also executed
through the invocation of tools and applications from the web based user environment com-
prised of the portal and WORKWARE. WORKWARE sets up the context for each task,
giving access to the knowledge and resources needed to perform the task. The actual work
performance is done by invoking appropriate services. The task performers may access
desktop tools, organizational information systems, web services, or automated processes
(in FrameSolutions) through this user environment.

User environments are generated dynamically based on the definition of tasks using
EEML. Forms and components for interacting with different model objects are selected
and composed based on user interface policies. These policies are also modeled objects.
This enables user interface customization and personalization.

52 J. KROGSTIE

The dynamically generated work management interface includes services for work
performance, but also for process modeling and meta-modeling. The worktop is the main
component in this interface. Each task has its own worktop. In addition to the services for
performing and managing the task, it contains links to all knowledge in the process models
that is relevant for the task. Since the worktop is dynamically generated, subject to personal
preferences, the skill levels of task performers can be taken into account, e.g. to provide
more detailed guidelines for people who have not previously worked on such tasks. Sim-
ilarly, customized worktops for project management can support the project management
team. The contents may include an overview of the project, adopted management prin-
ciples, applicable methodologies, project work-break-down structure, results, plans and
tasks, technologies and resources, status reporting and calculations. Further details on this
approach can be found in (Jørgensen, 2004; Krogstie and Jørgensen, 2004).

5. CONCLUSIONS

For systems and enterprises to evolve in a coordinated manner, there is a need for rep-
resenting knowledge in a way understandable for both business users and system analysts.
Modeling has been touted as an appropriate way of providing the necessary abstraction
mechanism to comprehend and analyze complex problems in this regard, but it appears
that no modeling technique or approach is applicable across the whole spectrum of process
and stakeholder types. This paper has outlined early work on how results from model-
ing approaches from the fields of Enterprise Modeling, Workflow modeling, Ontologies,
Service-oriented Architecture, and Model-Driven Architecture can be combined to provide
a more complete coverage of the overall problem area.

In the ATHENA integrated project, we will over the next years work on these problems
both standalone and combined, testing solutions out on industrial cases, with a specific
focus on achieving both system and business interoperability.

ACKNOWLEDGEMENTS

The material presented in this paper is based on co-operation with a number of partners
within the ATHENA-project generally, and at SINTEF specifically. Most notably, Håvard
Dingstad Jørgensen has been instrumental in developing the thinking for integrating Enter-
prise and systems modeling presented in Section 4.

REFERENCES

ATHENA 2004, (October 15, 2004); http://www.athena-ip.org.
Balzer, R., 1985, A 15 year perspective on automatic programming, IEEE Transactions on Software Engineering

Vol. 11, No. 11 November.
Carlsen, S., 1998, Action port model: A mixed paradigm conceptual workflow modeling language, Proceedings

of Third IFCIS Conference on Cooperative Information Systems (CoopIS’98), New York.
Dalal, N. P., Kamath, M., Kolarik, W. J., and Sivaraman, E., 2004, Toward an integrated framework for modeling

enterprise processes, Communications of the ACM 47(3):83–87, March 2004.
Exertier, D., et al., 2004, PIM definition and description, Proc. First European Workshop on Model Driven Archi-

tecture with Emphasis on Industrial Application, Univ. Twente, Netherlands, March 17–18.

INTEGRATING ENTERPRISE AND IS DEVELOPMENT 53

Fox, M. S., 1992, The TOVE project: A common-sense model of the enterprise, Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems.

Fox, M. S., and Grüninger, M., 1998, Enterprise modeling, AI Magazine, AAAI Press, Fall, pp. 109–121.
Günther, J., and Steenbergen, C., 2004, Application of MDA for the development of the DATOS billing and

customer care system (Case study on the use of MDA for the development of a larger J2EE System), Proc.
First European Workshop on Model Driven Architecture with Emphasis on Industrial Application, Univ.
Twente, Netherlands, March 17–18.

Jørgensen, H. D., 2001, Interaction as a framework for flexible workflow modeling, Proc International ACM
SIGGROUP Conference on Supporting Group Work, Boulder CO, September.

Jørgensen, H. D., 2004, Interactive Process Models, PhD-thesis, NTNU, Trondheim, Norway, ISBN 82-471-
6203-2.

Haake, J. M., and Wang, W., 1997, Flexible support for business processes: Extending cooperative hypermedia
with process support, Proceedings of GROUP ’97, Phoenix, Arizona USA.

Kahng, J., and McLeod, D., 1998, Dynamic classificational ontologies: Mediation of information sharing in
cooperative federated database systems, in: Cooperative Information Systems: Trends and Directions, M.
Papazoglou and G. Schlageter, eds., Academic Press.

Krogstie, J., and Jørgensen, H. D., 2004, Interactive models for supporting networked organizations, Proceedings
of CAiSE’2004, June 9–11, Latvia, Riga.

Kallåk, B. H., Pettersen, T. B., and Ressem, J. E., 1998, Object-oriented workflow management: Intelligence,
flexibility, and real support for business processes, Proceedings of OOPSLA Workshop on Implementation
and Application of Object-Oriented Workflow Management Systems, Vancouver, Canada.

Kuntz, J. C., Christiansen, T. R., Cohen, G. P., Jin, Y., and Levitt, R. E., 1998, The virtual design team: A
computational simulation model of project organizations, Communications of the ACM, vol. 41, no. 11.

Lillehagen, F., 1999, Visual extended enterprise engineering embedding knowledge management, systems engi-
neering and work execution, Proceedings of IEMC ’99, IFIP International Enterprise Modelling Confer-
ence, Verdal, Norway.

Miller, G., et al., 2003, Model driven architecture: how far have we come, how far can we go? (Panel at OOP-
SLA’03, Anaheim CA, October 2003).

Pereira, C. M., and Sousa, P., 2004, A method to define an enterprise architecture using the Zachman framework,
Proc. ACM SAC’04, Nicosia, Cyprus, March 14–17, 2004.

Shim, S. S. Y., Pendyala, V. S., Sundaram, M., and Gao, J. Z., 2000, Business-to-Business e-Commerce frame-
works, IEEE Computer, vol. 33, no. 10.

Thomas, D., 2004, MDA: revenge of the modelers or UML utopia? IEEE Software May/June 2004, pp. 15–17.
Uschold, M., et al., 1998, The enterprise ontology. In The Knowledge Engineering Review, vol 13.
Wegner, P., 1997, Why interaction is more powerful than algorithms, Communications of the ACM, vol. 40, no. 5.
Wegner, P., and Goldin, D., 1999, Interaction as a Framework for modeling, in: Conceptual Modeling. Current

Issues and Future Directions, LNCS 1565, Springer-Verlag.
Zachman, J. A., 1987, A framework for information systems architecture, IBM Systems Journal 26(3):276–292.

ISSUES IN INFORMATION SYSTEMS EDUCATION:
CAPITALIZING ON RECENT ADVANCES IN

LEARNING THEORY

Geoffrey Black, Wita Wojtkowski, W. Gregory Wojtkowski, and
Cristianne Lane∗

1. INTRODUCTION

The more we learn about how the brain acquires and stores information, the more
efficient and effective we can be in our quest to pass on information to our students. As
educators, we are in the business of transmitting information. We can be well-intentioned
in that endeavour, but that is not enough. We must be well informed about learning theory
and instructional practices. As we increase our knowledge about how information is best
received, our teaching practices will evolve in order to match this new knowledge (McCray
et al., 2003). We can then more powerfully engage students in the learning process and,
most importantly, increase the probability that the acquired information is retained.

This paper examines two critical areas of learning theory. The first area concerns what
current research in cognitive neuroscience tells us about how the brain receives, processes,
and retains information. We know, for example, that our brains can better assimilate in-
formation that is organized and familiar (Yin, et al., 2004). In the same vein, research
indicates that linking new information to previous knowledge helps give the new informa-
tion a “home” (Nicoll, 2001) and that personally relevant information is more meaningful
and more likely to be organized, stored, and available to be applied (Georghiades, 2004).
Finally, we can better construct meaning when we are able to interact with information
(Bransford, et al., 2000).

The second area of learning theory addressed here is how to make the transfer of in-
formation more ‘brain friendly.’ We explore some of the many instructional techniques
that can access the types of learning addressed by each of the key findings of brain re-

∗ Geoffrey Black, Dept. of Economics, Boise State University, Boise, ID 83725-1620, USA,
gblack@boisestate.edu. Wita Wojtkowski and W. Gregory Wojtkowski, Dept. of Networking, Operations & In-
formation Systems, Boise State University, Boise, Idaho, 83725-1615, USA, wwojtkow@boisestate.edu, gwo-
jtkow@boisestate.edu. Cristianne Lane, Lee Pesky Learning Center, 345 Bobwhite Court #220, Boise, Idaho,
83706, USA, clane@lplearningcenter.org.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 55

56 G. BLACK ET AL.

search. We focus on a family of techniques that speak most directly to information systems
(IS) instruction – the use of graphic organizers and concept maps. These provide visual
representations of concepts and how they are related. They generate a framework for orga-
nizing conceptual understanding, linking background knowledge to new information, and
facilitating student interaction.

This paper is organized as follows. Section 2 reviews some recent findings about how
learning occurs and is facilitated. Section 3 examines how these findings can be used as a
lens to ensure that our efforts to transmit information are effective. We conclude the paper
reflecting on the issues discussed.

2. NEUROSCIENCE AND LEARNING

Research in cognitive neuroscience is beginning to shed light on questions about how
the brain acquires knowledge. A major focus of brain research over the past two decades
concerns how and where learning takes place within the brain. Recent technological ad-
vances in imaging technology, such as functional Magnetic Resonance Imaging (fMRI),
Positron Emission Tomography (PET), and Electroencephalography (EEG) are allowing
an examination of the learning process from the molecular level to neural systems and
areas. Unlike a computer network, the brain is fundamentally discontinuous. The ‘cable’
that transmits signals consists of neurons, but the cable is not where learning takes place.
Learning happens within the discontinuities. Virtually all of the neurons in the adult brain
are extant at birth (de Haan and Johnson, 2002). Brain development consists of a process
of increasing synaptic density and complexity in which the volume of the brain increases
fourfold from birth to adulthood due to the proliferation of connections (Goswami, 2004).
When new information is learned, the biochemistry of the synapses is altered. The bio-
chemical changes at crucial synaptic points in the brain are the foundation of learning
(Sebastian-Galles, 2004).

This type of research sheds light on key questions in education research. We know
that some information is stored in memory and easily accessed, while other information is
not. It is now possible to address questions concerning the types of information, delivery
modes, as well as the enhancement of storage and retrieval. Research in neurocognition
has shown that at least two aspects of this process are important for effective learning. The
first is how the new information relates to an individual’s prior knowledge. The second
is how relevant the new information is to an individual’s self-interest. The biochemical
synaptic changes that take place when new information is received create mental pathways
that determine how and where learning takes place. These pathways are mapped onto an
individual’s existing schema (Chamot et al., 1999; Barnhardt, 1997). When the “schemata
for a particular topic are well-developed and personally meaningful, new information is
easier to retain and recall, and proficient learners initiate and activate their associations
between the new and old learning” (Echeverria et al., 2004, p. 81).

For well over a decade, education researchers have stressed the importance of cogni-
tive strategies that incorporate new information with prior knowledge and the critical role
of relevance and motivation (eg. Garcia and Pintrich, 1994; Zimmerman, 1990). Strategies
that promote self-regulated learning have currently become a major topic in educational

ISSUES IN INFORMATION SYSTEMS EDUCATION 57

research (Paris and Paris, 2001). Section 3 of this paper discusses one of these strategies -
the use of concept maps.

Neuroscience research has also shown that learning is enhanced when multiple senses
are involved. Certain evidence suggests that brain is highly differentiated and that differ-
ent systems are specialized to process specific and different kinds of information (Cohen
and Tong, 2001; Downing et al., 2001; Neville, et al., 1998). This is the ‘modular’ view
of the brain. There is also evidence that the brain is distributive in nature, and that given
information is processed by many parts of the brain and specific brain regions are capable
of processing many classes of information (Cohen and Tong, 2001). The linkages between
different systems within the brain that contribute to distributive nature of the brain appear
to be strongest in infancy. This is shown, for example, by research that demonstrates that
infants respond to auditory stimulation in multiple regions of the brain, including those
pertaining to visual stimulus (Roder and Neville, 2003). It appears that mutual linkages
decline during childhood and that the brain becomes increasingly specialized (Goswami,
2004). We posit that the modular and distributive aspects of the brain have significant
implications for learning theory and practice. Educational research has already demon-
strated that content delivery using a multi-sensory approach facilitates the acquisition and
retention of information (e.g. Nolen, 2003). In the next section we describe multi-sensory
approach to learning through the use of concept maps.

Cognitive research also shows that the brain does not easily assimilate large amounts
of random information. When students attempt to learn through such assimilation, much
of the delivered information will not be stored nor will it be transformed into higher levels
of learning (Resnick, 2003). Some of the most compelling evidence of this comes from
research on dyslexia (e.g. Shaywitz and Shaywitz, 2001, 2004; Shaywitz et al., 2003),
a reading disability that plagues an estimated 5–17% of the population and has, until re-
cently, remained a puzzle to educators and neuroscientists. By tracking the brain activity of
both successful readers and dyslexic readers through fMRI and other imaging techniques,
researchers are able to view the contrast in their brain activity. Dyslexics are unable to
decode words and perceive letters and sounds as streams of random information. When
this occurs, they rely largely on rote memorization rather than on more efficient learning
strategies, and ultimately under-perform.

These findings are relevant for efficient information delivery in higher education. We
put forward that the use of isolated reading and lectures by many students results in com-
pensatory strategies similar to those of dyslexics and causes students to rely on the rote
memorization of disconnected concepts. The use of concept enables students to organize
information, place it in context, and increase retention.

Educational research has also shown that emotions have a profound influence on learn-
ing. While much of this research focuses on the learning environment, including sleep, nu-
trition, home and social context, more research is beginning to focus on the neurological
effects of emotions and their impact on memory and learning. These effects occur primarily
through the release of different hormones into different parts of the brain. Although some
types of emotions positively impact certain types of memory, stress is shown to adversely
affect memory formation and learning (Erk, et al., 2003; Rimmele, 2003). In addition to
neurological evidence, the negative impact of stress on learning is evidenced by the effects
of stress on student performance (e.g. Takahashi, et al., 2004).

58 G. BLACK ET AL.

In summary, the neuroscience research described above offers several lessons for ed-
ucational practice. First, we know that the brain acquires information through our senses.
The more senses involved, the richer the experience. We also recognize that emotions also
play a significant role in learning and that anxiety, for example, inhibits our ability to
receive information. Further, we understand that personally relevant information is more
meaningful. Finally, we know that linking new information to previous knowledge enables
our brains to better assimilate information because it is organized and familiar.

3. EDUCATIONAL PRACTICE AND CONCEPT MAPS

The lecture model as a way of disseminating large amounts of information is still one
of the most prevalent instructional techniques in institutions of higher learning. In general,
however, the traditional lecture model is not congruent with current learning theory. In
this section, we explore the use of concepts maps (also termed graphic organizers), one of
several instructional techniques that are consistent with current brain research. This section
of the paper offers a brief overview of concept maps and their use in higher education.

3.1. Brief Overview of Concept Maps

Concept maps are visual or spatial portrayals that organize information and display
relationships. They serve both as teaching techniques and as aids for student learning.
They assist students in discovering key concepts and relationships among them. Concept
maps can be used by students before, during, and after the study of a topic or group of
topics. Prior to approaching a topic, concept maps can be used as a guide and a means
of identifying prior knowledge. Concurrently with a topic’s study, they act as a means
of note taking, identify key ideas, make connections between concepts, and generate a
framework for organizing understanding. Similarly, they can also be used by teachers to
deliver material and assess student understanding prior to, during, and after the study of a
particular topic.

Concept maps come in a variety of forms to match their functions. Hierarchical con-
cept maps often organize concepts by identifying key ideas and supporting material. The-
matic maps (see Figure 1) and network trees are commonly used to display this type of
information. Sequential maps are often used to illustrate cause and effect relations or a
series of events or concepts. Commonly used concept maps for displaying sequential in-
formation are sequential episodic maps and fishbone maps. Comparative concept maps
often display similarities and differences and include compare-contrast maps and compare-
contrast matrices. Overviews of the types and uses of concept maps are provided by Hall
and Strangman (2003), Katayama and Robinson (2000), and Novak (1990).

3.2. Uses and Advantages of Concept Maps

There are several advantages of the use of concept maps. They can help students to
make paired-associations and generate analogies, therefore increasing the interaction with
information and making it more relevant. They guide students to focus on details, con-
ceptual links, and overarching concepts simultaneously. The use of concept maps enable

ISSUES IN INFORMATION SYSTEMS EDUCATION 59

Figure 1. General form of a thematic concept map.

students to better organize material and link new information to previous knowledge. They
also guide students by helping them identify critical features, compare concepts, and orga-
nize a sequence of ideas.

As educators, we have all witnessed students taking copious notes, attempting to cap-
ture every word of lecture. Meanwhile, other students write little, being at a loss for what
to record. As experts in our fields, we know the relationship between the concepts we are
trying to teach and the supporting information. We posit that through the use of concept
maps, ideas and relationships become “visible” to students.

Concept maps are used primarily in elementary education to facilitate vocabulary
acquisition and reading comprehension. The advantages of concept maps, however, are
broadly applicable. Education research supports the use of concept maps across content
areas in higher education. For example, Katayama and Robinson, (2000) show that con-
cept maps improve retention while reading chapter-length text for undergraduate students.
Hoffman, (2003) demonstrates that the effectiveness of concept maps increases when stu-
dents additionally create them as a post-reading strategy. Katayama and Crooks (2003)
provide evidence that when providing materials to students, partially completed concept
maps are more effective than complete lecture or reading notes. Nilsson and Mayer (2002)
show that, in addition to understanding text, comprehension of web-based hypertext mater-
ial is also enhanced through the use of concept maps. Finally, Moore and Readence (1984)
demonstrate that the effectiveness of concept maps is significantly larger for college-level
students than for elementary and secondary students. This, and other evidence, argues for
the broader use of concept maps in higher education.

The effectiveness of concept maps can be ascribed to the fact that their use is consis-
tent with lessons derived from the neuroscience research. First, concept maps help make
explicit the link between new information and prior knowledge. Second, they enable im-
proved assimilation of new information because it is organized and more familiar. Third,
concept maps utilize a multi-sensory approach and simultaneously access different neural
processes and regions of the brain. Fourth, learner-generated concept maps increase the
opportunities to make information personally relevant and meaningful. Finally, all of these
effects may reduce the anxiety that inhibits the ability to receive information.

60 G. BLACK ET AL.

4. CONCLUSION

In this paper we discuss recent research findings on neurocognition and learning theory
and capitalize on their relevance to education. We propose that concept maps are congru-
ent with these findings. They increase learning effectiveness primarily by organizing new
information and utilizing prior knowledge, multisensory information delivery, and learner
interest. This paper is only a start of our inquiry. We are cognizant of the fact that education
issues we ponder are complex and that concept maps represent a small part of the panoply
of possible approaches that take advantage of recent advances in learning theory.

REFERENCES

Barnhardt, S., 1997, Effective memory strategies, The NCLRC Language Resource 1(6), (July, 1997);
http://www.nclrc.org/caidlr16.htm.

Bransford, J., Brown, A., and Cocking, R., 2000, How People Learn: Brain, Mind, Experience, and School,
National Academic Press.

Chamot, A., Barnhardt, S., El-Dinary, P., and Robbins, J., 1999, Learning Strategies Handbook, Pearson ESL.
Cohen, J. and Tong, F., 2001, The face of controversy, Science 293(5539):2405–2407.
Downing, P., Jiang, Y., Shuman, M., and Kanwisher, N., 2001, A cortical area selective for visual processing of

the human body, Science 293(5539):2470–2473.
de Haan, M., and Johnson, M., 2003, Mechanisms and Theories of Brain Development, in: The Cognitive Neuro-

science of Development, M. de Haan and M. Johnson, eds., Psychology Press, pp. 1–18.
Echevarria, J., Vogt, M., and Short, M., 2004, Making Content Comprehensible for English Learners: The SIOP

Model, Pearson Education.
Erk, S., Kiefer, M., Grothe, J., Wunderlich, A., Spitzer, M., and Walter, H., 2003, Emotional context modulates

subsequent memory effect, NeuroImage 18(2):439–448.
Garcia, T., and Pintrich, P., 1994, Regulating Motivation and Cognition in the Classroom: The Role of Self-

Schemas and Self-Regulatory Strategies, in: Self-Regulation of Learning and Performance: Issues and Ed-
ucational Applications, D. Schunk and B. Zimmerman, eds., Erlbaum, pp. 127–180.

Georghiades, P., 2004, From the general to the situated: Three decades of metacognition, International Journal
of Science Education 26(3):365–383.

Goswami, U., 2004, Neuroscience and education, British Journal of Educational Psychology 74(1):1–14.
Hall, T., and Strangman, N., Graphic Organizers, 2003, National Center on Accessing the General Curriculum

(CAST); http://www.cast.org/ncac/GraphicOrganizers3015.cfm.
Hoffman, J., 2003, Student-created graphic organizers bring complex material to life, College Teaching 51(3):105.
Katayama, A., and Crooks, S., 2003, Differential effects of studying complete or partial graphically organized

notes, Journal of Experimental Education 71(4):293–302.
Katayama, A., and Robinson, D., 2000, Getting students ‘partially’ involved in note taking using graphic orga-

nizers, Journal of Experimental Education 68(2):119–134.
McCray, R., DeHaan, R., and Schuck, J., 2003, Improving undergraduate instruction in science, technology,

engineering, and mathematics, Workshop Report, National Research Council; http://www.nap.edu/books/
0309089298/html/.

Moore, D., and Readence, J., 2001, A quantitative and qualitative review of graphic organizer research, Journal
of Educational Research 78(1):11–17.

Neville, H., Bavelier, D., Corina, D., Rauschecker, J., Karni, A., Lalwani, A., Braun, A., Clark, V., Jezzardi, P.,
and Turner, R., 1998, Cerebral organization for language in deaf and hearing subjects: Biological constraints
and effects of experience, Proceedings of the National Academy of Sciences 95(3):922–929.

Nicoll, G., 2001, A three-tier system for assessing concept maps: A methodological study, International Journal
of Science Education 23(8):863–875.

Nilsson, R., and Mayer, R., 2002, The effects of graphic organizers giving cues to the structure or hypertext doc-
ument on users’ navigation strategies and performance, International Journal of Human-Computer Studies
57(1):1–25.

ISSUES IN INFORMATION SYSTEMS EDUCATION 61

Paris, S., and Paris, A., 2001, Classroom applications on research on self-regulated learning, Educational Psy-
chologist 36(2):89–101.

Resnick, M., 2003, Thinking like a tree (and other forms of ecological thinking, International Journal of Com-
puters for Mathematical Learning 8(1):43–62.

Rimmele, U., 2003, Cortisol has different effects on human memory for emotional and neural stimuli, NeuroRe-
port 14(18):2485–2488.

Roder, B. and Neville, H., 2003, Developmental Functional Plasticity, in: Handbook of Neuropsychology, J. Graf-
man and I. Robertson, eds., Elsevier, pp. 231–270.

Sebastian-Galles, N., 2004, A Primer on Learning: A Brief Introduction from the Neurosciences, Organisation for
Economic Co-Operation and Development; http://www.oecd.org/document/57/0,2340,en 2649 14935397
33625337 1 1 1 1,00.html.

Shaywitz, S., and Shaywitz, B., 2004, Reading disability and the brain, Educational Leadership 61(6):6–11.
Shaywitz, S., and Shaywitz, B., 2001, The neurobiology of reading and dyslexia, Focus on Basics 5(A), (Augusts,

2001); http://ncsall.gse.harvard.edu/fob/2001/shaywitz.html.
Shaywitz, S., Shaywitz, B., Fulbright, R., Skudarshi, P., Mencl, W., Constable, R., Pugh, K., Holahan, J., Mar-

chione, K., Fletcher, J., and Lyon, G., and Gore, J., 2003, Neural systems for compensation and persistence:
Young adult outcome of childhood reading disability, Biological Psychiatry 54(1):25–34.

Takahashi, T., Ikeda, K., Ishikawa, M., Tsukasaki, T., Nakama, D., Tanida, S., and Kameda, T., 2004, Social stress-
induced cortisol elevation acutely impairs social memory in humans, Neuroscience Letters 363(2):125–130.

Yin, Y., Vanides, J., Ruiz-Primo, M., Ayala, C., and Shavelson, R., 2004, A comparison of two construct-a-
concept-map science assessments: Created linking phrases and selected linking phrases, CSE Report 624,
National Center for Research on Evaluation, Standards, and Student Testing (CRESST)/Stanford University.

Zimmerman, B., 1990, Self-regulated learning and academic achievement: an overview, Educational Psychologist
25(1):3–15.

XML IN THE WORLD OF (OBJECT-)RELATIONAL
DATABASE SYSTEMS

Irena Mlynkova and Jaroslav Pokorny∗

1. INTRODUCTION

XML1 is universally recognized as the standard for interchange and device-indepen-
dent representation of information. On the other hand, XML is recently understood as
a new approach to data modelling.2, 3 A well-formed XML document or a set of documents
is an XML database and the associated DTD or schema specified in the language XML
Schema4 is its database schema. Implementation of a system enabling us to store and query
XML documents efficiently is developed today in different ways. We do not discuss here
native storage solution, i.e. a DBMS dedicated to manage XML data collections. A more
practical possible solution can be found in storing XML data in (object-)relational DBMS.
Moreover, this approach enables to provide XML with missing database mechanisms (e.g.
indexes, transactions, multi-user access, etc.).

Currently there is a relatively large number of works devoted to storing XML data,
including the special architectures like PDOM, CMS, XML Servers, XML Query Engines,
etc. We refer reader to Bourret2 for their comprehensive overview. Our contribution is
a summarization of recent XML storage techniques based on today’s (object-)relational
database technologies, their comparing and evaluation. We also present own algorithm for
mapping XML Schema structures to object-relational (OR) schema. A more comprehen-
sive discussion can be found in Mlynkova and Pokorny.5

For transferring the data between XML documents and (O)R structures so-called map-
ping methods are of a great importance. A basic classification6 of existing mapping meth-
ods includes the following three classes:

• generic methods, which do not use any schema of stored XML documents,
• schema-driven methods, which are based on existing schema of stored XML doc-

uments, and
• user-defined methods, which are based on user-defined mapping.

∗ Charles University, Faculty of Mathematics and Physics, Department of Software Engineering, Malostranske
nam. 25, 118 00 Prague 1, Czech Republic, {mlynkova,pokorny}@ksi.ms.mff.cuni.cz.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 63

64 I. MLYNKOVA AND J. POKORNY

Figure 1. An example of a generic-tree.

Sections 2–4 contain an overview and possible classifications of the respective meth-
ods. Their evaluation and discussion is in Section 5. Section 6 provides conclusions.

2. GENERIC MAPPING METHODS

Generic mapping methods do not use (possibly) existing XML schema of stored XML
documents. They are usually based on one of two approaches – creating

• a general (O)R schema into whose relations any XML document regardless its
structure can be stored, or

• a special kind of (O)R schema into whose relations only a certain collection of
XML documents having a similar structure can be stored.

The former methods model an XML document as a tree T according to e.g. the OEM
model or the DOM model, while the latter reflect its special “relational” structure.

2.1. Generic-Tree Mapping

A typical representative of generic mapping is a group of methods called generic-tree
mapping.7 An example of an XML document and its T is depicted in Figure 1.

There are several methods for storing T , so-called edge, attribute, universal, and nor-
malized universal mapping.
Edge Mapping. This method stores all edges of T in the following table:

Edge(source, ord, name, flag, target)

The table contains identifiers of nodes connected by the edge (source and target),
name of the edge (name), a flag that indicates whether the edge is internal or points to a leaf
(flag), and an ordinal number of the edge within sibling edges (ord).
Attribute Mapping. In this mapping an extra table for each edge name (so-called attribute)
is established. The structure of these tables is similar to the previous case:

Edgename (source, ord, flag, target)

Universal Mapping. This method stores edges of T in so-called universal table, which
contains columns for all the attribute names described in previous method. In other words,

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 65

a universal table corresponds to the result of an outer join of all tables from attribute map-
ping. If a1, . . . , ak are all the attribute names in the XML document, the universal table
can have the following structure:

Uni(source, orda1, flaga1, targeta1, . . . ,ordak, flagak, targetak)

Obviously the universal table contains many NULL values.
Normalized Universal Mapping. This method tries to solve the main disadvantage of uni-
versal mapping storing multi-valued attributes in separate, so-called overflow tables. An
overflow table is established for each attribute name, while its structure is the same as in
attribute mapping. The universal table then contains only one row per each attribute name,
others are stored in corresponding overflow tables.

There is also a plenty of variations of these methods. First, in all described approaches
the values in leaves can be stored either in separate value tables (each holds values of
a certain type) or in additional columns of existing tables. Other, so-called hybrid methods
can be created using combinations of the described approaches.

2.2. Structure-Centred Mapping

The structure-centred mapping8 considers all nodes of the tree T having the same
structure defined as a tuple ν = (t, l, c, n), where t is the type of the node (e.g. ELEMENT,
ATTRIBUTE, TEXT, . . .), l is the node label, c is the node content and n = {ν1, . . . , νn}
is the list of successor nodes. The paper8 considers the problem how to realize mapping
of the lists of successor nodes. It proposes three kinds of storage strategies focusing on
speeding up the access performance.
Foreign Key Strategy. Each tree node ν is simply mapped to a tuple with a unique identifier
and a foreign key reference to the parent node. The method is quite simple and the stored
tree can easily be modified. Nevertheless, its disadvantage is evident – the retrieval of the
data involves many self-join operations.
DF Strategy. In this strategy each node of T is given an index value (a couple of minimum
and maximum DF values), which represents its position in T . The DF values are deter-
mined when traversing T in a depth first (DF) manner. A counter is increased each time
another node is visited. If a node ν is visited the first time its minimum DF value νmin is
set to the current counter value. When all child nodes have been visited, the maximum DF
value νmax is set to the current counter value (see Figure 2).

Using DF values relationships of nodes (e.g. sibling order, element-subelement re-
lationship, etc.) can easily be determined just by comparisons. For example, a node ν is
a descendant of node µ, if νmin > µmin and νmax < µmax. Moreover, as the nodes can be
totally ordered according to DF values, retrieving a part of a document is linear. The weak

Figure 2. An example of DF indexing.

66 I. MLYNKOVA AND J. POKORNY

point of this strategy is document update – in the worst case it requires to update DF values
of all nodes of the tree.
SICF Strategy. In this strategy each node of the graph is also given by an identification of
its position – in this case so-called simple continued fraction (SICF)

σ = 1

qk + 1
. . .

q2 + 1
q1

where qi ∈ N (i = 1, . . . , k) are called partial quotients of σ and the expression <q1, . . . ,

qk> partial quotient sequence. Sequences uniquely determine fractions and vice versa.
The SICF values are determined in the following way: the root node gets a seed value
s ∈ N , s > 1 (its SICF value is <s>). If a node ν has SICF value <q1, . . . , qm> and has n

ordered child nodes ν1, . . . , νn, then the SICF value for i-th child node is <q1, . . . , qm, i>.
The advantages and disadvantages of this strategy are similar to the previous one.

2.3. Simple-Path Mapping

This method9 assumes that queries over the stored XML data are path queries of an
XML query language. The main idea is to decompose XML documents into so-called
simple paths and to store them in the database. Each simple path is based on the relation
parent-descendant. Hence, each node in the graph retains its simple path. But as a simple
path contains neither position nor order information, these two are stored in the graph too.
The position information (called region) is a pair of a start and an end value, which are
assigned as follows: Each word occurrence is assigned an integer number corresponding
to its position within the document. Each tag is assigned a real number – its integer part
indicates the position of the preceding word and its decimal part indicates the position of
the tag being concerned in the current sequence of tags. The order information is composed
of occurrence plus and occurrence minus order information, which expresses the index
number of the node within its parent node (see Figure 3).

All the information about T is stored in following four relations:
Element(docID, pathID, index, reindex, pos)

Attribute(docID, pathID, attvalue, pos)

Text(docID, pathID, textvalue, pos)

Path(pathexp, pathID)

First three relations store information about each node type – document identifiers
(docID), path identifiers (pathID), plus and minus occurrence order (index and rein-

dex), regions (pos), attribute and text values (attvalue and textvalue). The relation
Path stores simple paths (pathexp) and path identifiers (pathID).

The main advantage of this method is apparent – storing simple paths of elements and
attributes simplifies and speeds up processing path queries.

2.4. Monet Mapping

The tree model of XML data in the Monet mapping10 is slightly different than in the
previous methods (see Figure 4). The main idea of this method is based on a complete

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 67

Figure 3. An example of a simple-path tree.

Figure 4. An example of a Monet tree.

binary fragmentation of T to binary associations, which describe different parts of the tree
(edges, attributes, the topology of the document).

The associations, which bear semantically related information, are stored in relations
together. Such information is related to definition of a path(o) as a sequence of (vertex and
edge) labels along the path from the root node to o (where →e and →a denotes edge to an
element and attribute, respectively), e.g.:

path(o3) = bib →e article →e author

path(“Ben Bit”) = bib →e article →e author →e cdata →a string

Each path then describes the position of an element in T relative to the root node.
At the same time, path(o) is used to denote the type of binary association (. , o). All
associations of the same type are stored in the same binary relation.

The advantage of this method is, that it avoids large and expensive scans over irrelevant
data, the disadvantage is the high degree of fragmentation, which can increase efforts to
reconstruct the original document or its parts.

68 I. MLYNKOVA AND J. POKORNY

2.5. Table-Based Mapping

A typical representative of the approach that enables to store only a certain collection
of XML documents having similar structure is called table-based mapping.2 It is based on
the assumption, that the stored XML documents have a regular structure reflecting data-
base, tables, rows, and columns. The mapping between elements and relations is exactly
defined by the structure of the XML document. Apparently, this method is suitable espe-
cially for transferring the data between two relational DMBSs.

3. SCHEMA-DRIVEN MAPPING METHODS

Schema-driven mapping methods are based on existing schema S1 of stored XML doc-
uments, written in DTD or XML Schema, which is mapped to (O)R database schema S2.
The data from XML documents valid against S1 are then stored into relations of S2. The
purpose of these methods is to create optimal schema S2, which consists of reasonable
amount of relations and whose structure corresponds to the structure of S1 as much as pos-
sible. All of these methods try to improve the basic mapping idea “to create one relation
for each element composed of its attributes and to map element-subelement relationships
using keys and foreign keys”.

3.1. Common Characteristics

Schema-driven mapping methods have several common basic principles6 resulting
from information stored in the XML. The most important ones are:

• Subelements with maxOccurs = 1 are (instead of to separate tables) mapped to
tables of parent elements (so-called inlining).

• Elements with maxOccurs > 1 are mapped to separate tables. Element-subele-
ment relationships are mapped using keys and foreign keys.

• Alternative subelements are mapped to separate tables (analogous to the previous
case) or to one universal table (with many nullable fields).

• If it is necessary to preserve the order of sibling elements, the information is
mapped to a special column.

• Elements with mixed content are usually not supported.
• A reconstruction of an element requires joining several tables.

3.2. Possible Classifications

The considered methods have several common features according to which they can
be classified quite differently.

Source XML Schema. An obvious classification is based on the type of S1. Most of
these methods are based on DTD. The reason for this is, that although the DTD is quite
simple, it is still sufficient for most applications. On the other hand, although the XML
Schema is much more complex and thus difficult for learning, it contains useful features
that DTD lacks and gives users more powerful tool for describing the allowed structure
of XML documents. At present, there are also several methods (e.g. XMLSchemaStore
mapping or LegoDB mapping), which try to exploit these features.

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 69

Target Database Schema. The methods differ also according to the S2. In this paper
two possibilities are concerned – relational or object-relational approach. Most of the meth-
ods are based on the former one, since the relational databases and their features managed
to gain more focus than others (including OR ones). Despite of this fact there are several
methods, which try to take the advantage of OR features, such as NF2-relations (e.g. Hybrid
object-relational mapping) or user defined data types and references (e.g. XMLSchemaS-
tore mapping).

Flexibility. Another classification6, 11 includes two classes – fixed and flexible meth-
ods. Fixed methods (e.g. Basic, Shared, and Hybrid algorithms, etc.) are those, which do
not use any other information than S1 itself and whose mapping algorithm is straight-
forward. On the other hand, flexible methods (e.g. LegoDB mapping or Hybrid object-
relational mapping) use the additional information (e.g. query statistics, element statistics,
etc.) and focus on creating an optimal schema for a certain application.

3.3. Algorithms Basic, Shared, Hybrid, and Derived Algorithms

The best-known representative of fixed schema-driven mapping methods is a group
of three algorithms for mapping a DTD to relational schema called Basic, Shared, and
Hybrid.12 The main idea is based on a definition of a directed graph, so-called DTD
graph, which represents the processed DTD. Nodes of the graph are elements (which ap-
pear exactly once), attributes, and operators (which appear as many times as in the DTD).
Edges of the graph represent element-attribute, element-subelement or element-operator
and operator-subelement relationships. Each DTD is also first pre-processed and simpli-
fied to contain only ? and * operators and flat expressions (see Figure 5).

These algorithms try to gradually improve the idea “to create one relation for each
element”. They differ according to the amount of redundancy they may cause.
Basic Algorithm. The Basic algorithm combines two approaches:

• to inline as many descendants of an element as possible and
• to create a relation for each element in the DTD graph.

In the former case only two kinds of element-subelement relationships are solved us-
ing keys and foreign keys – subelements with multiple occurrence (indicated by the use
of * operator) and recursion (indicated by cycles in the graph). The main disadvantages of
this algorithm are obvious – a huge amount of unnecessary relations and a great deal of
redundancy since an element node can be represented in several relations.

Figure 5. An example of a DTD graph.

70 I. MLYNKOVA AND J. POKORNY

Shared Algorithm. The Shared algorithm tries to avoid the drawbacks of Basic. The idea is
to identify elements that are represented in multiple relations and to share them by creating
separate relations for them. The mapping rules are:

• Nodes with an in-degree of one are inlined to parent relations.
• Nodes with an in-degree of zero are stored in separate relations.
• Repeated elements are stored in separate relations.
• Of all mutually recursive elements having an in-degree one, one of them is stored

in a separate relation.
• The problem of inlined elements, which can become roots of an instance XML

document, is solved using a flag for each element that indicates this state.

Apparently the main advantage of the Shared algorithm is the reduced amount of re-
lations and redundancy. Its main disadvantage is the number of join operations necessary
for restoring an element, which can be worse than in Basic.
Hybrid Algorithm. The Hybrid algorithm tries to combine the join reduction properties
of Basic with the sharing features of Shared. The algorithm is similar to Shared except for
additional inlining of elements with an in-degree greater than one, that are neither recursive
nor reached through a * node.
CPI Algorithm. CPI (Constraints-Preserving Inlining) method13 can be based e.g. on the
mentioned Hybrid algorithm. Its main purpose is to capture not only the structure of the
DTD but the semantic constraints as well. The considered constraints are e.g. domain
constraints, cardinality constraints (i.e. +, *, ? operators), referential integrity (i.e. ID,
IDREF, IDREFS types), etc. These constraints are represented using corresponding SQL
constraints e.g. NOT NULL, UNIQUE, PRIMARY/FOREIGN KEY, CHECK, etc.

3.4. Object-Relational Mapping

Object-relational mapping14 uses the word “object-relational” in a bit confusing way,
since it does not denote the type of S2 but the two steps of the algorithm. S1 is expressed
either in DTD or XML Schema; S2 is relational in all cases. The two steps are:

1. S1 is mapped to an object schema expressed in an object-oriented language.
2. The object schema is mapped to S2.

Obviously, if the object schema is not essential, it can be eliminated.
The object schema models S1 as a tree of objects. In this step element types with

PCDATA-only content and attribute types are considered as simple types. Element types
with element or mixed content, or element types with attributes are considered as complex
types. The mapping rules can be summed as follows:

• simple types → scalar data types,
• complex types → classes with each element type in the content model mapped

to a property of the class – the data type of each property is either the scalar data
type or a pointer/reference to the corresponding object,

• attributes → properties,
• subelements in a sequence or a choice → properties (whereas in the latter case

the corresponding columns in the relational schema will be nullable),

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 71

Figure 6. An example of object-relational mapping for DTD.

Figure 7. An example of mapping an XML schema to an EER diagram.

• repeated subelements → multi-valued properties of (un)known size,
• mixed content → a multi-valued property for storing PCDATA-values plus addi-

tional order columns for each property sharing the same order space.

An example of a DTD and associated schemes is in Figure 6.
For XML Schema the transformation is similar, the differences are related to additional

features XML Schema has. The step doing object-to-relational transformation does not
distinguish from usual approaches used in today’s software engineering.

3.5. Constraints Preserving Mapping

Constraints preserving mapping15 preserves not only the structure of S1 but also the
variety of semantic constraints XML Schema enables to express.

XML Schema structures are formally represented by the regular tree grammar called
FD-XML.15 An extension of ER model, so-called EER model, is proposed and the FD-
XML is converted into EER schema. Then, the EER schema is simplified and optimized,
preserving both the structure and the semantic constraints and finally, the simplified EER
schema is converted to relational schema. The EER model uses (min, max) cardinalities,
arrowheads modelling parent-child relationships, and accessories in order to preserve the
data constraints (see Figure 7).

The rules for simplification of the EER schema include converting an entity to its
parent entity’s attribute and removing a subentity from its parent entity if possible. The
rules for transforming the simplified EER schema to relational schema are similar to well-
known algorithms for design of relational databases.

72 I. MLYNKOVA AND J. POKORNY

Figure 8. An example of a DOM graph – the solid lines correspond to original edges of the DOM tree; dash-and-
dot lines are the additional ones.

3.6. XMLSchemaStore Mapping

XMLSchemaStore mapping5 maps S1 expressed in XML Schema to OR schema ex-
pressed in SQL:1999∗ standard.16 It tries to preserve the structure as well as semantic
constraints of the S1 in the S2 and to exploit OR features of the SQL:1999 standard.

The mapping rules are as follows:

• built-in and user-defined simple type → corresponding database simple type
(eventually) together with corresponding integrity constraint(s),

• complex type and model group → OR user-defined type (UDT), whereas:
◦ XML attributes → UDT attributes with corresponding simple types,
◦ simple element content → UDT attribute with corresponding simple type,
◦ element-subelement relationship → UDT attribute, whose type is (according

to the allowed occurrence and the type of the subelement) either the UDT of
the subelement or the REF/ARRAY of REF to the UDT,

• deriving of complex types → UDT inheritance,
• element (according to its type and allowed occurrence) → own typed table† or

a typed column of the table which corresponds to its parent element.

S2 can be then described as a set of typed tables connected using references.
The mapping algorithm is based on traversing a directed graph called DOM graph (see

Figure 8), whose edges determine the “order” in which the UDTs and typed tables should
be created to follow reference properties.

The DOM graph results from the structure of a DOM tree of the given XML Schema
file in the following way:

• The original edges of the DOM tree are directed to express the “direction” of
element-subelement or element-attribute relationship.

∗ Latterly the SQL:2003 standard is at disposal. Its new type MULTISET can be used for unordered XML data.
† A table that is defined based on a UDT, i.e. rows of a typed table are instances of the corresponding UDT.

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 73

• New edges expressing the “direction” of the usage of globally defined items (e.g.
elements, complex types, etc.) are added.

The mapping is done while traversing the graph starting in schema node. First, all
descendants of a current node are processed, e.g. the UDTs and typed tables are created.
Second, the current node can be processed, since all necessary OR items already exist.

3.7. LegoDB Mapping

A representative of flexible schema-driven mapping methods is an algorithm proposed
in LegoDB system.11 First the method defines fixed mapping of XML Schema structures
(for processing simplicity rewritten into syntactically simpler, but semantically equivalent
p-schemas) to relations. The flexibility is based on the idea to explore a space of possi-
ble XML-to-relational mappings and to select the best one according to given statistics
including information about a sample set of XML documents and queries.

In order to select the best mapping the system in turns applies the following two steps
to the source p-schema, until a good result is achieved:

1. Any possible XML-to-XML transformation is applied to the p-schema.
2. XML-to-relational transformations are applied to the new p-schema and against

the resulting relational schema the given queries are estimated.

As the space of possible p-schemas can be large (possibly infinite), the paper11 also
proposes a greedy evaluation strategy that explores only the most interesting subset.

The XML-to-XML transformations used in the algorithm are: inlining/outlining, union
factorization/distribution, repetition merge/split, wildcards rewriting, and from union to
options. The XML-to-relational transformations are similar to those described in the pre-
viously mentioned methods.

3.8. Hybrid Object-Relational Mapping

Another example of flexible schema-driven mapping methods is a hybrid object-rela-
tional mapping.17 It tries to improve the straightforward mapping of all elements and at-
tributes in a DTD to relations, which can lead to large database schemes, by storing struc-
tured parts of the DTD in relations and semistructured parts in so-called XML data types,
which support path queries and fulltext operations for XML fragments.

The main concern of this approach is to decide which parts of the DTD are structured
and which semistructured. The suggested algorithm is as follows:

1. A graph (similar to above-described DTD graph) is built.
2. A measure of significance ω is determined for each element/attribute.
3. The resulting database design is derived from the graph.

The measure ω can be expressed as

ω = 1

2
ωS + 1

4
ωD + 1

4
ωQ

where the used variables (weights) ωS, ωD, and ωQ are derived from the DTD structure,
the existing XML data, and the queries, respectively.

74 I. MLYNKOVA AND J. POKORNY

Figure 9. An example of hybrid object-relational mapping.

According to a given limit of ω(which influences the level of detail of S2) the algo-
rithm determines non-leaf nodes ν, each of which fulfils the following conditions:

1. All descendants of ν are below the given limit.
2. There exists no predecessor of ν that fulfils the condition 1.

All subgraphs consisting of these nodes and their descendants are replaced by an
XML attribute. The resulting graph is finally mapped using a fixed mapping method to OR
schema. The mapping (see Figure 9) focuses on the use of structured or nested attributes
in NF2-relations, assuming the existence of SET∗ and TUPLE constructors.

4. USER-DEFINED MAPPING METHODS

User-defined mapping methods are most often used in commercial systems. This ap-
proach requires that the user first defines S2 and then expresses required mapping using
a system-dependent mechanism, e.g. a special query language, a declarative interface, etc.
At present, most of existing systems support some kind of user-defined mapping.

Obviously, this approach is the most flexible one. On the other hand, it requires large
development effort and moreover mastering of two distinct technologies (XML and rela-
tional DBMS).11 The description of these methods exceeds the scope of this paper.

5. DISCUSSION OF MAPPING METHODS

Usually XML documents are classified into two groups according to their content,
structure, and supposed use – data-centric and document-centric.2 The structure of data-
centric documents is typically known and is specified in DTD or XML Schema. In docu-
ment-centric documents the structure is typically specified using “mixed-content models”
with arbitrary inter-leaving of text with XML mark-up. The distinction between these two
groups is not generally obvious (documents which belong to both groups are called hybrid
documents). A usability of mapping methods depends on these categories.

Notice, there is probably no reasonable argument for comparing generic and schema-
driven methods together. Table 1 summarizes all discussed features of generic methods.
Generally speaking, these methods are most suitable in cases when no XML schema ex-
ists. All mentioned methods are primarily determined for data-centric XML documents,

∗ Compare with ARRAY in SQL:1999 or MULTISET in SQL:2003.

XML IN THE WORLD OF (OBJECT-)RELATIONAL DATABASE SYSTEMS 75

Table 1. Summary of generic mapping features

Table 2. Summary of schema-driven mapping features

but probably with extensions related to the above-mentioned document-centric items they
could be used for document-centric documents as well.

All mentioned features of schema-driven methods are summarized in Table 2. The
idea of flexible mapping methods is relatively new. There is no reason for asking whether
flexible methods are better than the fixed ones – apparently they are since the resulting
schema suits the given statistics at least as well as corresponding fixed method. Indeed
these methods can be obviously used only if it is possible to obtain necessary statistic
information. The interesting point is how to determine the “best” schema. Just two but
nevertheless quite different representatives were mentioned, whereas both are somehow
based on a sample set of XML documents and typical queries. Obviously, the most flexible
mapping is provided by user-defined mapping methods. Last but not least there is the matter
of the S2 schema. Without any doubts an OR schema solves the problems of multi-valued
properties in more natural way than it does a relational schema in the 1NF.

To sum up, schema-driven mapping methods try to exploit the information in the given
XML schema as much as possible. Although they can preserve some document-centric
features (e.g. document order or mixed content elements), they are usually used for data-
centric XML documents.

6. CONCLUSIONS

This paper was trying to offer a general and clear summary of existing strategies for
connecting XML and database technologies, especially those related to relational and OR
systems. Several possible classifications were mentioned and discussed and the best-known

76 I. MLYNKOVA AND J. POKORNY

representatives of the classes were briefly described. Finally the general common features,
advantages, and disadvantages of the described methods were discussed.

There are several areas, which will probably be in the main focus of future works. The
first will apparently concern semantic constraints (especially those expressed using XML
Schema) that should be preserved in the target (O)R schemes. Several of the mentioned
methods partly focused on this area, but the current features of DBMSs and relational
languages still limit these approaches in many ways.

The second interesting point is connected with flexible mapping methods, which try to
optimize the fixed schema according to its future use. As there are no rules, which define
a “good” XML schema (such as, e.g., normal forms for relations), the fixed mapping of
a “bad” one can result in a “bad” relational schema. Thus an important task may be to
determine a definition of a “good” XML schema and ways how to establish it.

ACKNOWLEDGMENTS

This research was supported in part by GACR grant 201/02/1553.

REFERENCES

1. Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation (February 4, 2004);
www.w3.org/TR/REC-xml/.

2. XML and Databases (2003); www.rpbourret.com.
3. J. Pokorny, XML: a challenge for databases?, in: Contemporary Trends in Systems Development, edited by

Maung K. Sein (Kluwer Academic Publishers, Boston, 2001), pp. 147–164.
4. XML Schema Part 0: Primer W3C Recommendation (May 2, 2001); www.w3.org/TR/xmlschema-0/.
5. I. Mlynkova and J. Pokorny, XML in the World of (Object-)Relational Database Systems, Technical Report

No. 2003-8, Dep. of Software Engineering, Charles University, 2003, p. 28.
6. S. Amer-Yahia and M. Fernandez, Overview of Existing XML Storage Techniques, AT&T Labs, 2001.
7. D. Florescu and D. Kossmann, Storing and querying XML data using an RDBMS, IEEE Data Engineering

Bulletin 22(3), 27–34 (1999).
8. A. Kuckelberg and R. Krieger, Efficient structure oriented storage of XML documents using ORDBMS,

Springer-Verlag Heidelberg, Vol. 2590, pp. 131–143 (2003).
9. T. Shimura, M. Yoshikawa, and S. Uemura, Storage and retrieval of XML documents using object-relational

databases, Proc. of DESA Conf., pp. 206–217 (1999).
10. A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas, Efficient relational storage and retrieval of XML

documents, Proc. of WebDB Conf., pp. 47–52 (2000).
11. P. Bohannon, J. Freire, P. Roy, and J. Siméon, From XML schema to relations: a cost-based approach to

XML storage, Proc. of ICDE Conf., p. 64 (2002).
12. J. Shanmugasundaram, K. Tufte et al., Relational databases for querying XML documents: limitations and

opportunities, Proc. of VLDB Conf., pp. 302–314 (1999).
13. D. Lee and W. W. Chu, CPI: constraints-preserving inlining algorithm for mapping XML DTD to relational

schema, Journal of Data & Knowledge Engineering 39(1), 3–25 (2001).
14. R. Bourret, C. Bornhövd, and A. P. Buchmann, A generic load/extract utility for data transfer between XML

documents and relational databases, Proc. of WECWIS Conf., p. 134 (2000).
15. H. Sun, S. Zhang, J. Zhou, and J. Wang, Constraints-preserving mapping algorithm from XML-schema to

relational schema, Springer-Verlag Heidelberg, Vol. 2480, pp. 193–207 (2002).
16. J. Melton, Advanced SQL: 1999 – Understanding Object-Relational and Other Advanced Features (Morgan

Kaufmann Publishers, 2003).
17. M. Klettke and H. Meyer, XML and object-relational database systems – enhancing structural mappings

based on statistics, Informal Proc. of WebDB Workshop, pp. 151–170 (2000).

TOWARDS A PRIVACY FRAMEWORK FOR
INFORMATION SYSTEMS DEVELOPMENT

Peter J. Carew and Larry Stapleton∗

1. INTRODUCTION

Privacy issues are an increasing concern in our society (Pedersen, 1999). As infor-
mation and communications technology (ICT) becomes increasingly pervasive, these con-
cerns are being intensified. Privacy is a fundamental human right (UN, 1948) that continues
to be violated by intrusive and unethical applications of technology in society and the work-
place (cf. Baase, 2003). However, in spite of the ethical concerns and the pivotal role ICT
plays in gathering and processing information on people, privacy remains a misunderstood
and undervalued concept in ISD.

Although literature addresses many ethical issues associated with intrusive technolo-
gies, privacy has received very little attention from ISD researchers, with mainstream lit-
erature treating privacy as analogous to data security. Palen and Dourish (2003) note that
social and design studies of technology often unknowingly conflate the many functions
of privacy and consequently fail to provide sufficient analytical treatment. Current ISD ap-
proaches are failing to recognise the significance of privacy issues that affect those involved
in the development and deployment of information systems. Privacy violations result in a
plethora of negative side effects (e.g. stress, anxiety, resistance) and these may be con-
tributing to the high failure rate of ISD projects.

Although traditional ISD approaches have long recognised the importance of the so-
cial element, they continue to focus upon technical issues (Stapleton, 2001). Most method-
ologies neglect the social interaction and dynamics inherent in the development and de-
ployment process, creating serious problems for the ISD process. Social interaction is a
core aspect of ISD, with many processes requiring interaction between various parties.
Requirements elicitation (interviews, observation, retrospection, etc.), prototyping, feed-
back, walkthroughs and numerous other ISD processes require intensive social interac-
tion between analysts, users and other stakeholders. However, there are numerous privacy
ramifications pertinent to such interactions, and these ramifications bear heavily upon the

∗ ISOL Research Centre, Waterford Institute of Technology, Ireland.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 77

78 P. J. CAREW AND L. STAPLETON

success or failure of ISD. For example, individuals will not freely and openly participate in
a process, which not only is itself intrusive (examining their work, lives, characters, skills,
etc.) but also results in a system that may negatively affect their jobs. Resistance will result,
and can include overt or covert behaviours such as conflict, sabotage, coercion, avoidance
and withholding or distorting information (Hirschheim and Newman, 1988). Superficially
these behaviours can seem irrational and are often treated as such in the literature (see
for example ideas of the irrationality of user resistance to change). However, according to
a rationality based upon privacy, these behaviours become very rational. The satisfaction
of privacy needs leads to effective individual and group functioning (Pedersen, 1999). By
implication, ignoring privacy issues during ISD will create serious problems.

Palen and Dourish (2003) advocate the incorporation of privacy rationalities into sys-
tems analysis and design. However, while their central concern is with how privacy is
conducted in the presence of technology, this can be taken a step further to include the ISD
process itself, and not just the product of that process. Palen and Dourish (2003, p. 130)
note “fuller treatment of privacy and technology merits a deeper examination of this back-
ground [privacy theory].”

This paper expands upon the work of Palen and Dourish, and supplies a fuller treat-
ment of privacy in ISD. It explores the theoretical roots of privacy and a number of related
ethical issues posed by technology are highlighted. In particular this paper notes the ab-
sence of any coherent framework into which privacy issues relating to ISD are organised.
In response to this, a preliminary conceptual framework for interpreting privacy in ISD is
presented and subsequently applied to five ISD methodologies in order to provide a rea-
sonably comprehensive assessment of the current state of ISD research in this area.

The next section provides the reader with a brief overview of the key dimensions of
privacy as set out in the literature. This provides a basis for the rest of the paper where
implications for ISD are set out, and methodologies are assessed.

2. PRIVACY: A REVIEW OF THE LITERATURE

The concept of privacy appears in the literature of several disciplines. There is no
universal definition for privacy, and numerous authors have highlighted the difficulties in
producing such a definition (cf. Burgoon, 1982; Leino-Kilpi, et al., 2001; Newell, 1998).
Theorists argue over whether privacy is a condition, a process or a goal (Newell, 1998).
While privacy may be a difficult concept to characterise concisely, the various definitions
do have substantial commonalities. One group of definitions emphasise seclusion, with-
drawal, and avoidance of interaction with others. The second group puts more emphasis on
the control individuals have over their lives.

There are a number of formal models of privacy in the literature, but the theories of
Alan Westin (e.g. Westin, 1970) and Irwin Altman (e.g. Altman, 1976) are considered au-
thoritative. Their theories and ideas have stood the test of time and have been the basis
of research for many subsequent authors (Margulis, 2003; Pedersen, 1999, 1997; Petro-
nio, 1991). The remainder of this section provides an aggregated overview of some of
the core aspects of privacy compiled from the most influential literature. These core as-
pects set out the theoretical background against which any ISD privacy theory must be
constructed.

TOWARDS A PRIVACY FRAMEWORK FOR ISD 79

2.1. Privacy Types, Functions and Mechanisms

People experience and desire several states, or types, of privacy. These include the four
identified by Westin (1970): solitude, intimacy, anonymity and reserve. Solitude means to
be alone and free from observation by others. Intimacy refers to being alone with a small
group to the exclusion of others (e.g. family), and concerns close relationships. Anonymity
refers to being unrecognised in a public place – to be inconspicuous and blend into the
crowd. Reserve is based on a desire to limit disclosures to others. Pedersen (1997, 1999)
extended Westin’s model by adding isolation (i.e. using physical distance to be alone) and
splitting intimacy into intimacy with family and intimacy with friends. Burgoon (1982)
identified the following broad dimensions of privacy: social, physical, informational and
psychological.

Privacy functions refer to why individuals seek privacy. Westin (1970) identified four
functions of privacy: personal autonomy, emotional release, self-evaluation, and limited
and protected communication. Personal autonomy relates to independence and self-identity.
It is the desire to avoid being manipulated, dominated or exposed by others. Emotional re-
lease refers to freedom from the tensions of social life, and being able to deviate from
social norms, roles, rules and customs safely. Self-evaluation refers to integrating experi-
ence into meaningful patterns, and the opportunity to plan and assess future actions (i.e.
self-reflection and assessment). Limited and protected communication provides the oppor-
tunity to share personal information with trusted others. Altman (1976) describes three
functions of privacy: interpersonal, the interface to the self and the social world, and self-
identity. Pedersen (1997, 1999) empirically identified five basic functions of privacy: con-
templation, autonomy, rejuvenation, confiding and creativity. From a systems point of view,
Newell (1998) argues that privacy provides an opportunity for restabilisation, system main-
tenance (i.e. healthy physiological and cognitive functioning) and system development (i.e.
towards autonomy and self-actualisation). Individuals may seek to protect their privacy to
avoid e.g. embarrassment, harassment, ridicule, shame, scrutiny or discrimination (Shapiro
and Baker, 2001).

Behavioural mechanisms are used to achieve a desired level of privacy. These mech-
anisms include verbal, paraverbal (e.g. tone), non-verbal (e.g. gestures), environmental
behaviour (e.g. personal space and territoriality), and cultural norms and customs (Alt-
man, 1976; Pedersen, 1999). Personal space is an invisible zone surrounding the human
body, separating people from one another (Leino-Kilpi, et al., 2001). Territoriality refers to
a perceived ownership of areas, objects, knowledge or status. These privacy mechanisms
function as an integrated system, supporting and substituting each other as appropriate
(Altman, 1976).

2.2. Circumstance, Individuality and Culture

Privacy interests vary in both content and magnitude across situations and individ-
uals. What may be trivial to one individual may be significant to another (Shapiro and
Baker, 2001). Relevant personal factors include the individual’s need for privacy, personal
attractiveness, interpersonal skills, personality variables, and ability to use privacy con-
trol mechanisms effectively (Pedersen, 1999). Personality variables include extraversion,
emotional stability, agreeableness, openness to experience, and conscientiousness (Zweig
and Webster, 2003). Gender also can impact on privacy preferences (Newell, 1998; Peder-

80 P. J. CAREW AND L. STAPLETON

sen, 1999). Some cultures have a stronger preference for privacy and more privacy needs
than others (Kaya and Weber, 2003). The need for privacy is universal but manifestations
and privacy mechanisms are culturally specific (Margulis, 2003; Newell, 1998). For exam-
ple, local culture has been shown to affect people’s perceptions of crowding (Hall, 1966).

2.3. Intrusion and Privacy Violation

Intrusion essentially is when the desired level for privacy is higher than the actual level
being enjoyed (Altman, 1976). Altman’s process oriented model for social interaction is
useful for further describing what is meant by intrusion or privacy violation. In Altman’s
theory, privacy has five properties: units of privacy, the dialectic nature of privacy, the
non-monotonic nature of privacy, privacy as a boundary control process, and privacy as a
bi-directional process (Altman, 1976). Units of privacy refer to the fact that privacy applies
at the individual and group levels, and differences exist in privacy dynamics for various
social units (Altman, 1976; Margulis, 2003). The units of privacy can be person-to-person,
person-to-group, group-to-person or group-to-group (Leino-Kilpi, et al., 2001). The dialec-
tic nature of privacy refers to the fact that individuals continuously change their desire for
interpersonal contact. There are two opposing forces at work at all times – one drawing
individuals together, and another pushing them apart. Privacy can, thus, be viewed as a
dynamic, dialectic process where the need for solitude and the need for interpersonal con-
tact are constantly in opposition. The desired level of privacy depends on which of the two
opposing forces is strongest at a given time. The non-monotonic nature of privacy refers
to the fact that there is an optimal level of privacy at a given time, and people can have
too much privacy (e.g. social isolation) or too little privacy (e.g. crowding). Privacy as a
boundary regulation process offers the notion of a flexible barrier between the self and
non-self, which can be opened or closed depending on circumstance (Altman, 1976; Petro-
nio, 1991). Finally, privacy can be viewed as a bi-directional process, involving controlling
inputs from others and outputs to others.

In terms of Altman’s model, intrusion therefore depends on a number of factors. Dif-
ferent social units have different privacy needs (e.g. family, work group, individual), these
needs change frequently, and it is possible to have too much or too little privacy. While
too much interaction may be experienced as an invasion of privacy, too little may be expe-
rienced as loneliness or alienation (Pedersen, 1999). Being forced to interact (i.e. receive
input or provide output) beyond the level of interaction desired in a given circumstance
is an intrusion as the forced participation implies an attempt to break through the flexible
mental barrier (cf. Altman, 1976). The ability to control interactions is essential for privacy
management.

Technology has long been recognised as posing a significant threat to the privacy of
personal data. The following section looks at some of the privacy related ethical issues
in the information society. It shows how ICT is shaping society and the workplace and
highlights some dilemmas facing the ethical ISD professional.

3. TECHNOLOGY, PRIVACY VIOLATION AND ETHICAL ISSUES

The human-centred and soft-systems traditions of ISD have an underlying belief that
new technologies should be for the benefit of all people and all societies (Gill, 1996; Check-

TOWARDS A PRIVACY FRAMEWORK FOR ISD 81

land, 1999). Technology design should, therefore, be concerned not only with technical
feasibility (i.e. can we do it?) but also with a social desirability (i.e. do we want to do it?).
Privacy is one human factor that must be considered in this context.

Privacy concerns are being fuelled by increasingly intrusive and pervasive technolo-
gies in society and the workplace. For example, employers can monitor employees’ email,
web usage, keystrokes, telephones, transactions, computer screens and location. Monitored
employees experience a myriad of negative effects including stress, low morale, anxiety,
depression, decreased job satisfaction, lack of involvement, paced work, health problems,
lack of control, fear over job loss and a decline in work relationships (Oz, et al., 1999;
Ariss, 2002). In addition monitored workers are likely to have higher turnovers, take addi-
tional sick days, and work to rule. Furthermore, employees do not passively accept surveil-
lance technologies and may attempt to resist and distort information gathering. Numerous
analysts argue that many privacy intrusions are immoral, unnecessary, excessive and self-
indulgent voyeurism (cf. Stone and Stone-Romero, 1998).

For many organisations, human-centred issues like privacy are not compatible with
organisational life where a competitive, lean rationality and shareholder value are empha-
sised (Gill, 1996; Brandt and Cernetic, 1998). However, economic calculations frequently
fail to place sufficient value on social issues, human capital and the environment. Organisa-
tions do have obligations to their stakeholders and shareholders, but they also have ethical
responsibilities for protecting the privacy, welfare and dignity of their employees (Stone
and Stone-Romero, 1998). Privacy is a fundamental human right, recognised by the United
Nations (UN, 1948). Treating it as anything but a human right is globally established as
unethical behaviour. A balance should therefore be sought between an employer’s legiti-
mate business interests and the employee’s legitimate privacy concerns (Ariss, 2002). This
includes the ISD process.

The following section presents a developmental framework for analysing privacy dy-
namics in ISD. This provides a basis for assessing individual and group privacy needs and
factors in the context of information systems development and deployment within organi-
sations.

4. A CONCEPTUAL FRAMEWORK FOR PRIVACY IN ISD

This section presents a framework for evaluating and interpreting privacy issues in
ISD. The framework includes various privacy factors from the literature that may affect
an ISD project. Some factors have been renamed or slighted redefined to correspond more
closely to an ISD context (e.g. organisational focus as opposed to a public focus). The
framework is structured into four dimensions containing related privacy factors. Table 1
provides a brief overview of all factors in the framework.

The four dimensions have been taken from Burgoon (1982): physical, social, psycho-
logical and informational. The physical dimension refers to the environment (e.g. work-
space, office, etc.) where an individual may seek physical solitude. Social privacy refers to
the freedom to withdraw from, or enter into, interactions with others. Psychological pri-
vacy is closely related to the social dimension, but refers only to the individual psyche.
Finally, informational privacy refers to an individual’s ability to control personal informa-

82 P. J. CAREW AND L. STAPLETON

tion. These dimensions are not unambiguously discrete, and there is some overlap between
them. However, they provide welcome structure for classifying the myriad of privacy fac-
tors found in the literature. Each factor has been classified as being: a privacy type (T), a
privacy function (F) or a contributing privacy factor (C). Some contributing factors have
been identified as (mainly) local to one of the four dimensions whereas others have global
significance, affecting all aspects of privacy. The reader should also note how the table
anchors each aspect of privacy in the privacy literature, providing details of the sources of
each aspect.

Figure 1 provides a graphical representation of the framework. Working from the cen-
tre out, the figure shows: the higher order psychological functions of privacy; the four main
dimensions of privacy; the types of privacy experienced or desired for each dimension; fac-
tors contributing to privacy for each dimension (local); and the outer concentric rings show
the global contributing privacy factors. In order to ascertain the levels to which current ISD
methodologies consider privacy the following section applies the framework to a selection
of ISD methodologies.

Table 1. Overview of privacy framework factors

TOWARDS A PRIVACY FRAMEWORK FOR ISD 83

Table 1. (continued)

5. APPLYING THE FRAMEWORK TO FIVE ISD METHODOLOGIES

In this section, the conceptual privacy framework is applied to the following method-
ologies: UML/UP (OO), SSADM (structured), SSM (soft), Multiview (contingency) and
ETHICS (participatory, socio-technical). The methodologies were chosen so as to provide
ample coverage of both hard and soft approaches to ISD.

5.1. Method

Jacobson et al. (1999) was chosen as representative for UML/UP. For the remaining
methodologies, Avison and Fitzgerald (1995) provide comprehensive overviews. These
overviews were supported by one additional authoritative source each: Weaver (1993) for

84 P. J. CAREW AND L. STAPLETON

Figure 1. A privacy framework for information systems development.

SSADM, Checkland and Scholes (1990) for SSM, Avison and Wood-Harper (1990) for
Multiview, and Mumford (2000) for ETHICS. The study focussed on the main stages of the
methodologies, with particular attention to the human-oriented processes. While analysing
the methodologies, any stage or description that potentially support or neglect particular
privacy factors (types, functions, contributors) in the framework were noted. Note that
it is possible for a section to potentially support and neglect a particular privacy factor,
depending on how the process described is interpreted or undertaken. As the methodologies
are not primarily concerned with privacy, even superficial references to similar or related
concepts were noted. The results of the study are summarised in Table 2.

TOWARDS A PRIVACY FRAMEWORK FOR ISD 85

Table 2. Results of privacy analysis

5.2. Results

The Unified Modeling Language (UML) is a graphical modelling language for spec-
ifying systems from an object-oriented perspective. It is important to recognise that the
UML itself is not a methodology, but simply a modelling notation that provides a variety
of modelling diagrams but does prescribe underlying processes for developers to follow.
However, the authors of UML have offered the Unified Software Development Process (or
simply Unified Process) as a suitable methodology (cf. Jacobson, et al., 1999). As UML
is oriented towards specifying technical functionality, it does not consider any issues per-
tinent to people or privacy. Therefore, the Unified Process (UP) is considered in its stead.
In terms of the framework, UML/UP performs poorly, paying no discernable attention to
privacy issues. The Unified Process is still technically oriented, and does not consider the
social aspects of ISD in any depth. For example, Jacobson et al. (1999, p. 97) state that

86 P. J. CAREW AND L. STAPLETON

“management is responsible for non-technical risks.” So, according to UML/UP, develop-
ers have no responsibility for anything non-technical in the ISD process. Does this, for
example, preclude them from considering the ethical ramifications of the systems they are
developing or, indeed, how they develop them? This viewpoint is deeply disturbing, espe-
cially when presented by a popular, and widely taught, contemporary approach to ISD.

SSADM provides developers with detailed rules, activities, deliverables and guidance
for all stages of the project lifecycle. In terms of the privacy framework, SSADM only
appears to pay adequate attention to the organisational factors that appear in the global
dimension. Many other aspects appear to go against privacy, with users being unable to
control access, interactions, anonymity or personal information.

Soft Systems Methodology (SSM) is 7-stage/4-acitvities systems thinking approach
to handling real world, unstructured problems. It was originally organised into a seven
stage model and later developed into the four activities model (Checkland, 1999). In either
case the basic premises and approaches were much the same, focussing as they do upon
‘soft’ aspects of ISD. Under the privacy framework, SSM did not fare overly well, but this
may be partly due to its high-level description. It does address territoriality (conflicts, etc.)
to some extent, but its privacy related strengths seem to be in recognising organisational,
cultural and societal issues. Given Checkland’s deep concern with environmental issues
it is not entirely surprising to find that the global dimension of the privacy framework
receives most attention in SSM (Checkland, 1999).

Multiview is a 5-stage contingency approach that advocates flexibility in choice of
methodology and approach to suit heterogeneous situations. It considers both the human
and technical aspects, and is inherently non-prescriptive. Under the privacy framework
Multiview performs relatively well, but many factors are not considered. The approach
recognises: autonomy, control, territoriality, organisational, and environmental aspects (to
varying degrees). Unlike the other methodologies, privacy is addressed explicitly but only
in terms of data access and security.

ETHICS is a 6-stage methodology based on the participatory approach to information
systems development. It takes a socio-technical view that successful technology should
fit closely with social and organisational factors. ETHICS performs respectably under the
framework, but many privacy factors are not addressed. The methodology recognises: au-
tonomy, control, territoriality, personal characteristics, organisational factors and the need
for individual growth and development.

Figure 2 shows a high-level classification of the five methodologies based on the pri-
vacy framework. No methodology appears to consider physical or informational privacy
sufficiently (note that data security alone does not sufficiently address informational pri-
vacy). This is significant as technology is a major driver of many privacy violations e.g.
surveillance systems that gather vast amounts of personal information and remove op-
portunities for going unnoticed. It is apparent that privacy is a complex, deeply sensitive
human-centric issue that has largely been overlooked by ISD methodologies.

6. LIMITATIONS OF STUDY

There are a number of limitations to the critique of the methodologies presented. None
of the methodologies reviewed is primarily concerned with the complex notion of privacy

TOWARDS A PRIVACY FRAMEWORK FOR ISD 87

Figure 2. Summarised assessment of methodologies under the privacy framework.

as embodied by the framework. Also, with the exception of SSADM, none of the method-
ologies are overly prescriptive, allowing for some degree of flexibility. Therefore, although
the methodologies don’t explicitly include or consider privacy, they do not fundamentally
preclude it either. Nevertheless, the fact that privacy is not mentioned or addressed at all
(except by Multiview in terms of data security) is of some concern. The results presented
in Table 2 are also necessarily subjective and compiled from different texts. However,
subjective feature-based analyses do exist in the literature (cf. Galliers, 1992; Avison and
Fitzgerald, 1995, p. 465). Also, comment was passed only on factors that showed reason-
ably strong orientation in the analysis results. Finally, it is readily apparent that the privacy
framework presented here is still in a developmental state. In spite of these limitations it is
reasonable to say that none of the reviewed methodologies address privacy sufficiently.

7. DISCUSSION AND CONCLUSIONS

Privacy is often misunderstood to be synonymous with secrecy and data security. How-
ever, privacy is mainly a social control process that serves a myriad of higher-order social
and developmental functions. Organisations should try to balance their need for informa-
tion against employees’ expectations of privacy (Stone and Stone-Romero, 1998). Through
doing so, they can realise numerous indirect benefits in terms of ICT (e.g. reduced user re-
sistance and ISD failure) and human capital (e.g. improved creativity).

It is apparent that little is known of privacy dynamics in ICT and especially ISD.
The future direction of this research involves a field study using an instrument based on a
revised form of the framework presented in this paper. The ultimate goal of this work is to
develop a set of privacy-based rationalities for improving the ISD process, making it both
more successful and humanitarian. In the meantime, ISD professionals and researchers can
use the preliminary framework presented here to assess appropriate methods and practices
as regards their privacy orientation.

In conclusion, this paper has highlighted the importance of privacy in the context
of ISD. Privacy theory was briefly reviewed and a provisional conceptual framework for
interpreting privacy in ISD presented and applied to five ISD methodologies. The results
indicate that privacy is not being considered as an important socio-technical factor in ISD,
and the serious ramifications of this were highlighted. The ongoing research aims to redress
this major gap in the ISD literature.

88 P. J. CAREW AND L. STAPLETON

REFERENCES

Altman, I., 1976, Privacy: A conceptual analysis, Environment and Behavior 8(1):7–29.
Ariss, S. S., 2002, Computer monitoring: benefits and pitfalls facing management, Information & Management

39(7):553–558.
Avison, D. E., and Fitzgerald, G., 1995, Information Systems Development: Methodologies, Techniques and Tools,

Second Edition, McGraw-Hill, London.
Avison, D. E., and Wood-Harper, A. T., 1990, Multiview: An Exploration of Information Systems Development,

Blackwell, Oxford.
Baase, S., 2003, A Gift of Fire: Social, Legal and Ethical Issues for Computers and the Internet, Second Edition,

Prentice Hall, NJ.
Brandt, D., and Cernetic, J., 1998, Human-centred approaches to control and information technology: European

experiences, AI & Society 12:2–20.
Burgoon, J., 1982, Privacy and communication, in: Comms Yearbook 6, M. Burgoon, ed., Sage, CA, pp. 206–249.
Checkland, P., and Scholes, J., 1990, Soft Systems Methodology in Action, Wiley, Chichester.
Checkland, P., 1999, Soft Systems Methodology: A 30-Year Retrospective, Wiley, Chichester.
Galliers, R. D., 1992, Choosing information systems research approaches, in: Information Systems Research,

R. Galliers, ed., Blackwell, Oxford, pp. 144–162.
Gill, K. S., 1996, The human-centred movement: The British context, AI & Society 1996(10):109–126.
Hall, E. T., 1966, The Hidden Dimension, Doubleday, New York.
Hirschheim, R., and Newman, M., 1988, Information systems and user resistance: Theory and practice, The

Computer Journal 31(5):398–408.
Hirschheim, R., and Newman, M., 1991, Symbolism and information systems development: myth, metaphor and

magic, Information Systems Research 2(1):29–62.
Jacobson, I., Booch, G., and Rumbaugh, J., 1999, The Unified Software Development Process, Addison-Wesley,

MA.
Kaya, N., and Weber, M. J., 2003, Cross-cultural differences in the perception of crowding and privacy regulation:

American and Turkish students, Journal of Environmental Psychology 23(3):301–309.
Leino-Kilpi, H., Valimaki, M., Dassen, T., Gasull, M., Lemonidou, C., Scott, A., and Arndt, A., 2001, Privacy: A

review of the literature, International Journal of Nursing Studies 38(6):663–671.
Margulis, S. T., 2003, On the status and contribution of Westin’s and Altman’s theories of privacy, Journal of

Social Issues 59(2):411–429.
Mumford, E., 2000, A socio-technical approach to systems design, Requirements Engineering 5:125–133.
Newell, P. B., 1998, A cross-cultural comparison of privacy definitions and functions: A systems approach, Jour-

nal of Environmental Psychology 18(4):357–371.
Oz, E., Glass, R., and Behling, R., 1999, Electronic workplace monitoring: What employees think, Omega

27(2):167–177.
Palen, L., and Dourish, P., 2003, Unpacking “privacy” for a networked world, Proceedings of the conference on

Human factors in computing systems, Ft. Lauderdale, Florida, 129–136.
Pedersen, D. M., 1997, Psychological functions of privacy, Journal of Envir. Psych. 17(2):147–156.
Pedersen, D. M., 1999, Model for types of privacy by privacy functions, Journ. of Envir. Psych. 19(4):397–405.
Petronio, S., 1991, Communication boundary management: A theoretical model of managing discourse of private

information between marital couples, Communication Theory 1(4):311–335.
Shapiro, B. and Baker, C. R., 2001, Information technology and the social construction of information privacy,

Journal of Accounting and Public Policy 20(4–5):295–322.
Stapleton, L., 2001, Information Systems Development: An Empirical Study of Irish Manufacturing Firms, Ph.D

Thesis, University College Cork.
Stone, D. L. and Stone-Romero, E. F., 1998, A multiple stakeholder model of privacy in organizations, in: Man-

agerial Ethics: Moral Mgmt. of People and Processes, M. Schminke, ed., Erlbaum, NJ, pp. 35–39.
UN, 1948, United Nations Universal Declaration of Human Rights; http://www.un.org/Overview/rights.html.
Weaver, P. L., 1993, Practical SSADM Version 4, Pitman, London.
Westin, A., 1970, Privacy and Freedom, Atheneum, New York.
Zweig, D., and Webster, J., 2003, Personality as a moderator of monitoring acceptance, Computers in Human

Behavior 19(4):479–493.

IS DEVELOPMENT AS THE MUTUAL ADAPTATION
OF TECHNOLOGY AND BUSINESS PROCESS

Bendik Bygstad∗

1. INTRODUCTION

Information systems development is a truly innovative process. Sometimes it is fo-
cused solely on constructing a high quality software product, but often it is part of a busi-
ness change, triggered by external or internal pressures. In the latter case, we may analyse
the development as a socio-technical innovation, creating both a software product and a
redesigned business process.

How should these two innovation processes be managed? Usually, they are organised
in three main steps. First, the business process is analysed and redesigned, and a require-
ments specification is written to determine the functionality of the software system. Then
the software system is designed and constructed, controlled within a software development
framework. And lastly, the information system is implemented into the business process,
along with the training of users.

This is not always a good strategy. It often leads to misalignments between the organ-
isational context and delivered technology, because both the organisation and the technol-
ogy may change during the project (Leonard-Barton and Sinha, 1993) and because it is
difficult to specify the requirements at an early stage (Jacobson et al., 1999). The real inno-
vation of an IS project is not the software, but the working solution after implementation
(Leonard-Barton, 1988). This implies that it is hard to predict the organisational impact of
a new information system. It should be developed and implemented in a way that allows
for a stepwise learning and adaptation process. Therefore, from a theoretical perspective,
a better form is mutual adaptation (Leonard-Barton 1988; Majchrzak et al., 2000), where
the business process design and the software development are dynamically coupled, and
the implementation process is fully integrated.

While theoretically attractive, the mutual adaptation approach is not well understood
(Majchrzak et al., 2000) and challenging to achieve in practice (Giaglis 1999). Therefore,
there is a need to study this phenomenon over time in order to analyse its temporal and man-

∗ The Norwegian School of IT, Oslo, Norway, Bendik.Bygstad@nith.no.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 89

90 B. BYGSTAD

agement aspects. This paper explores mutual adaptation in modern, iterative ISD projects,
addressing the following three research questions:

• What are the dynamics of mutual adaptation in ISD projects?
• To what extent is mutual adaptation possible to plan and control?
• Should planned mutual adaptation be part of a development project, or is it outside

the reasonable scope of an ISD project?

The rest of the paper is structured as follows. In Section 2 the key concepts are dis-
cussed. The research method is presented in Section 3. In Section 4 the case is presented.
Findings are discussed in Section 5, while Section 6 briefly concludes.

2. KEY CONCEPTS: MUTUAL ADAPTATION AND ORGANISATIONAL
MECHANISMS

2.1. Mutual Adaptation

Mutual adaptation between technology and organisation is necessary because there
will always be misalignments between a technology and a business environment, which
must be solved, either by changing the technology or the environment – or preferably both
(Leonard-Barton, 1988). Mutual adaptation happens both in the development and in the
implementation of information systems. Changing the organisation means to change its
formal structure or its overall work process or work practices. Changing the technology
means to change substantial attributes of the software. Some key features of mutual adap-
tation are:

The mutual adaptation is a dynamic process. Because of the integrated nature of this
process, it is a mistake to separate the creation of the product from the implementation. The
mutual adaptation is an ongoing process, fuelled by continuous technological and business
change (Leonard-Barton, 1988). A change in the organisation may trigger a change in the
software, which in turn may trigger a new organisational change. Thus, while a require-
ments specification represents a one-way process (from the organisation to the technology)
and the organisational implementation of technology represent a one way process in the
opposite direction (from technology to the organisation) – mutual adaptation is a two-way
process.

Mutual adaptation is part of the power struggle in any organisation, and is connected
more to work practices than to formal structures. In IS related change projects, a formal
approach of introducing a new organisation chart without changing the work practices,
has often proved unsuccessful. Thus, mutual adaptation requires careful analysis of the
congruence between existing and desired work practices (Brynjolfson et al., 1997).

Mutual adaptation includes the creation and transfer of knowledge, by establishing
strong ties between two different communities of practice (Garrety et al., 2001). In devel-
opment projects, the IT people need to understand the business issues, and the business
people have to understand the capabilities and constraints of the technology. The solution
is often negotiated around “boundary objects” (for example user interfaces), which both
communities try to influence.

ISD AS THE MUTUAL ADAPTATION OF TECHNOLOGY AND BUSINESS PROCESS 91

Mutual adaptation is emergent, in the sense that is it difficult to plan in detail. The best
solution is not an intellectual construction (like a written specification), but a negotiated
situation. Thus, a purely design-oriented approach, as presented by (Jacobson et al., 1995),
is less likely to succeed. However, timing is crucial, because there is usually a relatively
short “window of opportunity”, where both developers and users are willing to invest the
effort to change the work process and the technology (Tyre and Orlikowski 1994). Thus, the
mutual learning and adjustment must happen before both sides lose resources and interest.

2.2. Different Views on the Question of Controlling Mutual Adaptation

Leonard-Barton (1988) found that mutual adaptation should be controlled through
successive large and small cycles of alignment. She recommended that developers took
some responsibility for the user adaptations, and that the business people should share
some of the uncertainty and risk associated to new technology. She also found that the
mutual nature of change required that strategic choices should be driven not only from top
management, but also from the knowledge core of the organisation.

In contrast, the concept of technological drift was introduced to suggest that the mutual
adaptation cannot be planned and managed (Ciborra, 2000). Technological drift describes
a discrepancy between plan and outcome, in respect of the implementation of information
technology, in which the organisational implementation of technology is basically unpre-
dictable and unmanageable. Ciborra asserts that the solution cannot be more managerial
control, which has proven to be part of the problem, because more control will lead to
more side-effects.

The software engineering research has not addressed the question directly, but as-
serts implicitly that mutual adaptation can be planned and managed. The most well-known
mechanisms are evolutionary prototyping, and iterative and incremental delivery (Boehm,
1988; McConnell, 1996). These mechanisms are integrated in current software engineer-
ing frameworks like Rational Unified Process (Jacobson et al., 1999), OPEN (Henderson-
Sellers and Unhelkar, 2000) and Microsoft Solutions Framework (Microsoft, 2001). Al-
though these frameworks are primarily designed to reduce technical risk, they also address
the risk of misalignment between the organisation and the software solution. Therefore,
iterative and incremental IS projects using these frameworks represent an interesting arena
to study this mutual adaptation, because they allow both the developers and the business
people to learn, and to act on new learning, during the process.

2.3. Organisational Mechanisms for Mutual Adaptation

If mutual adaptation can be controlled, some kind of management intervention is
needed. Several mechanisms have been suggested, like project teams, steering groups,
stakeholder webs (Coakes and Elliman, 1999), change agents (Markus and Benjamin,
1997), relationship managers, and organisational mechanisms to support user innovations
(Nambisan et al., 1999). To succeed in achieving mutual adaptation an organisational
mechanism should at least satisfy three aspects:

• Facilitate learning between different knowledge communities: The emergent na-
ture of mutual adaptation requires that both groups learn from each other (Leo-
nard-Barton, 1988).

92 B. BYGSTAD

• Allow the creation of new knowledge: The dynamic nature of mutual adaptation
requires that both sides develop a thorough understanding of each others domain
areas and constraints, to be able to create new solutions (Garrety et al., 2001).

• Provide the necessary authority to actually implement the necessary changes in
both processes: If this is not the case, the result may be good ideas, but no mutual
adaptation, which is dependent on changed work practices (Brynjolfson et al.,
1997).

3. RESEARCH APPROACH

The challenge of mutual adaptation was investigated empirically through a longitudi-
nal case study of a software development project, aimed at supporting the financial audit
process at the Norwegian Office of the Auditor General. The research approach was Lon-
gitudinal Process Research (LPR), which aims to study organizational change over time,
through intensive research in the actual context (Pettigrew, 1985, Ngwenyama, 1998). LPR
focuses on building theories strongly embedded in the context of study. Important criteria
for data collection are (Ngwenyama, 1998):

• Ongoing engagement with the research site, to observe changes over time.
• Participant observation, to contextualize and make sense of observations.
• Multiple data sources, to record different interpretations of events, and to ensure

validity of findings.

The case, a software development project using the iterative and incremental software
process Microsoft Solutions Framework, was researched for 16 months, using several tech-
niques for data collection: An initial workshop with the most important stakeholders was
held to construct a time line for the project. Project managers, developers and users were
interviewed at three intervals. Project meetings were observed to understand how problems
were conceptualised and how decisions were made, and a vast amount of project documen-
tation (plans, models, reports) was collected. Data was coded following the guidelines of
Miles and Huberman (1994). After the videotaped interviews were summarized and regis-
tered into an Atlas database, texts were coded with in vivo codes, using only domain terms.
The large volume of project documentation was coded the same way.

Ngwenyama (1998) suggests three modes for data analysis: Comprehensive analysis
helps to identify underlying structures and patterns of the organizational process. Tempo-
ral analysis helps contextualizing findings by placing events and situations in a narrative
structure. And member verification ensures that the case description and researcher’s inter-
pretation are considered correct and meaningful to the organizational actors.

The case was analyzed in the following steps.
A time line was constructed, documenting participants and technology in each itera-

tion. Then each iteration of the project was analyzed in detail, while in parallel looking for
repeating patterns and mechanisms. Looking for mutual adaptation, related terms were re-
coded, and analysed. Mutual adaptation was coded to situations, as described in Section 2,
where mutual learning between business people and IS people were observed, where the
creation of new knowledge was documented, or where there was a direct or indirect change
of process structure.

ISD AS THE MUTUAL ADAPTATION OF TECHNOLOGY AND BUSINESS PROCESS 93

The principle of member verification (Ngwenyama, 1998) was followed. After the ini-
tial workshop with important stakeholders, the timeline with important events and stake-
holders was sent to the participants for verification. After a year studying the project, a
preliminary case description was written, and commented by stakeholders. And lastly, a
validation meeting was held with project managers, developers, auditors and managers,
assessing and commenting on the final case description.

4. THE CASE STUDY

4.1. Business Context

The Office of the Auditor General (OAG) is instituted in the Norwegian Constitution.
Its main tasks are to audit the central government, ministries and their agencies’ accounts,
and to monitor the ministers’ administration of national interests in state-owned compa-
nies and banks. The OAG is based in Oslo, where most of the 450 employees are working.
The majority of employees are auditors. Auditors perform three types of audit: Financial
audit, corporate control and performance audit. The project described in this paper devel-
oped a new IT solution for the financial audit, which consists, somewhat simplified, of the
following three main steps:

• Planning the audit: Receive budget and accounts for the entity. Then classify into
account areas, decide materiality limits and assess risks.

• Execute the audit (visiting the audited entity): Produce and follow audit pro-
gramme, and document the findings.

• Reporting: Document conclusions for assessment of entity.

In 1998, a Methodology Group consisting of financial auditors was appointed to im-
prove and standardize the financial audit methodology. Important elements in the method-
ology were which steps to perform, and defining the areas and scope of the use of individual
judgement. New process oriented standards were implemented in 1999, but it was hard to
get acceptance in the organisation. The main reasons for this were assumed to be strong
local auditing cultures in the different departments, and lack of IS support.

4.2. The PROSIT Project (“Process Oriented IT Audit Support”)

A feasibility study conducted by auditors and the IT manager in 1998 produced a
requirements specification. In 1999 it was decided to develop a tailor-made system. The
main objectives for the project were to:

• Provide a modern and efficient tool to support a standardized audit process
• Support management control of resource use and audit quality
• Support organisational learning through making audit report screens available for

the whole organisation

As their process framework the IT department had chosen the Microsoft Solutions
Framework (MSF), an iterative and incremental framework (Microsoft, 2001). The project
organisation was designed to align the organisation and the development, with a strong

94 B. BYGSTAD

management and quality focus. An audit department was appointed to be owner of the
system, and the other audit departments were represented both in the steering group and the
Methodology Group. In March 2000 the project was organised according to the principles
of MSF. Six teams were established; customer, user, release, process, development and
QA teams, each of them with a team leader. Following MSF, the team responsibilities and
tasks were described in detail, and the teams were empowered to make decisions within
their areas. The solution was developed through five iterations, from March 2000 to July
2002 when the system was set into production. Iterations six and seven were carried out
from July 2002 to June 2003. The next section analyses these seven iterations, from a
mutual adaptation perspective.

4.3. Case Findings and Analysis

Table 1 summarises the case findings, structured according to the MSF iterations. The
analysis focuses on the mutual adaptation between the business organisation and the ISD
project, and the role (and direction) of the organisational, mediating mechanism. In partic-
ular, communication between the two main groups, the creation of new knowledge and the
authority of the mechanism is investigated. The content of Table 1 will be described and
discussed in the next section.

4.3.1. Iterations 1 and 2

The first iteration concentrated on detailing the specification. Several extensive work-
shops were held, including up to 40 user representatives, selected by the departments. The
specification needed much detailing, and there were long, open workshops. Coordinating
the detailing of use cases, design of screens, and programming and testing of these was
difficult with many inexperienced participants. The second iteration developed most of the
functionality for audit planning, but the project experienced both cooperation and technical
problems.

Facilitating mutual learning. The broad workshop approach was chosen to establish
a knowledge platform for both the auditors and developers. A member of the Steering
Committee commented: “The situation was challenging. We did not really know what we
wanted, because we had never seen such a system before. On the other hand, the developers
did not understand the audit methodology.”

Unfortunately, the approach did not work very well, partly because the complexity
of the tasks was too great to handle for the inexperienced participants. Also, some line
managers did not prioritise the workshops.

Allowing for knowledge creation. As planned, the functionality for audit planning
was programmed and assessed. The quality of the GUIs was regarded as being too low,
and the specification needed more detailing

Authority to influence on the processes. At this stage, the focus of the project was
mainly on technology related issues. Thus, several decisions concerning the database so-
lution and the design of GUIs were taken. Audit process issues were not really addressed,
but it was seen that the audit process description was not detailed enough for the PROSIT
design.

ISD AS THE MUTUAL ADAPTATION OF TECHNOLOGY AND BUSINESS PROCESS 95

Table 1. Adaptation in the PROSIT project

At the end of iteration 2 the steering committee was worried. The cost was higher
than estimated, productivity and quality lower, and the cooperation between auditors and
developers was not tight enough. In a critical evaluation report a number of measures were
specified: The process was given more structure, and the budget was increased. Also, the
Methodology Group was drawn heavier into the project.

4.3.2. Iterations 3 and 4

The objective for the third iteration was to develop a tool and methodology for risk
and priority, and to provide the interface to the audit accounts. The objective in the fourth
iteration was to produce tools for report findings. A number of successes appeared.

First, the (MSF) roles worked much closer in this iteration. In the first iteration the
user team had defined the requirements, and handed these over to the architect, who then
had detailed the architecture for the developers. This created many misunderstandings and

96 B. BYGSTAD

delays. Now, the teams worked closer, the auditors often sitting together with developers
and prototyping.

Second, the use case descriptions were structured and standardized. From these, the
screen designs were solved nicely; showing the steps in the auditing process in the left
frame of the screen. This GUI structure allowed for a stronger link between the audit
process and the PROSIT design.

Facilitating mutual learning. In these iterations the Methodology Group became
heavily involved in the workshops and prototyping. The developers got more detailed feed-
back on the process, while the auditors learned more about the complexities and constraints
of the technology.

Allowing for knowledge creation. Conceptually, the group was able to connect the
two processes on a practical level: They could translate the audit process into small steps
which could be modelled. Detailing the use cases, it was often discovered that the auditing
process was not sufficiently described. Commented one auditor: “The project has improved
the methodology in general, because many issues were not really specified. When this was
put into screens and procedural steps, these issues had to be decided. The methodology
committee then wrote a proposal, which was later decided by the executive group.”

Authority to influence on the processes. The initial role of the Methodology Group
was to structure the audit process, and it was later drawn into the project to provide infor-
mation for the requirements specification. This was indeed an ideal situation for mutual
adaptation. Members of the group worked in the project group, and influenced the project
greatly. At the same time, they were also in the position to change the rules of the audit
process.

4.3.3. Iterations 5 to 7

In the autumn 2001 all departments were asked to make their own implementation
plan, focusing on which problems were most important to solve. All users were taken
through a two-day course held in the departments. In particular, it was focused on audit
planning, risk assessment and accounting requirements. After a two month pilot period
PROSIT was set into full production in July 2002. Implementation was successful, despite
some resistance, mainly among very experienced auditors who felt the system narrowed
their space of individual judgement. During spring 2003 the system and organisation sta-
bilised. After the successful iteration 6, focusing on satisfying change requests, iteration 7
focused on management information.

Facilitating mutual learning. The extensive training activities in iteration 5 were,
in spite of some critics (as noted in the section above), a success for the project, cre-
ating awareness and acceptance in the audit departments. The project organisation was
reduced in size, but it was maintained during the first year of operation, working on it-
erations 6 and 7. Providing user support and training, the learning space was kept open,
because errors and flaws could be corrected quickly.

Allowing for knowledge creation. Since each department made and executed their
own implementation plan, there was certainly some space for local adjustments, but mainly
on minor issues. After implementation the software change requests had to be assessed by
a committee, and prioritised. Thus, knowledge creation was on a smaller scale, producing
a large number of change requests. These were handled in iterations 6 and 7.

ISD AS THE MUTUAL ADAPTATION OF TECHNOLOGY AND BUSINESS PROCESS 97

Authority to influence on the processes. The implementation team was, naturally,
focused on implementing PROSIT into the organisation, and aligning the work process to
the system. The main responsibility for implementation was laid on line managers. On the
other hand, the ability to influence the development team was now reduced, partly because
of budget constraints, and partly because of the bureaucratisation of the change request
handling. The window of opportunity for mutual adaptation seemed to be closing.

5. DISCUSSION

5.1. What Are the Dynamics of Mutual Adaptation in ISD Projects?

Mutual adaptation implies that it is possible to change structural properties of both
the organisation and the information system. Majchzrak et al (2000) suggest that it is not
the nature of structures (whether it is technological, political or social) that constrains the
adaptation process, but rather the malleability of the structure. As shown by Tyre and Or-
likowski (1994) this malleability may vary over time, creating ‘windows of opportunity’,
where mutual adaptation is possible. The PROSIT case illustrates that the malleability of
the information system and the business process varies over time. As illustrated in Figure 1,
this may be described in three phases.

As documented in the software engineering research (Jacobson et al., 1999), the mal-
leability of the software product is high at the beginning of a development project, becom-
ing gradually lower. At the beginning of the PROSIT project it was fairly easy to change
requirements, while at the end of the project it was much harder and more expensive. Thus,
the curve in Figure 1 is falling gradually, as more modules of the system are produced. With
the iterative and incremental MSF process, the decrease in malleability is not as sharp as
in waterfall projects, so there is considerable space for change midway in the project.

The malleability of the business process is generally lower, as it is embedded in in-
stitutional practice and culture. During the PROSIT project the malleability was slowly
increasing; the resistance against the specified auditing process was diminishing, mainly
as a result of the PROSIT project. After implementation malleability is gradually decreas-
ing as the changed business process is routinized by the new information system.

Figure 1. The malleability of the information system and the business process.

98 B. BYGSTAD

In the first phase the direction of adaptation goes from the business process to the
IS, in the form of requirements specification: The malleability of the organisation is low,
while it is high in the technology. In the last phase the direction is opposite; the finished
information system is implemented into the organisation as a change lever. However, in the
second phase the adaptation happened both ways. This window of opportunity is created
because the PROSIT system is in the process of stabilising, while still being malleable. At
the same time the business process is slowly restructuring because of the ISD project.

5.2. To what Extent is Mutual Adaptation Possible to Plan and Control?

A window of opportunity is not sufficient to create mutual adaptation. As argued in
Section 2, an organisational mechanism is needed to facilitate mutual learning, allowing
for the creation of new knowledge and having the needed authority to implement changes
in both processes. The role of the organisational mechanisms in the PROSIT case is sum-
marised in Table 2.

It is important to recognize that participants in a long, socio-technical project like
PROSIT are conscious of the emergent nature of such projects, and of the need to establish
and observe feed-back loops. MSF iterations are the natural frame for doing this assess-
ment. In the PROSIT project they experimented with different mechanisms, abandoning
those that did not work, and reusing those that did. Thus, although user workshops have
proven to be successful in many IS projects (Braa and Vidgen, 1997), they were not so in
the PROSIT iterations 1 and 2. This mechanism was therefore abandoned, and instead the
role of the Methodology Group was expanded.

Table 2 shows that all the organisational mechanisms facilitated mutual learning, but
only the Methodology Group allowed for the creation of new knowledge and possessed the
authority to change both processes. Thus, in a window of time it was possible to control
the mutual adaptation in the PROSIT case.

The extent of this control should not be exaggerated. As has been emphasized in the
interpretation of the case, this is not a question of pure design, because the result of the
mutual adaptation is basically outside the scope of detailed planning. It is emergent, in the
sense that solutions are developed as learning and knowledge creation proceeds in a good
project. What is controllable is the organisational mechanism to facilitate this.

Table 2. Attributes of organisational mechanisms in the PROSIT project

ISD AS THE MUTUAL ADAPTATION OF TECHNOLOGY AND BUSINESS PROCESS 99

What would be the area of validity for this organisational mechanism? Of course,
one single case study cannot answer this question, but grounded in Longitudinal Process
Research (LPR) it presents some interesting findings. First, as the case shows it is possible,
in a window of opportunity, to facilitate for successful mutual adaptation. Second, the
organisational mechanism (represented by the Methodology Group) could be copied and
used by other businesses.

In line with LPR it should be emphasized that the findings are context sensitive. In the
PROSIT case the project success was dependent on the Methodology Group, consisting of
young and ambitious auditors who realized how the information system could contribute
to restructure the business process. They were allowed to spend quite a bit of time in close
cooperation with the developers, building a knowledge base. Obviously, this is often not
possible. Also, the PROSIT project was run in a well funded public agency, with moderate
time pressures. This allowed the project organisation to experiment with different mech-
anisms and to extend its project period to one year of operations after implementation.
Again, in a more competitive business environment, this might not be an option.

On the other hand, research has long established that close cooperation and knowledge
sharing between developers and business people are key success factors (Reich and Ben-
basat, 2000). Even in a more competitive business context there are equal needs to innovate
solutions that include changes in both technology and organisation.

5.3. Should Planned Mutual Adaptation be Part of a Development Project,
or Is it Outside the Reasonable Scope of an ISD Project?

Should mutual adaptation be part of the ISD project, or be addressed somewhere else
(and higher) in the organisation? Some researchers (for example Sauer and Willcocks,
2004) contend that this challenge is impossible to solve in a project context, and have
suggested that this should be the responsibility of a new kind of senior manager, an “or-
ganisational architect”.

Acknowledging that the ISD project manager cannot be solely responsible for mutual
adaptation, there are several arguments against this: Organisational change is everybody’s
responsibility, and cannot successfully be assigned to a single authority (Markus and Ben-
jamin, 1997). Successful mutual adaptation is closely linked to knowledge creation, not
only decisions. It is possible to facilitate such knowledge creation, (as with the Methodol-
ogy Group) but its emergent nature makes it hard to plan in detail. Lastly, as the PROSIT
case also shows, modern iterative ISD processes (like MSF) have an iterative structure
well suited to support mutual adaptation; the iterative and incremental structure extends
the period where the information system is malleable.

6. CONCLUSION

The aim of this paper was to study the dynamics of mutual adaptation between IS de-
velopment and the business process in modern, iterative ISD projects. The research ques-
tions were investigated through a longitudinal case study in a large public auditing agency.
There are three major findings. First, the case study identified a window of opportunity for

100 B. BYGSTAD

mutual adaptation at a stage in the ISD project where the malleability of both the informa-
tion system and the business process was sufficient.

Second, an organisational mechanism, a process expert group working closely with
the development team, was successful in both structuring the information system and re-
structuring the business process. This was achieved through mutual learning, knowledge
creation and the necessary authority to influence both processes. It is suggested that this
organisational mechanism, within the window of opportunity, may be relevant for other
ISD projects.

Third, the organisational mechanism integrates well with modern ISD frameworks like
MSF: The iterative structure extends the period of time where the information system is
malleable, and iterations are a natural frame for assessing the mutual adaptation. Therefore,
it represents an interesting option for project managers to increase the scope and business
value of ISD projects.

Further research could investigate the dynamics of mutual adaptation in other contexts,
for example when implementing business software packages like ERP and CRM. It could
also seek to develop an add-in to software engineering frameworks (like MSF, RUP, and
OPEN) that gives more support to mutual adaptation.

ACKNOWLEDGEMENTS

A special thank to Liv Dreierstad at the Office of the Auditor General, who provided
access to the PROSIT project, and also commented on the case description.

REFERENCES

Boehm, B. W., 1988, A Spiral Model of Software Development and Enhancement, IEEE Computer, pp. 61–72
(May).

Brynjolfson, E., van Alstyne, M., Bernstein, A., and Renshaw, A. A., 1997, Tools for teaching Change Manage-
ment, The Matrix of Change and Supporting Software, IAIM’97, Atlanta.

Braa, K., and Vidgen, R., 1997, An Information Systems research framework for the organizational laboratory,
in: Computers and Design in Context, M. Kyng and L. Mathiasen, eds., MIT Press.

Ciborra, C., 2000, From Control to Drift, Oxford University Press, Oxford.
Coakes, E., and Elliman, T., 1999, The role of stakeholders in managing change, CAIS, 2.
Giaglis, G., 1999, On the integrated design and evaluation of business process and information systems, Commu-

nications of the AIS, 2.
Garrety, K., Robertson, P. L., and Badham, R., 2001, Communities of Practice, Actor Networks and Learning

in Development Projects, The Future of Innovation Studies, Eindhoven; http://www.tm.tue.nl/ecis/papers/
iii 4 2.pdf (accessed Jan 15 2004).

Henderson-Sellers, B., and Unhelkar, B., 2000, OPEN Modelling with UML, Addison-Wesley.
Jacobson, I., Booch, G., and Rumbaugh, R., 1999, The Unified Software Development Process, Reading, Addison

Wesley.
Jacobson, I., Ericsson, M., and Jacobson, A., 1995, The Object Advantage: Business Process Reengineering with

Object Technology, Addison-Wesley, ACM Press.
Leonard-Barton, D., 1988, Implementation as mutual adaptation of technology and organization, Research Policy

17(5):251–267.
Leonard-Barton, D., and Sinha, D. K., 1993, Developer-user interaction and user satisfaction in internal technol-

ogy transfer, Academy of Management Journal 36(5):1125–1139.
Majchrzak, A., Rice, R., Malhotra, A., King, N., and Ba, S., 2000, Technology adaptation: The case of a computer-

supported inter-organizational virtual team, MIS Quarterly 24(4):569–600.

ISD AS THE MUTUAL ADAPTATION OF TECHNOLOGY AND BUSINESS PROCESS 101

Markus, M. L., Benjamin, R., 1997, The Magic Bullet of IT-Enabled Transformation, Sloan Mangement Review,
pp. 55–68 (Winter).

McConnell, S., 1996, Rapid Application Development, Microsoft Press, Redmond.
Microsoft, 2001, Microsoft Solutions Framework, 2001;

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/tandp/innsol/default.asp.
Miles, M. B., and Huberman, A. M., 1994, Qualitative Data Analysis, Thousand Oaks, Sage.
Nambisan, S., Agarwal, R., and Tanniru, S., 1999, Organizational mechanisms for enhancing user innovation in

information technology, MIS Quarterly 23(3):365–394.
Ngwenyama, O., 1998, Groupware, Social Action and Emergent Organizations: On the process dynamics of

computer mediated distributed work, Accounting, Management and Information Technologies 8(2–3):127–
146.

Pettigrew, A. M., 1985, Contextualist Research and the Study of Organizational Change Processes, Research
Methods in Information Systems, Mumford et al., eds., North-Holland.

Reich, B., and I. Benbasat, 2000, Factors that influence the social dimension of alignment between business and
technology objectives, MIS Quarterly 24(1):81–113.

Sauer, C., and Willcocks, L. P., 2004, Strategic Alignment Revisited: Connecting Organizational Architecture and
IT Infrastructure, Proceedings of HICSS, Hawaii.

Tyre, M. J., and Orlikowski, W., 1994, Windows of opportunity: Temporal patterns of technological adaptation in
organizations, Organizational Science 5(1):98–118.

RETHINKING ISD METHODS: FITTING
PROJECT TEAM MEMBERS PROFILES

Isabelle Mirbel∗

1. INTRODUCTION

Information Systems Development (ISD) evolves continually, creating new challenges
especially in terms of Method Engineering (ME). Looking at the way ISD methods are used
in practice, we notice they are always adapted: steps are added, other removed or skipped
and so on. Different factors related to the project, the technology, the team expertize and the
business domain lead to method tailoring. One way to answer this need for customization
is the assembly of predefined process fragments. Dedicated efforts have been made, in the
field of Situational Method Engineering (SME), to decompose ISD methods into process
fragments (Brinkkemper et al., 1998; Ralyte, 2001).

Indeed customization of ISD methods have mainly be thought of for the person in
charge of building the ISD method, i.e. the method engineer, in order to allow him/her to
adapt the method to a corporate or project need. But there is also a need for customizations
dedicated to the persons using the method, i.e. project team member, to provide each of
them with dedicated guidelines to give them support through their daily tasks. A guideline
is a statement or other indication of policy or procedure by which to determine a course of
action (Ralyte, 2001).

The approach presented in this paper provides means to customize method ‘on the fly’
in order to match as well as possible the profile of the project team member job within the
project (Whitenack, 1995; Gnatz et al., 2001; Mirbel and de Rivieres, 2002). For this pur-
pose, efficient classification and retrieving means to store and select process fragments have
to be provided. Efforts have already been made on this topic in the fields of ME. These clas-
sification and retrieving techniques are currently based on structural relationships among
process fragments (specialization, composition, alternative, . . .) and keyword matching
(Cauvet and Rosenthal-Sabroux, 2001). From our point of view, these means do not fully
exploit the potential of breaking down ISD methods into process fragments and tailoring
them. We believe knowledge about organizational, technical and human factors, which are

∗ Laboratoire I3S, Les Algorithmes, Route des Lucioles, BP 121, 06903 Sophia Antipolis Cedex, FRANCE.
Phone: (+33) 4 9294 2760. Fax: (+33) 4 9294 2896, isabelle.mirbel@unice.fr.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 103

104 I. MIRBEL

critical knowledge about ISD (Cauvet and Rosenthal-Sabroux, 2001), should be taken into
consideration in addition to structural knowledge and keywords. It allows to better qualify
process fragments when entering them into the repository. It also allows the project team
member to better express his/her methodological needs (or profile), improving this way the
chance to get adequate and useful process fragments. And finally, it also enables the use
of more powerful and suitable retrieving techniques when looking for ISD methodologi-
cal support. Therefore, we propose a Reuse Frame aggregating the different ISD critical
aspects meaningful to tailor ISD methods with regards to project team member profiles.

In this paper, we start first by discussing the critical aspects of Information Systems
(IS) and we show how to handle them through method customization. Then, the reposi-
tory of predefined process fragments is described in Section 3. The method customization
process is presented in Section 4. Finally, we conclude in Section 5.

2. HANDLING CRITICAL ASPECTS OF INFORMATION SYSTEMS

To better take advantage of customization into SME, we believe IS critical aspects have
to be taken into consideration. A process fragment represents a basic block for constructing
‘on the fly’ methods from the process point of view (by opposition to the product point of
view). Process fragments have to be defined with regards to IS critical aspects in order to
be more easily reused in similar methodological situations. Methodological support along
the development process has to be requested with regards to IS critical aspects. In our
approach, the human, organizational and technical IS aspects are grouped into a tree of
successively refined aspects. By providing such an ontological structure, we enlarge the
panel of means for method engineers to drive project team members on the way to apply
a corporate method and to broadcast ways of working which is most of the time reduced
to deliverables. In addition, we provide to project team member a structure allowing them
to better explain their own need in order to get a customized view of the method they have
to use. Our approach provides to project team members means to find the most suitable
information with regards to his/her ISD methodological need (or problem).

2.1. The Reuse Frame

ISD critical aspects, meaningful to better store and retrieve process fragments through
SME, are described in terms of aspects, belonging to aspect families, which are succes-
sive refinements of the three main factors of IS: human, organizational and technical. In
this tree structure, called the Reuse Frame, an aspect is a leaf node and an aspect family
is a non-leaf node with at least two sub-nodes (which could be aspect or family nodes).
Families allow a better understanding of aspects by providing a way to group and organize
them. With regards to the organizational dimension, we started from the work of K. van
Slooten and B. Hodes providing elements to characterize ISD projects (van Slooten and
Hodes, 1996). With regards to the technical dimension, we started from previous work on
JECKO, a context-driven approach to software development, including a contribution to
define software critical aspects in order to get suitable documentation to support the soft-
ware development process (Mirbel and de Rivieres, 2002). And finally, about the human
dimension, we currently propose a basic description of the expertize of the project team

RETHINKING ISD METHODS 105

Figure 1. Technical branch of the Reuse Frame.

members. As an example, the technical branch of the Reuse Frame is presented in Fig-
ure 1. In this branch, we distinguish the following aspects: the application to be developed
includes a user-interface (UI), a database (DB), is distributed (Distributed) or is built
on top of a running application (Running software). This last aspect is presented as a
family because different features of a running software may be considered: Functional
domain, Interface and Code (Mirbel and de Rivieres, 2002). Again a distinction
is done among weak, medium and strong reuse of existing code, functional domain and
interface.

In the Reuse Frame, nodes close to the root node correspond to general aspects while
node close to leaf nodes (including leaf-node) represent precise aspects.

A leaf-node is defined through a name. An intermediary node is also defined through
a name and completed by information about relationships among the different aspects or
sub-families belonging to it: the fact that the different aspects may be exclusive (or not)
and/or ordered (or not). The Software to develop aspect presented in Figure 1, for
instance, is described as non-ordered because the different sub-families are non-related as-
pects. They are described as non-exclusive because they may be associated with a same
methodological need or process fragment. Weak, Medium and Strong aspects are con-
sidered as non-ordered because a fragment dedicated to guidelines to weakly keep the code
for instance may not necessary be complementary to the one dedicated to keep the code in a
medium way. And on the contrary, it is not forbidden also to search for a solution including
for instance Medium and Strong aspects. Therefore, they are specified as non-exclusive.
For the full definition of Reuse Frame elements, refer to (Mirbel, 2004).

2.2. Taking Advantage of the Reuse Frame

The ISD critical aspects defined in the Reuse Frame aim at improving meaningful
techniques to retrieve process fragments corresponding to a project team member profile.

106 I. MIRBEL

Therefore, means have to be provided to associate pertinent aspects to (i) process fragment
in order to retrieve them and (ii) to project team member profile in order to enable suitable
matching techniques. This is done respectively through the notion of Process Fragment
Reuse Context and Problem Reuse Situation.

The Reuse Context associated to each Process Fragment is a set of criteria allowing to
situate the fragment with regards to ISD critical aspects. To retrieve process fragments from
the repository, the project team member expresses a methodological need (or problem)
through keywords and a Reuse Situation. The reuse situation is a set of criteria specifying
the project team member profile. A criterion is a path in the Reuse Frame.

Process fragments providing general guidelines are usually characterized by general crite-
ria, that is to say paths ended by nodes from the Reuse Frame close to the root node. On the
contrary, specific guidelines are provided in process fragments described through precise
criteria, that is to say paths ended by nodes from the Reuse Frame close to leaf nodes or
leaf nodes themselves.

In the Problem Reuse Situation, in addition to the pertinent criteria, called necessary
criteria, forbidden criteria may be given, that is to say aspects the project team member is
not interested in. It could be helpful in some cases to be sure the process fragments includ-
ing these (forbidden) aspects will not appear in the solution answering the methodological
need.

3. BREAKING DOWN METHODS INTO FRAGMENTS

Approaches have been developed to specify methods (Si-said, 1999) and to break them
down into fragments (Whitenack, 1995). Efforts have also been made to formalize frag-
ment definition (or pattern definition) (Rolland et al., 1999; Storrle, 2001). In addition to
the different specification levels that are provided in the literature about SME, different ob-
jectives are targeted by the approaches. A first family of approaches aims at documenting
methods through well-defined fragments (Storrle, 2001). These approaches do not provide

RETHINKING ISD METHODS 107

powerful supports nor to reuse the fragments from one method to another nor to customize
the method for a specific project or group of persons. Their strength resides in the effort of
specification with regards to the elements a method is made of (tasks, activities, resources,
etc.). A second family of approaches groups works which aim is to help in building new
methods starting from existing ones (instead of building them from scratch) (Ralyte, 2001;
Brinkkemper et al., 1998). In this kind of approaches, the focus is on the operators pro-
vided to allow a new combination of existing process fragments and on mechanisms to
evaluate the similitude among them. Both combination operators and evaluation mecha-
nisms are dedicated to method engineers. But, project team members also need to benefit,
through reuse and adaptation mechanisms, from the experiences acquired during the reso-
lution of previous problems in terms of applying the method in a concrete way (i.e. using
it). All along the ISD process, heuristics are elaborated by project team members to deal
with their daily development activities. These heuristics may be useful to other teams fac-
ing close situations in different projects independently of the functional domain as well as
the technical domain. Therefore, a third family of proposals, our work is included in, fo-
cuses on method fragmentation for project team members, to provide them with guidelines
which are to be reused while performing their daily task (Gnatz et al., 2001; Mirbel and
de Rivieres, 2002).

3.1. Process Fragments

Different types of method components have been proposed in the literature: process
fragments and product fragments (Brinkkemper et al., 1998; Punter, 1996). Other authors
integrate the two dimensions in the same module, called a method chunk (Ralyte, 2001).
In our approach, we focus on the process dimension of methods. Our process fragments
are the result of (i) the capitalization of experiences about ISD directly by project team
members, or (ii) the breaking down of known methods by method engineers (Ralyte, 2001).

A Process Fragment fn is a 6-uple, fn = 〈nfn, RCn, in, gn, Assn, Incn〉, where

• nfn is the name of the fragment. This name should be meaningful to indicate its
purpose. Fragment name is unique in order to identify the fragment.

• RCn is the Process Fragment Reuse Context associated to the frag-
ment as previously defined (cf Section 2.2).

• in is the intention of the fragment, that is, a textual description of the goal of
the fragment and a list of keywords. It is defined as a 2-uple 〈desin , KW in〉 where
desin is the textual description and KW in is the set of keywords associated to the
fragment.

• gn is the guidelines of the fragment. It is specified through a set of pair 〈n, h〉
where n is the notation used to express guidelines and h is the textual description
of the guidelines.

• Assn is the set of fragments associated with the current fragment. It is defined as
a set of 3-uple 〈 fr-ass,re-ass,deg-ass 〉 where
– fr-ass is a fragment sharing at least part of its Process Fragment Reuse Con-

text with the current fragment fn

– re-ass qualifies the relationship between fn and fr-ass. We distinguish 2 kinds
of relationships: complementarity and alternative.

108 I. MIRBEL

Figure 2. An example of process fragment.

– deg-ass quantifies the relationship between fn and fr-ass. deg-ass ∈ [0, 1].
deg-ass is a necessity degree when associated to the complementarity rela-
tionship. It is a clotheness degree when associated to the alternative relation-
ship.

The complementarity relationship is bijective: If a fragment f1 appears as com-
plementary to f2, then f2 also appears as a complementary fragment of f1 with
the same degree.
The alternative relationship is not bijective since a fragment f1 may include an-
other fragment f2 and therefore be an alternative to it. But the contrary would be
wrong.
Close intentions are required if deg-ass is less than 1, identical ones are requested
otherwise.

• Incn is the set of not compatible fragments associated with the current
fragment. It is defined as a set of pair 〈 fr-inc,deg-inc 〉 where
– fr-inc is a fragment not compatible with the current fragment fn

– deg-inc is the degree of incompatibility between fn and fr-inc.

An example of process fragment is given in Figure 2, where a process fragment named
Requirement-out-of-scope is presented. Its Process Fragment Reuse Context in-
dicates it shows guidelines for when developping on top of a running software. The process
fragment has an associated fragments DB-out-of-scope, which is complementary. It
does not have incompatible fragments. The intention explains the purpose of the process
fragment which is to help in documenting the running part of the application under which
the development will take place. Associated guidelines in UML are then given.

To be added to the repository, a new process fragment must be linked to process frag-
ments already stored in the repository. Two process fragments are linked when they can
be used inside a same method. The precedence metric allows to estimate the sequence in
which the process fragments have to be applied.

RETHINKING ISD METHODS 109

Let fa and fb be 2 process fragments. The precedence metric is composed of 3 values:

• pb is the probability for fa before fb

• pa is the probability for fa after fb

• pi is the probability for fa and fb to be in an indefinite sequence

with pb, pa, pi ∈ [0, 1] and
∑

pb, pa, pi = 1.
For each process fragment fb linked to fa , the project team member introducing fa

gives the precedence metric values. Possible values are:

• {pb=0, pa=0, pi=1}: the sequence between fa and fb is not significant;
• {pb=1, pa=0, pi=0}: the project team member indicates fa should be useful be-

fore fb;
• {pb=0, pa=1, pi=0}: symmetrically, fb should be useful beforefa.

Process fragments answering a methodological need are presented in a sequential way
constituting the road-map to be followed while applying a method (i.e. applying succes-
sively a set of process fragments), as it will be discussed in the following.

3.2. Road-Maps

Different ways may be provided, even inside a same method, to satisfy an engineering
goal. Moreover, the sequence through which process fragments have to be applied is not
always pre-determined: they may or not be related by a precedence relationships. There-
fore, different road-maps among a set of process fragments are possible. A road-map is
composed of one or several coherent sequence(s) of process fragments corresponding to
the usage of the method by a particular project team member. It is a customized view of the
method to match the profile of a project team member and his/her specific methodological
problem.

Indeed, process fragments stored in the dedicated repository and organized into road-
map allow capitalization of knowledge about the resolution of methodological problems.
The Reuse Frame provides knowledge for reuse, while reusable knowledge is stored in
the repository of predefined process fragments. In the next section, we show how to take
advantage of this framework through method customization.

4. METHOD CUSTOMIZATION

In our approach for method customization, the project team member looking for a
specific view of the ISD method, chosen for the project he/she is involved in, starts by
expressing its specific methodological problem, through keywords and problem reuse situ-
ation. Then, the process fragments matching the problem are retrieved from the repository
of predefined process fragments. Tuning facilities are provided to the project team mem-
ber to let him/her get the most suitable road-map within the method to answer its specific
need. And finally, the selected process fragments are ordered to compose the road-map,
that is to say the guidelines to be successively applied, in order to take as much advantage
as possible of the method.

110 I. MIRBEL

In the following, we will discuss more in detail the selection of the right process frag-
ment, the tuning facilities and the road-map building.

4.1. Selecting the Right Process Fragments

Thanks to the Process fragment Reuse Context associated to each process fragment
stored in the repository and the Problem Reuse Situation given by the project team mem-
ber, matching techniques can be applied to select process fragments corresponding to the
problem. Therefore, we introduce the situational metric allowing to quantify the match-
ing between a process fragment and a problem. This metric is based on (i) the number of
common criteria between the necessary criteria from the Problem Reuse Situation and the
Process fragment Reuse Context, (ii) the number of common criteria between the forbid-
den criteria from the Problem Reuse Situation and the Process fragment Reuse Context,
(iii) the number of required necessary criteria from the Problem Reuse Situation:

ms(pb, pf) = card(RCpf ∩ CNpb) − card(RCpf ∩ CFpb)/card(CNpb)

where pb is a problem, CNpb the necessary criteria of the Problem Reuse Situation, CFpb

the forbidden criteria of the Problem Reuse Situation, pf a process fragment, RCpf the
Process Fragment Reuse Context.

A positive value of ms(pb, pf) indicates that there are more necessary criteria than
forbidden ones in the process fragment pf under consideration with regards to the problem
pb. On the contrary, a negative value of ms(pb, pf) indicates that there are less necessary
criteria than forbidden ones. The perfect adequation is represented by the value 1 and the
worst situation by the value (−card(RCpf ∩ CFpb)/(card(CNpb)).

4.2. Tuning the Selection

The Reuse Frame introduced previously (cf Section 2) supports different levels of
granularity with regards to criterion definition. Criteria which ending node is close to the
base node are much more generic than criteria which ending node is close to leaf nodes. In-
deed, process fragments providing general guidelines are usually specified through aspects
associated to general criteria, while specific guidelines are provided in process fragments
specified through aspects associated to precise criteria.

4.2.1. Tuning Necessary Criteria

When searching for predefined process fragments into the repository, a project team
member is interested in process fragments which criteria strictly match the necessary crite-
ria from the Problem Reuse Context. But process fragments including more specific criteria
in their Reuse Contexts may also be interesting: process fragments associated to more spe-
cific criteria usually provide more specific guidelines. They may better cover part of the
methodological problem the project team member has to deal with.

If one looks for instance at process fragments matching the [base - technical
- running software - functional domain] criterion, he/she may be also
interested by the process fragments matching the [base-technical-running
software - functionaldomain-weak], [base-technical- running

RETHINKING ISD METHODS 111

software - functional domain - medium] and [base - technical
- running software - functional domain - strong] criteria (cf Fi-
gure 1).

In the same way, the project team member may be interested in process fragments as-
sociated to more general criteria usually providing more general-purpose guidelines which
could also be useful.

4.2.2. Tuning Forbidden Criteria

Taking into consideration process fragments associated to more general and/or more
specific criteria may also be interesting with regards to the forbidden criteria given in the
problem definition. Indeed, enlarging the set of forbidden criteria to more general ones
means to forbid full branches of the Reuse Frame; and enlarging the set of forbidden cri-
teria to more specific criteria means to forbid process fragments associated to too specific
criteria, usually present in reuse contexts of process fragments providing too specific guide-
lines.

4.2.3. Weighting Criteria

When computing the situational metric between a process fragment pf and a prob-
lem pb, criteria included as more general or more specific ones have to be weighted with
regards to their distance from the criteria given in the problem definition. Therefore, the
situational metric becomes:

ms(pb, pf) =
(∑i=1

card(CNE) Pci − ∑j=1
card(CFE) Pcj

)/(∑k=1
card(CN) Pck

)
with CN the necessary criteria, CNE the extended necessary criteria also present in RCpf ,
CF the forbidden criteria and CFE the extended forbidden criteria of the problem pb also
present in RCpf , and with P the criteria weight computed as follows:

if ci ∈ CN, pci = 1 else pci = 1/(2nbn)

where nbn is the number of node between cr and ci excluding cr and including ci .

4.3. Building the Road-Map

From the selection and tuning steps of our customization process, we get a set of
process fragments. Indeed, these process fragments may not be related all together (through
the precedence relationship or as associated process fragments). They may for instance
cover disjoint stages of the method (at the beginning and the end of the method for in-
stance). So, the road-map corresponding to the project team member methodological prob-
lem is indeed made of different subsets. In each subset are reassembled process fragments
related to each others as associated process fragments or through the precedence relation-
ship.

4.3.1. Adding Complementary Process Fragments

In the repository, process fragments may be linked to each other as associated process
fragments (cf Section 3.1). Degrees are provided to quantify the complementarity. When

112 I. MIRBEL

building the road-map, the coherency of the process fragments belonging to the same sub-
set has to be enforced by fulfilling the constraints expressed through the complementarity
relationship: complementary process fragments which degrees are higher than a predefined
threshold have to be added to the solution. Indeed, the project team member tunes the level
of coherency he/she wants its roadmap to satisfy by setting the complementarity threshold.
A high complementarity threshold leads to a solution in which only very complementary
process fragments are added, while a low one leads to a solution in which most of the
complementary process fragments are included.

4.3.2. Removing not Compatible Fragments

In the same way, process fragments may also be linked to each other as not compatible
process fragments. In this case also, degrees quantify the incompatibility. When building
the road-map corresponding to each subset of the result set, the coherency of the process
fragments belonging to the same subset has to be enforced by fulfilling the constraints
expressed through these incompatibility relationships: not compatible process fragments
which degrees are higher than a predefined threshold have to be removed from the solution.
Indeed, the project team member tunes the level of coherency he/she wants its roadmap
to satisfy by setting the incompatibility threshold. A high incompatibility threshold leads
to the removal of very incompatible process fragments from the solution, while a low
threshold leads to the removal of most of the incompatible process fragments.

Tuning the road-map building process provides again a way for the project team mem-
ber to reduce or enlarge the number of process fragments included in the solution to his/her
methodological problem.

4.3.3. Removing Still Inconsistent Process Fragments

During the selection step, Process Fragment Reuse Contexts are evaluated with the
help of the situational metric to be or not kept as part of the road-map. Complementary
process fragments added to the solution for coherency purposes have to be evaluated with
regards to the situational metric. Only complementary process fragments which situational
metric is positive are kept. And if not kept, the process fragments requiring them as com-
plementary process fragment remain still incoherent and have therefore to be removed from
the road-map.

Finally, the set of process fragments still kept in each subset constitutes the road-
map(s) corresponding to the project team member problem and is presented to him/her as
a succession of guidelines to be successively applied.

5. CONCLUSION

In this paper we presented an approach to customize method in order to fit the need
of the project team member. Customization is supported by method fragmentation. In ad-
dition, we proposed the Reuse Frame, a framework representing critical aspects of IS and
allowing method engineers to specify process fragments meaningful features and project
team member to select the process fragments corresponding to their profile. After dis-

RETHINKING ISD METHODS 113

cussing the usefulness of the Reuse Frame and the way to break down methods into frag-
ments we focused on the customization process and its main 3 steps: selection, tuning and
road-map building, allowing project team member to get a customized point of view on the
ISD method in order to fit his/her own methodological need.

Attempts have already been made to use such an approach on real projects, especially
with regards to the technical dimension of IS (Mirbel and de Rivieres, 2002). A case tool
is under development to validate the whole approach.

In the future, our efforts will focus on the exploitation of tracking information about
the way project team member reuse the process fragments and the feedback they may give
on their reuse experience: some process fragments, for instance, may be more useful than
others, fragments may indeed be skipped or removed from road-maps. The precedence
metric should be updated in consequence to also reflect the experience capitalized through
the reuse of the process fragments. In the same way, we would like to weight process
fragments with regards to the expertise level of the project team members introducing the
process fragments into the repository.

REFERENCES

Brinkkemper, S., Saeki, M., and Harmsen, F., 1998, Assembly techniques for method engineering, in: 10th
International Conference on Advanced Information Systems Engineering, Pisa, Italy.

Cauvet, C., and Rosenthal-Sabroux, C., 2001, Ingenierie des systemes d’information, Hermes.
Gnatz, M., Marschall, F., Popp, G., Rausch, A., and Schwerin, W., 2001, Modular process patterns supporting an

evolutionary software development process, Lecture Notes in Computer Science, 2188.
Punter, H. T., and K. L., 1996, The MEMA model: towards a new approach for method engineering, Information

and Software Technology 4:295–305.
Mirbel, I., 2004, A polymorphic context frame to support scalability and evolvability of information system

development processes, in: 6th International Conference on Enterprise Information Systems.
Mirbel, I., and de Rivieres, V., 2002, Adapting Analysis and Design to Software Context: the JECKO Approach,

in: 8th International Conference on Object-Oriented Information Systems.
Ralyte, J., 2001, Ingenierie des methodes a base de composants, PhD thesis, Universite Paris I – Sorbonne.
Rolland, C., Prakash, N., and Benjamen, N., 1999, A multi-model view of process modelling, Requirements

Engineering Journal 4:169–187.
Si-said, S., 1999, Proposition pour la modelisation et le guidage des processus d’analyse et de conception, PhD

thesis, Universite Paris I – Sorbonne.
Storrle, H., 2001, Describing process patterns with UML, in: ESWT.
van Slooten, K., and Hodes, B., 1996, Characterizing IS development projects, in: IFIP TC8, WG 8.1/8.2,

S. Brinkkemper and K. Lyytinen, R. W., eds., pp. 29–44.
Whitenack, B., 1995, RAPPeL: a requirement analysis process pattern language for OO development;

http://www.bell-labs.com/user/cope/Patterns/Process/RAPPeL/rapel.html.

PRE-REQUISITES FOR SUCCESSFUL ADOPTION OF
THE ASP MODEL BY USER ORGANIZATION

George Feuerlicht and Jiri Vorisek∗

1. INTRODUCTION

Businesses are increasingly reliant on ICT to support their operations and to main-
tain competitiveness. At the same time, information systems and their ICT infrastructure
are becoming increasingly complex and costly to implement and maintain. Advances in
networking, and in particular Internet-related technologies make it possible to implement
enterprise applications as services delivered from a remote location potentially in a more
predictable and cost-effective manner than in-house applications. Application Service Pro-
viding (ASP) emerged towards the end of 90s with claims of extensive advantages for client
organizations, in particular for SMEs. Notwithstanding many perceived advantages of the
ASP approach, most of the early ASP providers have not been able to establish a viable
business model. Factors contributing to the failure of early ASP providers included lack
of a suitable technological infrastructure for hosting a large number of complex enterprise
applications in a scalable and secure manner, poor customisation capabilities, and almost
total lack of integration facilities. As a result of these shortcomings, early ASP providers
failed to deliver major cost savings to their customers, resulting in poor acceptance of ap-
plication servicing by the market place. Recently, however, a number of important ICT
vendors have re-confirmed their commitment to application servicing in the context of the
new Utility Computing approach, and have made massive investments in infrastructure for
the delivery of enterprise application services (Dubie, 2004). However, given earlier expe-
riences with application servicing most user organizations remain skeptical and are waiting
to see if the benefits are going to be realized as claimed by the vendors.

In this paper we describe the key differentiators of application servicing when com-
pared to the traditional software-licensing model (Section 2), and then discuss the charac-
teristics of the second generation of application servicing (Section 3). We then discuss end
user organizations’ strategies for adoption of application servicing and the related critical
success factors (Section 4).

∗ University of Technology, Sydney, Australia; and University of Economics, Prague, Czech Republic,
jiri@it.uts.edu.au, vorisek@vse.cz.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 115

116 G. FEUERLICHT AND J. VORISEK

2. KEY DIFFERENTIATORS OF APPLICATION SERVICING

Application servicing has evolved into a sophisticated service delivery model over
the last two years. Table 1 shows key differentiating features of ASP (software-as-service)
when compared to the traditional model of implementing enterprise applications (software-
as-license, i.e. when customer purchases the software license and runs the software on their
own technology infrastructure). A more comprehensive analysis of the application ser-
vice model from the perspective of design and technology, business, and ICT management
viewpoints is available in elsewhere (Feuerlicht and Vorisek, 2002; Levy, 2004; McCabe,
2004; Vorisek et al., 2003; Wainewright, 2004).

As indicated by the above table (Table 1) the key advantage of the ASP model is the
ability of the provider to concentrate ICT resources and take advantage of the resulting
economies of scale to deliver scalable services to a large customer base, while increasing
utilization and reducing overall costs.

Application Suitability for ASP Delivery

Given the current ASP limitations suitability of applications for ASP delivery needs
to be carefully evaluated, as certain types of applications may not be suitable candidates
for application servicing. For example, certain types of mission-critical (core) business ap-
plications may not be available from external providers. Also the critical nature of these
applications dictates in-house implementation and control, irrespective of other considera-
tions (e.g. cost). Another category of applications that may not be suited to ASP delivery
are highly customized and specialized applications as the service providers can not gain
economies of scale given the relatively small size of the market. Applications with exten-
sive integration requirements have close dependencies on other enterprise applications and
cannot be effectively managed externally.

3. SECOND GENERATION ASP

As discussed in Section 1 above the first generation of ASP providers have not been
able to significantly reduce the costs associated with delivery of enterprise applications.
The lack of a suitable technological infrastructure and a viable business model prevented
early ASPs from achieving economies of scale that are essential for this approach to gain
wider acceptance. However, a number of important recent ICT trends are likely to shift the
balance from in-house implementation of licensed software towards application servicing.
The second generation of ASPs (e.g. Salesforce.com, NetSuite, RightNow, Salesnet) have
demonstrated that ASP delivery requires a different business model, different technological
architecture and possibly even different company culture. They are using unique attributes
of the software-as-service model to create applications that are highly customizable, up-
gradeable, and can be deployed with minimum delays. Established software vendors (e.g.
Oracle, PeopleSoft, SAP) offer ASP solutions as an alternative to purchasing software li-
censes and have achieved varying levels of success with the ASP model. There is some
evidence that the rate of growth of software delivered as a service is higher than of tradi-
tional software licence sales, in particular in the USA (Newcomb, 2004). The penetration

PRE-REQUISITES FOR SUCCESSFUL ADOPTION OF THE ASP MODEL 117

Table 1. Comparison of the software-as-license vs. software-as-service models for enter-
prise applications

118 G. FEUERLICHT AND J. VORISEK

of the ASP model varies according to type of application with CRM systems being the
most popular ASP applications. However, the acceptance of other application types (e.g.
ERP and HR) for ASP delivery is growing.

The driving forces for this shift towards software delivered as a service include both
business and technological factors.

Business Factors

As a result of the recent ICT downturn the sales of new licenses for enterprise applica-
tion software have stagnated and in some cases declined. There is some evidence that as the
enterprise application software market matures, major ERP vendors are changing their rev-
enue model to decrease their reliance on new software licenses towards income generated
from software license upgrades and product support (Oracle, 2004; SAP, 2004). This com-
bined with the fact that most organizations spend as much as 80% of software-related costs
on software maintenance and related activities (Haber, 2004), creates a situation where
licensed software is de-facto rented. It is precisely this high-level of on-going costs that
motivate many organizations towards alternatives such as outsourcing and application ser-
vicing.

New Computing Models

The ASP model is closely related to recently emerging computing models such as Util-
ity Computing, and On-Demand Computing. The main idea of Utility Computing is that
ICT services are supplied on demand (i.e. as required by the end-user organization) via a
grid of interconnected, dynamically configurable, highly reliable and scalable computing
resources (i.e. servers, storage platforms, and applications). Computing grids provide an
ideal infrastructure for application servicing as it can host a large number of ASP applica-
tions in a scalable and reliable manner. Resource sharing and improved hardware utiliza-
tion of grid computing environments provides a more cost effective solution for hosting
enterprise applications than a set of independent servers each dedicated to a specific appli-
cation. Clusters of servers, storage devices and other resources constructed from low-cost
(commodity) components create virtual resources on-demand as required by enterprise ap-
plications. A number of infrastructure vendors (IBM, HP, Oracle) are in the process of
building large data centres intended for hosting large number of client applications using
the Utility Computing model (Eriksen, 2003). Investment in infrastructure on this scale
clearly demonstrates a strategic commitment to Utility Computing and more specifically
to application servicing as the new outsourcing model for enterprise applications. Recent
efforts to standardize Utility Computing infrastructure in order to facilitate interoperability
between vendor solutions led to the creation of Utility Computing Working Group un-
der the auspices of DMTF (Distributed Management Task Force) (DMTF, 2004) and with
the participation of major ICT players including Cisco Systems, EDS, EMC, HP, IBM,
Oracle, Sun Microsystems and VERITAS. The main objective of the DMTF Utility Com-
puting Working Group is to develop a set of interoperability standards in collaboration
with other organizations including OASIS (Organization for the Advancement of Struc-
tured Information Standards) and GGF (Global Grid Forum) that will allow the assembly
of comprehensive services from components supplied by different vendor platforms.

PRE-REQUISITES FOR SUCCESSFUL ADOPTION OF THE ASP MODEL 119

New Technologies and Application Architectures

Another key trend favoring application servicing over the traditional software-licen-
sing model is the move towards service-oriented architecture (SOA) for enterprise com-
puting. The nature of enterprise applications has changed dramatically over the last five
years; most enterprise applications today have requirements to interoperate across en-
terprise boundaries (i.e. requirements for e-business). Service-oriented computing based
on Web services standards and technologies is widely regarded as having the potential
to address the requirements for e-business interoperability and are likely to become the
dominant enterprise computing architecture in the future. There is a close relationship be-
tween application servicing and service-oriented computing. Web services are regarded as
the enabling technology for the integration of ASP applications, and for delivery of low-
granularity application services (Eisenberg, 2004; Ferguson, 2004). The wide adoptions of
Web services standards across the various computing environments (i.e. .Net, enterprise
Java) makes Web services an ideal solution for application integration, and for exposing
selected business functions of complex enterprise applications.

In summary, business and technological factors discussed in this section have created
a situation where delivery of enterprise application in the form of services becomes both
technically possible, and economically desirable. This is likely to have major impact on
enterprise computing over the next five years, finally tipping the balance from licensed
software towards software delivered as a service.

4. PREREQUISITES FOR SUCCESSFUL ADOPTION OF THE ASP MODEL

As described above ASP model can bring a number of significant benefits to end user
organizations, and potentially even strategic advantage. The subject of gaining strategic
advantage from ICT has been debated extensively recently. Some observers argue that
because IT is widely accessible to most organizations it can no longer bring strategic ad-
vantages over competitors. According to Carr (Carr, 2003) “IT’s potency and ubiquity have
increased, so too has its strategic value. It’s a reasonable assumption, even an intuitive one.
But it’s mistaken. What makes a resource truly strategic—what gives it the capacity to be
the basis for a sustained competitive advantage—is not ubiquity but scarcity. . . . When a
resource becomes essential to competition but inconsequential to strategy, the risks it cre-
ates become more important than the advantages it provides.” And from this standpoint
Carr recommends new rules for ICT management: a) Spend less, b) Follow, don’t lead,
c) Focus on vulnerabilities, not opportunities. We believe that such arguments are essen-
tially flawed as they imply “a steady state situation” in an ICT environment that is rapidly
evolving. Migration towards the software-as-service model presents an opportunity to gain
strategic advantage for companies able to take advantage of this new paradigm in a timely
and effective manner. While benefits of adopting the ASP model will not follow automati-
cally, we believe that this new model for enterprise application delivery can bring strategic
advantages to organizations that are able to re-engineer their business processes to suit
service-oriented computing. This view is supported by recent IDC research (IDC, 2002).
More specifically, the ASP approach can bring business benefits if the management of the

120 G. FEUERLICHT AND J. VORISEK

enterprise is able to control the risks associated with the adoption of ASP. We discuss the
critical success factors (CSF) for the ASP model in the following sections.

Close Link Between Business, ICT, and Sourcing Strategies

It is recognized today that business and ICT strategies cannot be developed indepen-
dently, and that ICT strategy cannot be simply derived from the business strategy. Impor-
tantly, organizations whose core business is based on ICT (banks, insurance companies,
telecoms, etc.) have to develop the main components of both strategies together. The adop-
tion of application servicing introduces a new requirement to define sourcing strategies
for core business and for ICT together. Business strategy defines the core business of the
organization, separating core business processes from supporting business processes, and
defines the partners and their competences and responsibilities as used in the supply chain.
When organization decides to outsource a supporting business process to an external part-
ner (so called Business Process Outsourcing – BPO) then in most cases the corresponding
ICT services has to be outsourced as well. ICT strategy defines which ICT services are
delivered to different groups of users (employees, top management, partners in the supply
chain, customers, and public). These services have to be aligned with the products and ser-
vices produced by core business processes (e.g. internet banking), ICT strategy specifies
ICT processes and ICT resources that are used to deliver ICT services, and which ICT
resources are owned by the organization and which by its external partners. ASP is one
of possible outsourcing options that need to be considered (Feuerlicht and Vorisek, 2003).
Outsourcing decisions have impact not only on ICT efficiency but also on flexibility and
competitiveness of organizations (Aberbethy, 2004). As a result of increasing importance
of sourcing management some authors (Dignan, 2004) recommend new specialized job po-
sition – Chief Resource Officer (CRO). The CRO is the technology executive who oversees
all of outsourcing agreements and ensures the cooperation of all providers.

Effective Management of Business and ICT Processes and Resources

Another key element for effective ASP deployment is suitable structure of business
and ICT processes management. In this respect the SPSPR model is a useful tool (Feuer-
licht and Vorisek, 2002). Using SPSPR model enables organization to define ICT ser-
vices that support business processes effectively and to evaluate which IS/ICT services,
processes, and resources to outsource and which maintain in-house. The model supports
coexistence of different methods of service delivery (in-house, BPO, ASP etc.). Using this
model, business goals are achieved through core business processes. Both the core and
supporting business processes are supported by IS/ICT services, which are defined in the
form of SLA’s. IS/ICT services are delivered and controlled by IS/ICT processes, which
consume IS/ICT resources. The purpose of dividing business and IS/ICT management into
five layers is to identify the responsibilities of different types of business and ICT managers
in a transparent manner that delineates the business goals up to the layer of ICT resources
management (Figure 1).

The SPSPR also enables the creation of a set of metrics that can be used for busi-
ness and ICT evaluation and control. The IS/ICT service layer between “business and ICT
domain” enables improved communication between business process managers and ICT

PRE-REQUISITES FOR SUCCESSFUL ADOPTION OF THE ASP MODEL 121

Figure 1. Types of managers and their responsibilities.

managers and clearly distinguishes their responsibilities. Business process manager is re-
sponsible for acquisition services so that ICT services support business process in the most
effective manner. ICT manager is responsible for delivery of ICT services in accordance
to agreed SLAs. In this respect our model is consistent with the Ross and Weill’s opinion
(Ross and Weill, 2003). IS/ICT processes are incorporated into the model in order to take
advantage of the methodologies of IS/ICT processes management such as ITIL or COBIT.
Irrespective of the deployed methodology, the IS/ICT processes have to be implemented
so that they enable the organization to achieve its goals (Table 2 below).

Technology Architecture Design and Management

Often outsourcing decisions only consider the two extreme variants of outsourcing –
“all in” or “all out”. This simplistic approach can lead to suboptimal results. In practice, a
more sophisticated approach is needed that considers critical success factors for different
types of outsourcing as well the benefits associated with alternative outsourcing strategies

122 G. FEUERLICHT AND J. VORISEK

Table 2. Business goals and ICT processes outcomes

(Feuerlicht and Vorisek, 2003). Effective deployment of the ASP model relies on the ex-
istence of suitable standard-based service-oriented architecture. Mature ICT architecture
and consistent use of standards can lead to overall reduction in the total cost of ownership
(TCO) and can facilitate outsourcing decisions. Outsourcing decisions need to be made in
the context of an architectural framework, rather than ad-hoc.

5. CONCLUSIONS

In this paper we have presented a number of compelling arguments that make the
software-as-service model an attractive alternative for the delivery of enterprise applica-
tions. Many of the benefits listed above are results of recent technological advances and
increasing sophistication of the service providers. The speed of further adoption of the ASP
model for delivery of enterprise applications will to a large extend depend on the ability of
both providers and the users to minimize the risks and maximize the advantages associated
with application servicing.

In conclusion, the ASP model provides a viable alternative to traditional software li-
censing model and it is likely that the ASP model supported by new computing architec-
tures and technologies (i.e. Utility Computing, Service-Oriented Computing) will become
the dominant method for delivery of enterprise applications in not too distant future. This
view is supported in the literature, for example Gartner ranked “software as service” as
one of the current megatrends and predicts that up to 40 percent of all applications will be
delivered over the Internet within the next 2 to 3 years.

There are important consequences of the shift from the software-as-license model to
the software-as-service model for the delivery of enterprise applications, creating new op-
portunities and challenges for both the providers and client organizations. The reduction

PRE-REQUISITES FOR SUCCESSFUL ADOPTION OF THE ASP MODEL 123

in the size of the traditional software license market, reduced demand for on-site imple-
mentation and the corresponding increase in demand for application services will lead to
further rationalization of the ICT vendor market (Cohen, 2004).

REFERENCES

Aberbethy, M., 2004, Outsource tack loses its edge, Newsweek Bulletin (February 11, 2004);
http://bulletin.ninemsn.com.au/bulletin/EdDesk.nsf/All/FA57D33080F2C482CA256E2900778612.

Boulton, C., 2004, IBM, Veritas lead new utility computing standard (March 15, 2004);
http://www.internetnews.com/ent-news/article.php/3311791.

Carr, N. G., 2003, IT doesn’t matter, Harvard Business Review 81(5).
Cohen, P., 2004, Twelve technical and business trends shaping the year ahead (March 1, 2004);

http://www.babsoninsight.com/contentmgr/showdetails.php/id/687.
Dignan, L., 2004, Outsourcing overseers needed (February 5, 2004);

http://www.baselinemag.com/article2/0,3959,1526051,00.asp.
DMTF, 2004, DMTF announces new working group for utility computing (April 12, 2004);

http://www.dmtf.org/newsroom/releases/2004 02 17.
Dubie, D., 2004, Vendors make the utility computing grade, Network World Fusion (March 22, 2004);

http://www.nwfusion.com/news/2004/0322dellsummit.html.
Eisenberg, R., 2004, Open for business (April 6, 2004);

http://www.intelligenteai.com/showArticle.jhtml?articleID=19502159.
Eriksen, L., 2003, Will the real utility computing model please stand up (December 25, 2003);

http://www.utilitycomputing.com/news/342.asp.
Ferguson, R. B., 2004, SAP sets its sights on SOAP (May 10, 2004);

http://www.eweek.com/print article/0,1761,a=126512,00.asp.
Feuerlicht, G., and Phipps, T., 2000, Architecting enterprise applications for the internet, Journal of Applied

Systems Studies, Special Issue on ”Applied Cooperative Systems”, July, 2000, ISSN 1466–7738.
Feuerlicht, G., and Voříšek, J., 2002, Delivering application services: Who will benefit?, in: Proceedings of Sys-

tems Integration 2002 conference, J. Pour, ed., VŠE, Praha, pp. 31–41, ISBN 80-245-0300-x.
Feuerlicht, G., and Voříšek, J., 2003, Key success factors for delivering application services, in: Proceedings of

Systems Integration 2003 conference, VŠE, Praha, pp. 274–282, ISBN 80-245-0522-3.
Haber, L., 2004, ASPs still alive and kicking (January 30, 2004);

http://www.aspnews.com/trends/article.php/3306221.
IDC, 2002, IDC’s findings reveal ASP implementations yielded an average return of investment of 404% (Febru-

ary 8, 2002);
http://www.idcindia.com/pressrel/Show.pressrel.asp?prpath=prt20020038.htm.

Levy, A., 2004, What do enterprises want from ASPs? (February 4, 2004);
http://www.aspnews.com/analysis/analyst cols/article.php/2217411.

McCabe, L., 2004, A winning combination: Software-as-services plus business consulting and process services,
Summit Strategies Market Strategy Report (March 25, 2004);
http://www.summitstrat.com/store/3ss07detail.

Neel, D., 2002, InfoWorld (April 10, 2002);
http://www.infoworld.com/article/02/04/12/020415 feutility 1.html.

Nevens, M., 2002, The real source of the productivity boom, Harvard Business Review 80(3):23–24.
Newcomb, K., 2004, The second coming of ASPs, ASPnews.com (May 5, 2004);

http://www.aspnews.com/analysis/aspnews analysis/article.php/11276 3349851 2.
Oracle, 2004, Oracle Financial Reports (May 20, 2004);

http://www.oracle.com/corporate/investor relations/analysts/.
Ross, W., and Weill, P., 2003, Six IT decisions your IT people shoulnd’t make, Harvard Business Review 80(11).
SAP, 2004, SAP financial reports (May 20, 2004);

http://www.sap.com/company/investor/reports/.
Voříšek, J., Pavelka, J., and Vít, M., 2003, Aplikační služby IS/ICT formou ASP – Proč a jak pronajímat infor-

matické služby, Grada Publishing, Praha, ISBN 80-247-0620-2.
Wainewright, P., 2004, Secret weapons of ASPs (February 27, 2004);

http://www.aspnews.com/analysis/analyst cols/article.php/3090441.

ISD AS KNOWLEDGE WORK – AN ANALYSIS OF
HOW A DEVELOPMENT METHOD IS USED

IN PRACTICE

Per Backlund∗

1. INTRODUCTION

Information systems development (ISD) has recently been characterised as knowledge
work which is based on a distinct body of knowledge (Hirschheim and Klein, 2003; Iivari,
2000). Iivari (2000) proposes a framework for ISD as knowledge work which consists of
four levels: paradigms, approaches, methods, and techniques. These levels represent an
increasingly concrete representation of the body of ISD knowledge; paradigms being the
most general and abstract part, and techniques being the most concrete and specific part of
the body of knowledge.

The detailed use of ISD techniques, methods, approaches, and paradigms is relatively
unexplored (Iivari, 2000). In this paper we pursue an ethnographically inspired approach
(Williamson, 2002), to investigate a phenomenon in an empirical setting. We present a
case study that evaluates the actual use of a commercial development method, the Rational
Unified Process (RUP) (Jacobson et al., 1999; Kruchten, 2000).

There are reports on method adaptation (Russo et al., 1996; Fitzgerald, 1997; Fitzger-
ald et al., 2002). However, these reports tend to focus on method adaptation and use from
an organisational point of view. There is also the field of method engineering (Brinkkem-
per et al., 1998; Ralyté and Rolland, 2001) with a focus on the method as such. We aim to
extend such studies of method use by taking the actual situation of use into account in our
analysis.

The aim of this paper is twofold:

• firstly, to extend the framework presented by Iivari (2000) to comprise the per-
spectives of knowledge presented by Alavi and Leidner (2001);

• secondly, to apply the extended framework in order to characterise and analyse
how development process knowledge is utilised in a project setting.

∗ School of Humanities and Informatics, University of Skövde, P.O. Box 408, SE-541 28 Skövde, Sweden,
per.backlund@ida.his.se.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 125

126 P. BACKLUND

In this paper we analyse method use from a knowledge point of view, i.e. how the
knowledge embedded in a method is used. Thus we aim at highlighting the interplay be-
tween explicit development process knowledge and the tacit dimension of development
process knowledge (the craft-like and professional dimensions).

We focus on the phase subsequent to the introduction and organisational implemen-
tation of the development method, i.e. in its situation of use. In order to better understand
the adoption of methods we propose that the level of adoption of the knowledge embedded
in the new development method depends on the perspective of knowledge that we take. In
order to investigate this phenomenon we combine the framework of Iivari (2000) and the
knowledge perspectives of Alavi and Leidner (2001).

The rest of the paper is organised as follows. Firstly, we give a brief introduction to
knowledge work. Then we present the framework and combine it with the perspectives
of knowledge in order to be able to use the expanded framework in our analysis of the
empirical case which is presented in Section 4. Finally, we present our case analysis in
Section 5 and close the paper with a concluding discussion in Section 6.

2. PERSPECTIVES OF KNOWLEDGE

We view knowledge work in a similar fashion as do for example Nonaka and Takeuchi
(1995), Leonard (1995), Davenport and Prusak (1998), and Wiig (1993). This view can be
described in terms of the two sub-areas knowledge-building and knowledge-use. Modern
organisations spend a large effort in organising their knowledge and its use so that knowl-
edge work can be facilitated.

Davenport and Prusak (1998) offer a working definition in which they state that knowl-
edge is “[. . .] a fluid mix of framed experience, values, contextual information, and expert
insight that provides a framework for evaluating and incorporating new experiences and
information. It originates and is applied in the minds of knowers. In organisations, it of-
ten becomes embedded not only in documents or repositories but also in organisational
routines, processes, practices, and norms.”

Nonaka and Takeuchi (1995) and Wiig (1993) define two types of knowledge: explicit
and tacit. Explicit knowledge can be articulated in natural and formal language via e.g.
documents and other types of records. Tacit knowledge has to do with personal knowledge
that is embedded in personal experience and is therefore not so easy to formalise and
record. In this paper we view ISD methods as development process knowledge that has
been made explicit by the method developer. Methods may be perceived as materialised
bodies of knowledge (Wastell, 1999). The knowledge embedded in the method render the
expertise necessary to carry out complex tasks. A main claim by Tolvanen (1998) is that
methods should not be viewed as universally applicable. Instead, method knowledge is
viewed as situational affected at the different levels: organisation, project, and individual.
We also recognize these levels but in addition we claim that they need to be complemented
by taking into account the fact that there are different perspectives of knowledge.

Alavi and Leidner (2001), based on an extensive survey of IS literature, describe six
different perspectives of knowledge present in the IS community:

• Access to information. Knowledge is a condition of access to information.

ISD AS KNOWLEDGE WORK 127

• Capability. Knowledge is the potential to influence action
• Process. Knowledge is the process of applying expertise.
• Object. Knowledge refers to objects, which can be stored and manipulated.
• Knowledge vis a vis data and information. Data is facts. Information is proces-

sed/interpreted data. Knowledge is personalised information.
• State of mind. Knowledge is the state of knowing and understanding.

The perspectives are motivated by the fact that ISD comprises all these views of knowl-
edge. We propose that the first four perspectives are useful when evaluating the use of ISD
methods in practice. According to Alavi and Leidner (2001) the knowledge vis a vis data
and information view is common in IS and IT literature and constitutes one of the funda-
ments for how information systems development is perceived. However, we find this view
more useful when participating in the discussion on data vis a vis information in informa-
tion systems than in the analysis of method use.

The perception of knowledge as objects is relevant in that it implies some sort of rep-
resentation of knowledge. ISD methods can be viewed as knowledge objects that are used
in organisations. The objectified view of knowledge is also present in the area of patterns,
see e.g. Fowler (1997). However, since it is not the same thing to actually use a pattern
as it is to know of it the process view of knowledge is central. Knowledge work implies
the skill of utilising the theoretical subjects of an area in a practical manner, i.e. applying
expertise knowledge in order to build information systems. The process view of knowl-
edge is essential in the perception of knowledge as an ability to apply expertise. Hutchins
(1995) presents a model that describes the process of becoming skilled in a process in the
sense of doing a task without reflecting on every step. In the access to information view
of knowledge the main issue is that information must be organised to facilitate access to
and retrieval of content. The view of knowledge as potential to influence action may be
perceived as an extension to the access view in that it recognises that learning and experi-
ence result in an ability to interpret information and judge what information is necessary
for decision making.

3. ISD AS KNOWLEDGE WORK

In this section we will give a brief overview of the framework for systems development
process knowledge (Iivari, 2000). In short, the framework models ISD work in a hierachy
of paradigms, approaches, methods, and techniques.

Iivari (2000) presents the notion of information systems development (ISD) as knowl-
edge and distinguishes three components in information systems development knowledge:
knowledge of information technology; knowledge of the application domain and ISD
process knowledge. The concept does not refer to codified knowledge only.

The framework consists of four levels (Figure 1). There are four ISD paradigms into
which the six ISD approaches, i.e. structured approach, information modelling, object-
oriented approach, SSM-based approach, speech act-based approach, and trade unionist
approach, are classified. An ISD approach is defined as a class of ISD methods that share
a number of common features, i.e. an ISD approach can form a basis for zero or more
methods (there are approaches which have no methods). Finally, a specific technique can

128 P. BACKLUND

Figure 1. The relationships between ISD paradigms, approaches, methods, and techniques. Based on Iivari
(2000).

be used in one or more methods and a method may contain many techniques. We are
not concerned with the paradigmatic level per se in this paper since we wish to focus
our analysis on the levels that are more explicitly present in the organisation. However,
the epistemological dimension of the paradigmatic level is represented in the views of
knowledge.

Iivari (2000) also provides a categorisation of ISD work into: routine, craft-like, pro-
fessional, and creative knowledge work. Craft-like knowledge work is essentially skill-
based and can only be learned through apprenticeship and practical experience. Skilful
operation is characterised by an ability to recognise problems, diagnosing their cause and
applying appropriate corrective procedures (Keller and Dixon Keller, 1996). Professional
knowledge work is characterised by judgement and adaptation and creative knowledge
work is characterised by intuition and imagination; and is therefore harder to understand
and analyse. The difference between craft-like and professional knowledge work is subtle
and some of the things characterising a skilled craftsman are also applicable for profes-
sional knowledge work. One distinguishing characteristic of professional knowledge work
is its reflective qualities. Hence we may view this in terms of a sliding scale. Craft-like
and professional knowledge work is further characterised by three features (Hirschheim
and Klein, 2003): its close relationship to a person’s identity which require hard work and
mistakes to acquire; its connection to personal emotions and interests which makes it de-
pendent on social interaction and socialisation, and; its holistic nature which makes hard
to split into goals and means.

A combination of these theories results in a view of ISD as being not only influenced
by the hierarchical relationship between paradigms, approaches, methods, and techniques.
What we mean by utilising an approach/method/technique is also affected by the perspec-
tive of knowledge that we take.

4. THE CASE

The study was made at the IT department of a car manufacturer. In order to study
how development process knowledge was utilised in an actual ISD project we followed
a development project for eight months. The general aim of the project is to replace the
numerous system registers in use with one general register. The new system is intended to
provide a more consistent record of the various systems in use, which will aid in making
system maintenance more efficient. Apart from the product goal the project also has two
process goals. The first one: to give the team members an opportunity to use RUP in a real
project setting; and the second one: to introduce new technology and a new development

ISD AS KNOWLEDGE WORK 129

Table 1. The situations in which data was collected

tool. The major risks of the project have been identified as the lack of resources in relation
to the scope of the project and the introduction of the new tool.

The project is staffed by the following roles: one project manager, one architect, four
analysts, four developers, five implementers, and one test designer; with a total number of
eight people involved.

Data was collected by observing project meetings and work sessions taking detailed
field notes, see Table 1. Furthermore, the observation data was complemented by informal
discussions and interviews with project members. We also had access to internal project
documentation in different versions which has given us an opportunity to review how the
different RUP artefacts have evolved over time. The different objects of observation pro-
vide different views of how the development method was used in the project. Moreover,
the different sources cater for source triangulation (Williamson, 2002).

The field notes and the project documentation were analysed using a combination
of qualitative analysis (Patton, 1990) and inductive analysis (Hartman, 1998). The first
part of the analysis work is the content analysis, which aims at identifying, coding and
categorising the primary patterns in the data. This has been done by reading through field
notes and project documentation in order to organise the data for further analysis.

5. AN EMPIRICAL INVESTIGATION OF ISD AS KNOWLEDGE WORK

In this section we will apply the combined framework to analyse an empirical case in
which RUP was used. The analysis was conducted by finding indicators of routine knowl-
edge work, professional knowledge work, and craft-like knowledge work respectively in
the observations made. These indicators will then be discussed in relation to the levels tech-
nique, method, and approach. The aim of the analysis is to show how work was affected by
the factors identified and to describe how the different perspectives of knowledge charac-
terises what it means to use a technique, a method, and an approach respectively. We refer
to this in terms of explicit and implicit method use (Backlund, 2004). Explicit method
use refers to situations when parts of the development method were explicitly used, e.g.
using templates. The explicit dimension of method use is present in the routine aspect of
knowledge work. Implicit method use refers to the tacit knowledge of the developers. This
comprises situations in which the developers carry on their work in the smooth fashion
characterising a craftsman.

The indications of routine knowledge work are closely connected to the technique
level whereas craft-like and professional knowledge work rather characterises implicit

130 P. BACKLUND

method use since they presuppose that the method has been learned and internalised. Hence
we can characterise the interplay between implicit and explicit method use.

5.1. The Technique Level

The technique level typically supports routine tasks. An analysis from the object point
of view gives at hand that we can view the documented techniques and templates in terms of
knowledge objects that can be stored and manipulated. We found several indicators of this
in the routine aspect. The function of the development case is to facilitate process tailoring.
There is a significant amount of duplication from other projects involved in this task. The
duplication is an example of reuse from other projects. However there is a risk that the
new process is not sufficiently tailored if the degree of duplication becomes too high. The
project did not utilise the process as described in the development case, which led to rework
of the development case throughout the project, i.e. the method was continuously adapted
during the project.

There is also the issue of whether a technique is truly implemented. This may for
example be illustrated by a discussion between two developers about whether two use
case descriptions were essentially describing the same thing; where one of the developers
claimed that

‘This is easier to code than to write in a use case description’. [Quotation 1, Developer]

One reason for this may well be the good domain knowledge possessed by the de-
velopers in the project, as they are developing a system internal to their own organisation.
This is indicated by several occasions when the developers stated that

‘We already know what this will look like.’ [Quotation 2, Developer]

In these situations some of the developers experienced parts of the analysis work as
superfluous. Hence a problem occurs when the process goal is to carry out an analysis
using the new method.

In one situation a team member had problems understanding the concept of extension
points in use cases. The document templates have a pre-specified heading for the purpose
but the team members could not agree on whether it was necessary to do that work in the
particular situation. We interpret this as a situation in which routine and craft like work
counteract, thus leading to a shift of focus from the problem to be solved. This is hence
an indication of a technique not being completely implemented from a process point of
view. From a process view of knowledge we find that the skill to apply a new technique is
relevant, e.g. how to carry out use case modelling in an efficient way. We found indicators
of successful use in the use of templates as a basis for carrying out use case modelling.
However, we also saw examples of problems in the organisation of use cases, which led
to problems in ensuring consistency between use cases as well as in remembering the
relations between use cases. This shows that most requirements do not come as neat use
cases. Instead it is a question of modelling different alternatives in order to find the relevant
use cases. The process of re-analysing use cases was going on throughout the project and
the team members had to remind each other to update the documentation.

ISD AS KNOWLEDGE WORK 131

Taking an access to information view in our analysis we find that the new method
being implemented is perceived as large and complex; a fact that overshadows the efforts
in the project. For example, the project manager did not perceive any support from the new
method in her management of the project. This is supported by the fact that only a very
limited part of the RUP project management workflow was actually used during the project.
This may be interpreted in terms of a lack of capability in the knowledge as a capability
to influence action perspective, i.e. the knowledge embedded in the method did not help to
change the actions taken by the project manager.

5.2. The Method Level

The method level is, to a large extent, mapped to craft-like knowledge work. We find
work habits and the explicit use of routines at this level. It is typically at the method level
that we discover old work habits overriding new ones even though new types of artefacts
are produced.

At this level we find the process view of using the new method most important. We
view this in terms of internalising the new method in order to make it a part of the individual
and collective knowledge. Never the less, methods are often viewed as commodities that
can be purchased, which essentially is an objectified view of knowledge. However, the
knowledge embedded in an artefact is not simply re-extracted when the artefact is used
(Hildreth and Kimble, 2002). One symptom of this is the situation described by Fitzgerald
(2001) where the output of a work process is adapted to give the impression that a specific
method has been used.

The use case driven way of work versus the data driven way of work in database
modelling has rendered the developers in the team problems. Most of them have a genuine
database background and according to some of them it is hard to work in a fashion where
they should develop the system by modelling the way that users are supposed to interact
with the system and then identify relevant data; as opposed to identifying relevant data
in the domain. The developers state that this is problematic since they have good domain
knowledge, as they are developing a system internal to their own organisation.

‘We tend to know where we are going. [. . .] You are geared towards a solution. [. . .] You
think in code, rather than discarding that from start.’ [Quotation 3, Developer]

Due to this situation they have preconceived notions of the domain which are prob-
lematic when trying to adopt a use case driven way of work.

Work is typically carried out in a craft-like manner utilising already existing skills.
This is especially apparent when it comes to situations of problem solving. Skilful (craft-
like) operation is characterised by an ability to recognise problems, diagnosing their cause
and applying appropriate corrective procedures (Keller and Dixon Keller, 1996). These
types of actions are typically illustrated by situations in which the team utilised database
modelling techniques in an informal way to understand problems.

Risk management was put forward as a positive aspect of the new method. It was
generally stated among the team members that managing risks had become more in focus.
There was an awareness of such issues before the new method was introduced as well but
the general opinion is that the awareness has been made more explicit, i.e.

132 P. BACKLUND

‘This is the way we are supposed to work according to company standards’ [Quotation 4,
Developer].

We interpret this as an indication of a move towards a more professional attitude in
that it includes a valuation of current work habits and routines.

The major conflict between the new method and old work habits was detected in the
project management aspect of the project. The project manager perceived little value added
by the project management workflow and used the in-house method to manage the project.

‘I haven’t really seen the benefit of RUP project management. I rather turn to my PCM [the
internal project management method] management habits.’ [Quotation 5, Project manager]

This statement was made by the project manager who has about five years of experi-
ence of the in-hose project management method. This is also emphasised by the fact that
only a limited part of the RUP project management workflow was utilised in the project.
However, this is, to some extent, in accordance with the company’s view of how the new
method should be used. The organisation has described a ‘method landscape’ where RUP
is one method in conjunction with a number of in-house methods.

5.3. The Approach Level

Object orientation is perceived as problematic by the developers since they tend to
think ahead, focusing on the fact that they know that there is going to be a relational data-
base solution underlying the future system. This is seen as a problem when trying to adopt
an object oriented approach as it obstructs the modelling efforts. We may view this in terms
of a conflict between the object oriented model and the relational model. Such a conflict,
on the approach level, may be hard to resolve as it involves a change of the personal mind-
set and problem solving strategies. The fact that the developers turn to data modelling
techniques when they encounter problems is an indication of this. Furthermore, it is also
a fact that technical problems in connection to database connectivity had to be solved in
the design phase of the project. Finally, some of the developers put forth the fact that they
could not foresee object oriented databases in the organisation due to company policies
and legacy systems in use, something which is also obstructing the new approach.

One of the developers also expressed doubts about the organisation’s ability to take
in the new approach, present in RUP, in terms of how the six best practices (develop it-
eratively, manage requirements, use component-based architectures, use visual modelling,
continuously verify software quality, and control changes to software) are used. The devel-
oper in question claimed that there is a focus on visual modelling only, at the expense of
the other practices. This, in turn, is an indication of the fact that the new approach is not
fully understood, according to the same person.

Iterative work is cumbersome for many reasons since it is hard to estimate both the
extent and time consumption of an iteration. The problems that occurred in the project were
associated with the small project scope that did not actually call for advanced iteration
planning. Hence, the need and motivation for iteration planning was low and therefore
iterative work was not applied as described by RUP. Never the less, much of the work
carried out was iterative in that the team returned to artefacts and developed them further,

ISD AS KNOWLEDGE WORK 133

even though this was not explicitly planned. We interpret this in terms of the developers
being used to working iteratively in some sense (the process view of knowledge) but it is
not that easy to make it explicit in planning and documentation.

‘It is not easy for a project manager to control iterative work. [. . .] you tend to go on where
you stopped the last time.’ [Quotation 6, Developer with project management experience]

This illustrates the need to focus on releases in iterative planning. We did not find any
indications of iterative work causing problems due to fixed contracts as reported in (Mad-
sen and Kautz, 2002). We attribute some of this effect to the low priority of the project. We
also see that iterative work makes sense from a software engineering perspective.

The use case driven approach was frequently discussed in various situations. One
problematic issue is the order in which to design and implement the use cases. RUP pro-
poses an approach where the most complicated use cases should be attended to first. This
was perceived as problematic since the functionality of and output from some of the less
complex use cases was considered useful in building the more complex ones. The problem
was resolved by a risk management approach that was based on a more thorough analysis
of those critical use cases. However, the use cases were built in a sequence that allowed
the developers to use and reuse as much code and output as possible. The strategy to code
for reuse also led to more sophisticated solutions than necessary, since the team saw future
use for solutions designed in a certain way. Such a strategy may be counterproductive for
the specific project but productive for the organisation as a whole. One major reason for
adopting the strategy is the fact that the project is to be a reference project for the rest of
the organisation.

6. DISCUSSION AND CONCLUSION

We have demonstrated how the framework presented by Iivari (2000) can be extended
to comprise the different knowledge perspectives (Alavi and Leidner, 2001) and then be
applied on an empirical case to analyse the incorporation of a new development method.
By doing this, we have been able to highlight the interaction between explicit and tacit
development process knowledge. These two contributions extend the existing theory and
highlight the knowledge aspects of information systems development respectively. The
main contributions of the paper are the extension of the framework for ISD as knowledge
work and an application of the extended framework to analyse an empirical case.

The indications of routine knowledge work are closely connected to an explicit use
of the ISD method whereas craft-like, professional, and creative knowledge work rather
characterises implicit method use at the method and approach levels respectively, since
they presuppose that the method has been learned and internalised. Hence we can describe
the interplay between implicit and explicit method use. The indicators are summarised in
Table 2.

When comparing our findings with Madsen and Kautz (2002) we find that the adoption
of the underlying development perspective in the organisation has been changed to some
extent, whereas Madsen and Kautz (2002) report on a waterfall model supplemented with
new tools and techniques. Moreover, we find the explanation for this phenomenon in the

134 P. BACKLUND

Table 2. Summary of the case findings

Table 3. Applying the extended framework. The level of method incorporation depends on
the perspective of knowledge

fact that there are differences in analysing the work process depending on what perspective
of knowledge we adopt.

We have shown how the different indicators of knowledge work can be mapped to the
framework and connected to the different perspectives of knowledge. An overview of the
findings is presented in Table 3. The extent to which the method can be said to be im-
plemented in the organisation decreases when the capability and process perspectives of
knowledge are used. Our interpretation of this is that it is harder to change the process di-
mension of knowledge since it involves the internalisation of new knowledge as opposed to
an objectified view which does not acknowledge such problems. By adopting a knowledge
based view of ISD it becomes possible to refine the analysis of method use in organisations.
For example, it can provide a part of the explanation to why the time it takes to introduce
a new method is often underestimated.

We can also interpret Table 3 horizontally in order to highlight the explicit/tacit di-
mensions of knowledge. The method and approach levels are more geared towards the

ISD AS KNOWLEDGE WORK 135

tacit dimension of ISD. The further down we move the harder it is to change a work habit,
since it involves changing already internalised knowledge and essentially skilled based
abilities. We view this as an explanation to the problem of introducing new methods and
approaches, as reported by e.g. Kautz and McMaster (1994) and Middleton (1999).

The view of knowledge is important when we analyse if and to what extent a new
method has been implemented in an organisation. There is no straight forward answer to
the question whether the new method has been implemented or not. The answer to a large
extent depends on the perspective of knowledge that we take when conducting the analysis.
In that sense we can use the combined framework as a diagnosis tool for analysing method
adoption.

Obviously there are limitations to a single case study made in one organisation. Hence
we do not aim at making statistical generalisations from our material. We rather aim at a
contribution of rich insight, as described by Darke, Shanks, and Broadbent (1998). As no
organisations are alike, the combined framework is useful as a provider of general knowl-
edge about method use in organisations. Its strength thus lies in pointing out the complexity
of method use. Furthermore, we argue that the empirical study of information systems de-
velopment as knowledge work adds to the understanding of the area. The largest limitation
is perhaps the low priority of the project since it may have an effect on the involvement
of the developers. However, we do not judge this effect as severe since the motivation for
using new tools and learning the new process have been high. Furthermore, the application
under development is the object of great interest in the organisation, which should serve as
a motivator.

ACKNOWLEDGEMENTS

The author wishes to thank Benkt Wangler and Anne Persson for their valuable advice.
This research is sponsored by the Swedish Knowledge Foundation (KK-stiftelsen).

REFERENCES

Alavi, M., and Leidner, D. E., 2001, Review: Knowledge management and knowledge management systems:
conceptual foundations and research issues, MIS Quarterly 25:107–133.

Backlund, P., 2004, Adopting the Knowledge Embedded in Development Methods – The Challenge of Aligning
Old and New Practices, in: The 12th European Conference on Information Systems (ECIS 2004) T. Leino,
T. Saarinen, and S. Klein, eds., Turkku, Finland.

Brinkkemper, S., Saeki, M., and Harmsen, F., 1998, Assembly Techniques for Method Engineering, in: CAiSE’98,
Vol. LNCS 1413, B. Pernici and C. Thanos, eds., Springer, Pisa.

Darke, P., Shanks, G., and Broadbent, M., 1998, Sucessfully completing case study research: combining rigour,
relevance, and pragmatism Information Systems Journal 8:273–289.

Davenport, T. H., and Prusak, L., 1998, Working Knowledge: How Organisations Manage What they Know,
Harvard Business school, Boston, Mass.

Fitzgerald, B., 1997, The use of systems development methodologies in practice: A field study, The Information
Systems Journal 7:201–212.

Fitzgerald, B., 2001, Method-in-Action: A Framework for IS Development, Lecture notes, University of Skövde.
Fitzgerald, B., Russo, N. L., and O’Kane, T., 2002, Software development method tailoring in Motorola, Com-

munications of the ACM 46:64–70.
Fowler, M., 1997, Analysis Patterns Reusable Object Models, Addison-Wesley, Menlo Park, California.
Hartman, J., 1998, Vetenskapligt tänkande Från kunskapsteori till metodteori, Studentlitteratur, Lund.

136 P. BACKLUND

Hildreth, P. M., and Kimble, C., 2002, The duality of knowledge, Information Research 8.
Hirschheim, R., and Klein, H., 2003, Crisis in the IS field? A critical reflection on the state of the discipline,

Journal of the Association for Information Systems 4:237–293.
Hutchins, E., 1995, Cognition in the Wild, MIT Press, Cambridge, Massachusetts.
Iivari, J., 2000, Information Systems Development as Knowledge Work: The body of systems development

process knowledge, in: Information Modelling and Knowledge Bases XI, E. Kawaguchi, I. A. Hamid,
H. Jaakkola, and H. Kangassalo, eds., IOS Press.

Jacobson, I., Booch, G., and Rumbaugh, J., 1999, The unified process, IEEE Software, pp. 96–102.
Kautz, K., and McMaster, T., 1994, Introducing structured methods: An undelivered promise? – A case study,

Scandinavian Journal of Information Systems 6:59–78.
Keller, C. M., and Dixon Keller, J., 1996, Cognition and tool use, Camebridge University Press, Cambridge.
Kruchten, P., 2000, The Rational Unified Process An Introduction Second Edition, Adison-Wesley, Reading,

Massachusetts.
Leonard, D., 1995, Wellsprings of Knowledge Building and Sustaining the Source of Innovation, Harvard Business

School Press, Boston.
Madsen, S., and Kautz, K., 2002, Applying System Development Methods in Practice – The RUP Example, in:

Information Systems Development (ISD), J. Grundspenkis, M. Kirikova, W. Wojtkowski, G. Wojtkowski,
S. Wrycza, and J. Zupancic, eds., Kluwer Press, Riga.

Middleton, P., 1999, Managing information system development in bureaucracies, Information and Software
Technology 41:473–482.

Nonaka, I., and Takeuchi, H., 1995, The knowledge-creating company: How Japanese companies create the
dynamics of innovation, Oxford University Press, New York.

Patton, Q. M., 1990, Qualitative Evaluation and Research Methods, SAGE Publications, London.
Ralyté, J., and Rolland, C., 2001, An Assembly Process for Method Engineering, in: CAiSE’01, K. Dittrich,

A. Geppert, and M. Norrie, eds., Springer, Interlaken, Switzerland.
Russo, N. L., Hightower, R., and Pearson, M., 1996, The Failure of Methodologies to Meet the Needs of Cur-

rent Development Environments, in: The Fourth Conference of the British Computer Society Information
Systems Methodologies Group, N. Jayaratna and B. Fitzgerald, eds., BCS Publications, Cork, Ireland.

Tolvanen, J.-P., 1998, Incremental Method Engineering with Modeling Tools Doctoral Thesis, Department of
Computer Science and Information Systems, Universtiy of Jyväskylä.

Wastell, D. G., 1999, Learning dysfunctions in information systems development: Overcoming the social defenses
with transitional objects, MIS Quarterly 23:581–600.

Wiig, K. M., 1993, Knowledge Management Foundations, Schema Press, Arlington.
Williamson, K., 2002, Research methods for students, academics and professionals Information management and

systems, Centre for Information Studies, Wagga Wagga.

CUSTOMIZING TRACEABILITY IN A SOFTWARE
DEVELOPMENT PROCESS

Patricio Letelier, Elena Navarro, and Víctor Anaya∗

1. INTRODUCTION

Requirements management is a recognized key practice that deals with the definition
and change of software requirements, and should be properly integrated as a subprocess
in the software development process (Corriveau, 1996). The success of this subprocess de-
pends on how well defined the relationships among requirements and other kinds of speci-
fications generated by the software process are. Requirements traceability is defined as the
ability to describe and follow the life of a requirement in both directions, towards its origin
or towards its implementation, passing through all the related specifications. Requirements
management and especially requirements traceability can be expensive activities. The de-
tail level in these activities and the collected information must be configured according to
the particular project needs, in order to obtain a positive cost-benefit ratio.

Nowadays, the effectiveness in traceability practices differs considerably among de-
velopment teams. Some problems that can explain this situation are: there are not detailed
guidelines regarding the kinds of information that must be gathered for traceability, the
context in which such an information must be used, and the lack of consensus about the
semantic for the links between specifications (Ramesh et al., 1998; 2001).

Requirements have been traditionally specified using textual forms of specification
above all, mainly using natural language. Consequently, tools supporting requirements
management have been focused on the manipulation of text pieces. These textual-expressed
requirements are linked forming a traceability graph which is used to manage the require-
ments and their traceability. In this approach, the specifications generated in other activities
of the development process can also be added to the traceability graph, representing them
as text (normally using the name of the specification, for instance: the name of the class,
attribute or operation). Test specifications are also mainly textual, therefore they can be

∗ Patricio Letelier and Víctor Anaya, Department of Information Systems and Computation, Polytechnic Uni-
versity of Valencia, Camino de Vera s/n, Valencia - 46022 (Spain), Phone: +34 96 387 7007, ext. 73589, Fax:
+34 96 387 7359, {letelier | vanaya}@dsic.upv.es. Elena Navarro, Computer Science Department, University
of Castilla-La Mancha, Avda. España s/n, Albacete - 02071 (Spain), Phone: +34 967 599200 – ext 2461, Fax:
+34 967 599224, enavarro@info-ab.uclm.es.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 137

138 P. LETELIER ET AL.

handled in a similar way. Even though several CASE tool vendors claim that their products
offer a good integration among requirements management, modeling and test, the solution
is usually based on import/export mechanisms. Another suggested alternative is to spec-
ify explicitly in additional diagrams the traceability links between model elements. But
apart from not covering all kinds of specifications, due to the complexity of the traceability
graph, this is not viable, even for small systems.

In this work, we show an approach to face these issues by providing a set of guidelines
to configure requirements traceability. In this way, traceability can be customized according
to the specific needs of the project.

On the other hand, regarding the software modeling, UML (OMG, 2002) has quickly
become the most popular notation for object-oriented modeling. Thanks to the definition
of its metamodel and the included extension mechanism by defining profiles, UML offers
an excellent opportunity to establish a common framework for representing specification
of requirements, design and test. We use this extension mechanism to develop a framework
based on a traceability metamodel. This is defined as a UML profile, integrating different
kinds of traceability information. In this way, all involved artifacts have an homogenous
representation compliant with UML. Our approach can be applied to any software process
based on UML.

This paper is organized in seven sections. Following this introduction, section two
describes our metamodel for requirements traceability. In section three we present the def-
inition of the metamodel by means of a UML profile. In section four we describe the tasks
for configuring the traceability in a project and the concepts of implicit and explicit trace-
ability. The fifth section illustrates the application of our approach using a small project
based on Rational Unified Process (RUP) and using SharpTrace, our tool which extends
Rational Rose’s tool. The sixth section describes some related works and specific tools for
requirements management, from the perspective of frameworks for requirements traceabil-
ity. Eventually, the seventh section presents our conclusions.

2. A METAMODEL FOR REQUIREMENTS TRACEABILITY

Before presenting our metamodel for requirements traceability we will summarize the
information needs for requirements management. Next we indicate the kinds of informa-
tion associated to requirements traceability and their possible uses (adapted from Dömges
et al., (1998)):

• Traceability links between different specifications allow validating that the system
functionality covers the stakeholders expectations, that there is not superfluous
functionality implemented, and performing impact analysis when requirements
change.

• Contribution structures (Gotel et al., 1997), that is, the links between stakeholders
and specifications allow improving the communication and cooperation among
stakeholders, and guaranteeing that the contribution of every individual is consid-
ered and registered.

• Rationale associated to specifications, including alternatives, decisions, assump-
tions, etc. contribute to improve the understanding and acceptance of the sys-

CUSTOMIZING TRACEABILITY IN A SOFTWARE DEVELOPMENT PROCESS 139

Figure 1. Metamodel for requirements traceability.

tem from the stakeholders, and to improve change management avoiding studying
again considerations already excluded. This is possible thanks to making accessi-
ble the solutions, their foundations, and the excluded alternatives.

In Figure 1, by means of a class diagram, we present a core metamodel for require-
ments traceability. Classes represent entity types and associations represent types of trace-
ability links.

Globally speaking, we are concerned with two types of entities: TraceableSpecifica-
tion and Stakeholders. Stakeholders are responsible for creating and modifying specifica-
tions. A TraceableSpecification could be any software specification with a certain gran-
ularity level, that is, it can be a document, a model, a diagram, a section in a document,
a text specifying a non-functional requirement, a use case, a class, an attribute, etc. The
granularity for a TraceableSpecification is defined by means of the aggregation with the
role name partOf.

The metamodel showed in Figure 1 covers the four perspectives of traceability infor-
mation included in the works by (Ramesh and Jarke, 2001): requirements, rationale, allo-
cation of requirements to model and implementation elements, and finally, test. Moreover,
our metamodel incorporates pre-traceability and post-traceability aspects (Jarke, 1998)
and (Pohl, 1996). Pre-traceability allows going from the origins of the requirements until
their explicit specification in the Software Requirements Specification (SRS) document or
vice versa. Post-traceability allows going from the SRS to the subsequent software and
test specifications or vice versa. In both kinds of traceability our metamodel provides the
types of links responsibleOf and modifies to determine the Stakeholders involved. For
pre-traceability the type of link traceTo is available between requirements expressed in
different abstraction levels and rationaleOf for rationale associated to such requirements

140 P. LETELIER ET AL.

specifications. The post-traceability is supported by the types of links traceTo, validatedBy,
verifiedBy, assignedTo and rationaleOf.

3. UML CONTEXT FOR THE METAMODEL

To make simple and practical the application of our metamodel it is convenient to
integrate all types of entities and links in a common context. Considering that: (a) UML
specifications are more precisely defined and accepted than other specifications, (b) UML
provides extension mechanisms (stereotypes, tagged values and constraints) to incorpo-
rate new types of specifications, and (c) UML specifications are supported by most of the
CASE tools, it is obvious that it would be appropriate to integrate all types of specifica-
tions of our metamodel in the context of UML. Thus, for each type of entity and type of
link a correspondence with a UML model element will be established. To do this, UML
metaclasses will be chosen as base classes to establish new stereotypes. When the type of
entity or type of link matches up semantically with a UML metaclass, this metaclass will
be used directly without defining a new stereotype. The result of this analysis is a UML
profile for our traceability metamodel. Next we give details about how such integration is
performed.

Traceability entities in the UML context. For the entity Stakeholder the choice is
simple; the model element Actor is the metaclass used as a base class to define the corre-
sponding stereotype. Other types of entities should have the possibility of permitting as-
sociations in order to establish aggregation relationships between them. According to this,
the selected metaclass should be among the UML elements that are child classes of Classi-
fier. For entities corresponding to non-UML standard specifications, the Classifier named
Artifact (added in UML version 1.4) has been chosen. Artifact has some predefined stereo-
types, among them «document», which is the one we will use to represent documents and
document sections. For types of entities that match up directly with UML model elements
(UML UseCase and OtherUML Specification) we will use the UML model element itself.
On the other hand, we will use the UML Package to group and organize UML artifacts and
Stakeholders. Optionally we will add the predefined stereotypes model or subsystem, de-
pending on whether we are defining a model of a system/subsystem or dividing the system
in subsystems, respectively.

Traceability links in the UML context. Types of links will be represented as UML
model elements of Abstraction type, except the relationship partOf, which is represented
by aggregation or composition between specifications using the metaclass Association as
the base class. Although different types of links are modeled by different associations in
our traceability metamodel, they are not independent, in fact, the type of link traceTo is
a generalization of all other types of links. The type of link traceTo will be coincident
with the stereotype «trace», predefined in UML. In UML a trace dependency indicates
a historical or process relationship between two elements that represent the same concept
without specifying derivation rules between them (OMG, 2002). Excepting the type of link
partOf, other types of links will be child stereotypes of the predefined stereotype «trace».

Figure 2 and Figure 3 show the UML representation for types of entities and types of
links included in our traceability metamodel. This representation constitutes an essential
UML profile for requirements traceability.

CUSTOMIZING TRACEABILITY IN A SOFTWARE DEVELOPMENT PROCESS 141

Figure 2. Stereotypes for stakeholder and core textual specifications.

Figure 3. Stereotypes for traceability links.

4. CONFIGURING TRACEABILITY

In requirements traceability we can identify two activities: (a) configuration of trace-
ability according to the project needs, and (b) specifying and exploiting traceability infor-
mation during the software development and maintenance. We will focus on the configura-
tion activity by applying our UML profile for traceability. We will use the term artifact in a
wider sense, beyond the definition provided in UML, and in the same way as most software
processes do (for instance RUP). Thus, we will consider as artifacts all documents, files
and other physical elements generated or used during the software development process,
in addition, we will call artifacts any UML model element. The profile will act as a frame-
work for establishing the types of artifacts relevant for traceability and the types of links
between them. Consequently, traceability links established during the software develop-
ment or maintenance are verified against the traceability configuration (for instance, for a
particular project, certain types of links are valid only between certain types of artifacts).

142 P. LETELIER ET AL.

Configuring traceability in a project includes the following tasks:

1. Extend the framework with the definition of the artifact types of the software
development process used in the project and that are not considered in the profile.

2. Define aggregation relationships between artifacts. This task may not be neces-
sary for all types of artifacts if such relationships are predefined and included in
the description of types of artifacts.

3. Select the artifact types that will be traced. These are a subset of the artifact types
used in the project.

4. Establish types of traceability links that are relevant to the project. The types of
links are established between pairs of types of artifacts selected in task 3. In this
case, it may also be necessary to extend the traceability profile including new
types of links as stereotypes specializations.

5. Define criteria to implicitly derive traceability links and what types of links (es-
tablished in task 4) will use these criteria. In the next subsection the concepts
“explicit traceability” and “implicit traceability” are explained.

4.1. Explicit and Implicit Traceability

During the configuration of requirements traceability only the types of links important
for the project are established (this is performed in task 4). However, even with this restric-
tion, the effort associated to gather the information of traceability links can be considerable.
Thus it is important to provide mechanisms that allow deriving automatically part of those
traceability links. We will refer to “explicit traceability” when talking about those trace-
ability links that are manually specified. Consequently, we will use “implicit traceability”
when referring to those traceability links that are automatically derived according to some
established criteria.

Next we describe an example to illustrate explicit and implicit traceability. Supposing
the following traceability configuration (obtained as a result of tasks 1, 2, 3 and 4):

• Types of artifacts: A, B, C, D, E and F.
• Aggregation relationships: A ♦− B, D ♦− C.
• Type of links that are important to the project:

B
«assignedTo»−−−−−−−−→ C,B

«assignedTo»−−−−−−−−→ E,

B
«assignedTo»−−−−−−−−→ D, D

«assignedTo»−−−−−−−−→ E and

E
«traceTo»−−−−−−−−→ F

In addition, we have the following artifacts instances (with their corresponding types):
a : A, b : B, c : C, d : D, e : E and f : F . Figure 4 shows a traceability graph associated
to our example, where the following explicit traceability has been intro-duced: aggrega-

tion relationships a ♦− b and d ♦− c, and the traceability links b
«assignedTo»−−−−−−−−→ c and

d
«assignedTo»−−−−−−−−→ e. Using transitivity as a simple criterion for implicit traceability, links

b
«assignedTo»−−−−−−−−→ d and b

«assignedTo»−−−−−−−−→ e in Figure 4 could be derived. Others criteria for
implicit traceability are described in (Letelier, 2002).

CUSTOMIZING TRACEABILITY IN A SOFTWARE DEVELOPMENT PROCESS 143

Figure 4. Example of a traceability graph.

5. CONFIGURING TRACEABILITY WITH SHARPTRACE

The presented metamodel and the corresponding profile are independent from the soft-
ware development process, the only assumption is that the process is based on UML. There-
fore, for illustrating the application of our approach we have chosen RUP as a process,
mainly because it offers enough details and variety regarding the available artifacts. RUP
is a Rational Software product based on the Unified Software Development Process (Ja-
cobson et al., 1999).

We have developed a prototype tool named SharpTrace (Anaya et al., 2002), which
implements the UML profile for traceability defined in (Letelier, 2002). It has been devel-
oped as an add-in, which extends Rational Rose so that it is able to integrate UML and
no-UML specifications by defining new artifacts and link types of traceability. In addition,
SharpTrace includes a traceability configuration process that provides guidelines for this
adaptation. Thus, the extended CASE is able to work with all kinds of artifacts in the same
context, all of them are saved in the same Rational Rose repository (.mdl file).

We have specified an example based on an information system for a virtual shop.
According to the traceability configuration process, the first step is the definition of the
artifact types that will be used in the project. For each type of artifacts the user of the
tool must check whether the UML basic metamodel has a corresponding construct that
represents that concept. If it does not exist, the user of the tool checks if there is a stereotype
in the UML profile that represents that concept. If both of the previous checks fail, the UML
profile should be extended with a new stereotype. In order to do this, we find the stereotype
in the UML profile that has the closest meaning to the concept to be represented. After that,
we define a subclass from this stereotype.

Next table shows the list of artifact types used in the example and the stereotypes from
which they are defined. When the base stereotype cell is empty, the RUP artifact can be
directly represented by the corresponding metaclass in the UML metamodel.

In order to improve requirements management, each artifact type has a set of attributes.
For instance, a software feature can have attributes such as: state (proposed, approved or
incorporated), benefit (critical, important or useful), estimated effort, risk and stability (for

144 P. LETELIER ET AL.

Table 1. List of Artifacts

Figure 5. Modifying the UML Profile for Traceability.

these last attributes, the usual values are: high, medium or low). SharpTrace allows easily
adapting the profile for traceability (see Figure 5).

Afterwards, we select the artifacts types that we want to trace. These are a subset of
those defined in task 1. Figure 6(a) shows how this task is done with SharpTrace.

In the next step, we define the traceability link types. We could define what artifact
types can be linked using a specific traceability link. This information establishes restric-
tions about what links can be applied to artifacts. SharpTrace provides by default the trace-
ability link types shown in Figure 6 (b) (those specified in the core metamodel).

SharpTrace allows defining new traceability link types. These new links are subclasses
from those provided by the UML profile for traceability. Thus, a new link type inherits con-
straints from its parent. Additionally, the inherited constraints can be restricted even more.

CUSTOMIZING TRACEABILITY IN A SOFTWARE DEVELOPMENT PROCESS 145

Figure 6. (a) Relevant Artifact Types for Traceability (Virtual Shop) (b) Establishing interesting Trace Link
Types (Virtual Shop).

The existence of various link types for traceability allows richer analysis of traceability
information.

When the traceability configuration process is concluded, SharpTrace enables the
specification of traceability links only for traceable artifacts (those defined in traceabil-
ity configuration). When selecting a traceable artifact SharpTrace supplies a list of link
types according to the configuration (see Figure 6 (b)). When selecting a link type in this
list only the reachable artifacts are displayed.

Traceability links have direction. Therefore, the traceability links of an artifact can be
classified as incoming or outgoing links (“from” or “to” links, respectively). The incoming
links are those coming from a certain artifact to the selected one. The outgoing links are
those established from the selected artifact to other artifacts. Taking into account the list
of traceable artifacts, the user marks the artifacts among he wants to record traceability
links. Task 4 provides us with guidelines to the specification of these traceability links. In
the example, the “sales manager” proposes the user needs 1, 2, 3 and 4, therefore he is
responsible for them (see Figure 7).

6. RELATED WORKS

Ramesh and Jarke (2001) offer a wide vision about the information needed in require-
ments traceability. Their study is based on the analysis of industrial software development
projects. They identify two segments of traceability users and suggest two corresponding
traceability metamodels (one is a simplification of the other). The most complete meta-
model has 31 types of entities (metaclasses in the metamodel) and about 50 types of links.
In addition to the complexity associated to the diversity of types of entities and links, a

146 P. LETELIER ET AL.

Figure 7. Outgoing “responsible of” links from Sales Manager.

precise definition for those elements is not provided, which makes the application of the
metamodel a difficult task. Furthermore, all analysis and design specifications are only
represented by System Subsystem Component, that is, there is no more granularity or con-
nection with any specific modeling notation. Eventually, the only suggested mechanism
to configure the metamodel according to the project needs is to cut or to add parts of the
metamodel

Toranzo and Castro (1999) present a traceability metamodel defined by multiple views,
each of them associated to a certain kind of user for the traceability information (Project
Manager, Requirement Engineer or Software Engineer). Currently there is no configuration
mechanism to tailor the traceability to the project needs. Furthermore, the granularity level
of the artifacts is too thick, working with documents and diagrams.

Spence and Probasco (1998) present several strategies for traceability when a Use Case
driven process is used (as the case of RUP). Each strategy is described with a simple trace-
ability metamodel, establishing the types of artifacts and links. All the strategies suggested
only consider links between artifacts to requirements (User Needs, Software Features, Use
Cases, etc.). The connection with artifacts for modeling and test is left implicit according
to what a Use Case driven process establishes (Use Case analysis or design realization,
functional test for each use case, etc.). Furthermore, the only type of link they use is our
equivalent traceTo.

Similarly, Leite et al., (1995; 1997) provide a framework for elicitation and organi-
zation of requirements expressed in natural language. They establish traceability links be-
tween requirements but they do not include traceability to other subsequent artifacts.

On the other hand, requirements management tools offer a satisfactory treatment for
textual specifications but they have inconveniences when integrating those specifications
with others not expressed textually. This integration is based on import mechanisms con-
necting with a CASE tool. Usually, in this approach the names of the modeling elements
are handled in the context of the requirements management tool. A tool frequently cited is

CUSTOMIZING TRACEABILITY IN A SOFTWARE DEVELOPMENT PROCESS 147

TOOR (Traceability of Object-Oriented Requirements), presented by Pinheiro and Goguen
in (Pinheiro et al., 1996), it is based on FOOPS, a formal object-oriented language. Curi-
ously, there are not any works about TOOR after this paper. However, its formal approach
and the functionality described remain interesting.

RequisitePro is a Rational Software tool for requirements management. RequisitePro
provides a set of templates adapted to different kind of projects. In RequisitePro all the ar-
tifacts are called requirements (even those defined in design and implementation phases),
which is a bit confusing. The provided templates can be adapted, but the supplied solution
lacks of guidelines. RequisitePro only provides one type of traceability link, the traditional
“trace-to”. The tool has a poor integration with Rational Rose, due to it only allows trace-
ability links between requirements defined in RequisitePro and Use Cases defined in Ra-
tional Rose. Consequently, it is not possible to establish links with other types of analysis
or design artifacts.

Another well known requirements management tool is Telelogic DOORS. This tool
can be connected with most popular CASE tools, using similar import mechanisms to Ra-
tional RequisitePro ones, but providing more functionality and facilities to change from the
DOOR context to the CASE tool context. Anyway, the user must work with two separated
environments, and depending on whether he/she wants to do requirement management or
software modeling, he/she must switch the environment.

All the mentioned tools have inconveniences as far as the configuration of traceability
to the project needs is a concern. They are not oriented to a specific software process and
although some of them allow defining types of requirements, they do not offer a framework
for configuring requirement traceability. Eventually, all the definitions and interpretation
about the traceability information is left to the user of the tool.

7. CONCLUSIONS

Requirements traceability is the key to achieve a successful requirements management
process. However, there is no consensus about the more suitable strategies to perform effec-
tive requirements traceability. Thus in practice, requirements traceability presents different
levels of satisfaction and acceptance in software development projects. Consequently, sup-
port provided by tools is not the most appropriate.

In this work we have presented a traceability metamodel integrating textual specifica-
tions (for requirements, rationale and tests) with standard UML specifications, using the
UML context itself. Thus, from the point of view of requirements traceability, our meta-
model offers a core framework for types of entities and types of traceability links that can
be customized to a particular project using the extension mechanisms provided by UML.
The traceability metamodel has been translated to a UML profile which allows an easier
application in a CASE tool supporting UML.

Additionally, we have presented a configuration process for requirements traceabil-
ity based on our UML profile for requirements traceability. Our approach including the
metamodel, the corresponding UML profile and the configuration process only have the
assumption of using a UML-based process, but it is independent of any particular process.
However, to illustrate our approach we have presented an example using RUP as a devel-
opment process. We have developed a tool called SharpTrace that implements the UML

148 P. LETELIER ET AL.

profile for traceability, extending Rational Rose. SharpTrace provides Rational Rose with
mechanisms to work with non-UML artifact types. It is also possible to define and follow
the artifacts all over their life with any level of granularity, thus a more precise analysis of
the traceability information can be carried out.

We are working on the implementation of mechanisms to define criteria for automatic
derivation of traceability links. We are also validating our approach with some projects.
In addition, we want to extend SharpTrace with mechanisms to analyze the traceability
information.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish CICYT project DYNAMICA
TIC2003-07776-C02-02.

REFERENCES

Anaya, V., and Letelier, P., 2002, SmarTTrace: A tool for requirements traceability in UML-based projects, in:
Proceedings of the V Workshop on Requirements Engineering, O. Pastor and J. Sánchez Díaz, eds., pp.
210–224.

Corriveau, J.-P., 1996, Traceability Process for large OO Projects, IEEE Computer 29(9):63.
Dömges, R., and Pohl, K., 1998, Adapting traceability environments to project-specific needs, Communications

of ACM 41(21):54.
Gotel, O., and Finkelstein, A., 1997, Extended requirements traceability: results of an industrial case study, in:

Proceedings of 3rd International Symposium on Requirements Engineering, IEEE Computer Society Press,
Los Alamitos, pp. 169–178.

Jacobson, I., Booch, G., and Rumbaugh, J., 1999, The Unified Software Development Process, Addison-Wesley,
Boston.

Jarke, M., 1998, Requirements tracing. Communications of the ACM 41(12):32.
Leite, J. C., and Oliveira, A., 1995, A client oriented requirements baseline, in: Proceedings of the Second IEEE

International Symposium on Requirements Engineering, 1995, IEEE Computer Society Press, Los Alami-
tos, pp. 108–115.

Leite, J. C., Rossi, G., Balaguer, F., Maiorana, V., Kaplan, G., Hadad, G., and Oliveros, A., 1997, Enhancing a
requirements baseline with scenarios, Requirements Engineering 2(4):184.

Letelier, P., 2002, A Framework for requirements traceability in UML-based Projects, 1st International Workshop
on Traceability in Emerging Forms of Software Engineering; http://ase.cs.ucl.ac.uk/.

OMG, 2002, Unified Modeling Language Specification. UML 1.4 with Action Semantics, (January, 2002);
http://www.omg.org.

Pinheiro, F., and Goguen, J., 1996, An object-oriented tool for tracing requirements, IEEE Software 13(2):52.
Pohl, K., 1996, Enabling requirements pre-traceability, in: Proceedings of the 2nd International Conference on

Requirements Engineering, IEEE Computer Society Press, Los Alamitos, pp. 76–44.
Ramesh, B., 1998, Factors influencing requirements traceability practice, Communication of the ACM 41(12):37.
Ramesh, B., and Jarke, M., 2001, Towards reference models for requirements traceability, IEEE Transactions on

Software Engineering 27(1):58.
Rational RequisitePro, 2002; http://www-306.ibm.com/software/awdtools/reqpro/.
Spence, I., and Probasco, L., 1998, Traceability studies for managing requirements with use cases, Ra-

tional Software White Paper No. 22701; www-106.ibm.com/developerworks/rational/library/content/
03July/getstart/RP/ReqPro PM.pdf.

Telelogic DOORS, 2002; http://www.telelogic.com/products/doorsers/doors/index.cfm.
Toranzo, M., and Castro, J., 1999, A comprehensive traceability model to support the design of interactive sys-

tems, in: Lecture Notes in Computer Science 1743, A. M. D. Moreira and S. Demeyer, eds., Springer-Verlag,
Heidelberg, pp. 283–284.

AGENT-ORIENTED INFORMATION SYSTEMS
DEVELOPMENT USING OPEN AND THE AGENT

FACTORY

B. Henderson-Sellers, Q.-N. N. Tran, J. Debenham, and C. Gonzalez-Perez∗

1. INTRODUCTION

Information systems development (ISD) requires the underpinning of a high quality
methodology (which includes elements to describe both the process of development and
the work products which are the consumables used and produced by the process). However,
each ISD project is different and the best-fit methodology is also consequently different.
This means that a one-size-fits-all methodology will only rarely give ideal results (Cock-
burn, 2000), when the tenets of the methodology designer coincidentally coincide with
those of the particular project.

Rather than seeking an all-encompassing methodology, we advocate here the use of
method engineering (Brinkkemper, 1996) or, preferably, situational method engineering or
SME (Ter Hofstede and Verhoef, 1997). SME involves defining a repository of method
fragments together with techniques for assembling these method fragments or method
chunks (Rolland and Prakash, 1996) into site-specific methodologies specifically tuned to
the situation of the project at hand (Brinkkemper, 1996) i.e. one that meets the requirements
of a particular project. Thus, selection of method fragments is individualized and “tailored”
to the specific requirements of the organization and project using construction guidelines
supplied with the repository (Brinkkemper et al., 1998; Ralyté and Rolland, 2001). Many
papers describing situational method engineering tend to focus on the process engineering
element rather than the combination of process and product viz. the “methodology”. Since
“process” is therefore a subset of “methodology”, when discussing only the “process” com-
ponent of a methodology, the term process engineering is often substituted for the broader
term “method engineering”.

For commercial adoption, the first choice is a widely used methodology framework
with an existing extensive catalogue of method fragments. OPEN (Object-oriented Process,

∗ University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 149

150 B. HENDERSON-SELLERS ET AL.

Environment and Notation) is both described in an extensive set of books (e.g. Graham
et al., 1997; Firesmith and Henderson-Sellers, 2002) and used in industrial applications as
well as having (at least embryonic) tool support (Nguyen and Henderson-Sellers, 2003).
While OPEN was originally developed for ISD in an object-oriented context, in recent
years method fragments have begun to be developed for application to agent-oriented ISD
(Debenham and Henderson-Sellers, 2003). In our current project, prior to a formalized
extension of OPEN to fully support agent-oriented (AO) information systems develop-
ment, we are analyzing each stand-alone AO methodology. For each such methodology,
we seek to isolate method fragments identifiable in the methodology and then compare
these with existing method fragments in OPEN/Agent OPEN. When there is no match,
we suggest the development and incorporation in the repository of a method fragment to
support the concept detailed in the AO methodology under analysis. Following successful
analysis of Tropos (Henderson-Sellers et al., 2003, 2004b), MASE (Tran et al., 2004), Gaia
(Henderson-Sellers et al., 2004a), Prometheus (Henderson-Sellers et al., 2004c) and Cas-
siopeia (Henderson-Sellers et al., 2004d), in this paper we look at the details of the Agent
Factory (Collier et al., 2004).

In the following sections, we introduce situational method engineering (Section 2)
as an effective approach for constructing an organizational method that may be tailored
or customized for individual projects in the context of the OPEN process (Section 3). In
Section 4 we outline briefly the Agent Factory approach and then analyze in detail in the
following section (Section 5) in order to identify existing OPEN support for the Agent
Factory set of concepts and to derive any necessary new method fragments.

2. BRIEF OVERVIEW OF SITUATIONAL METHOD ENGINEERING

Over recent years, there has been significant research into the field of method engi-
neering and situational method engineering (Brinkkemper, 1996; Ter Hofstede and Ver-
hoef, 1997; Rupprecht et al., 2000; Ralyté and Rolland, 2001). With SME, a method is
constructed based on a methodological requirements statement made by the organization
that requires methodological support for their software development. This requirements
statement helps the method engineer to identify appropriate method fragments stored in
the repository. Such an SME approach offers advantages to the use of a single “off-the-
shelf” methodology since the method fragments in an SME repository not only support
the methodology “as is” but also offer additional support that allow the methodology to be
extended beyond its original intentions and scope. Alternatively, rather than extending an
existing methodology, the more usual application of SME is to construct a methodology
ab initio, specifically for the target situation.

In terms of SME research, the work by Brinkkemper et al. (1998) and Klooster et al.
(1997) is also worth mentioning. These authors focus on the techniques for assembling
available method fragments into situational methods/processes – an approach where a
sound mathematical basis for process construction is described formally in a number of
rules. The use of these rules allows the creation of a knowledge base, where knowledge
can be stored and disseminated.

Ideally, the elements in an SME repository should be compliant with (in fact gener-
ated from) a set of concepts described by a metamodel (Henderson-Sellers, 2003). One

OPEN AND THE AGENT FACTORY 151

such example is the metamodel+repository-based OPEN process framework (Firesmith
and Henderson-Sellers, 2002). The OPEN metamodel contains a number of conceptual
entities modelled by object-oriented “classes”, typically described using the UML nota-
tional concepts. Those concepts most relevant to the process aspects of a methodology (as
to be discussed here) are (i) Task, (ii) Technique and (iii) Work Product. Each of these
metaclasses can be instantiated to create numerous instances of Task, Technique and Work
Product respectively, all of which are stored in the OPEN repository. It is the elements
of this repository that form the focus of our analysis here, in which we analyze existing
process elements in the OPEN repository for their potential support for the Agent Factory
approach to ISD.

3. BRIEF OVERVIEW OF OPEN

Unlike other OO ISD processes, OPEN (Graham et al., 1997; Firesmith and Hen-
derson-Sellers, 2002) is defined as a process framework encompassing a metamodel. It
is thus highly compatible with the ideas of method engineering and process construction
as described above. From this framework, OPEN-compliant processes can be instantiated
to be used in actual organization and software projects. In other words, the process en-
gineer has to configure OPEN, creating an instance of OPEN that is suitable for use on
a specific project. Instantiating OPEN is one of the more difficult and time-consuming
jobs in adopting OPEN, since the process engineer has to understand the methodology,
the organization, the environment and the software project itself in order to select the ap-
propriate components in the OPEN repository to use on the project. Traditionally, this
process is carried out using predefined organizational requirements and the experience
and knowledge of the process engineer although tool support is likely in the near future
(Saeki, 2003).

An important part of OPEN is the repository of process components, which can be
used in different software projects. This repository provides an almost complete set of
components and can be extended to support changes in technology.

The OPEN metamodel defines five main classes of process components as shown in
Figure 1. From these (and their subclasses) are generated a significant number of instances,
together with a number of guidelines (Firesmith and Henderson-Sellers, 2002) for help-
ing organizations to adopt OPEN as a standard for their information system development
projects. These guidelines offer advice on the selection of specific components based on
the notion of deontic matrices. A deontic matrix is a two dimensional matrix of values that
represent the possible relationship between each pair of process components in OPEN. For
example, the possibility value for using the OPEN Task: Evaluate quality to help fulfil the
Activity: Verification and Validation (V&V) might be assessed as being “Recommended”
(one of the five prescribed values). Tool support for completing these matrices is currently
under development (Nguyen and Henderson-Sellers, 2003).

In addition, the idea that business culture should be adapted to fit a specific method-
ology is not good business sense, despite its prevalence in many of the marketed method-
ologies to date. When using IT and its dependent parts, such as methodologies, it is critical
that they fit the business and not the other way around.

152 B. HENDERSON-SELLERS ET AL.

Figure 1. The five major metaclasses of OPEN’s metamodel (after Firesmith and Henderson-Sellers, 2002)
© Addison-Wesley.

4. BRIEF OVERVIEW OF THE AGENT FACTORY

Agent Factory (Collier et al., 2003, 2004) is a four-layer framework for designing, im-
plementing, and deploying multi-agent systems. It contains (i) an agent-oriented software
engineering methodology, (ii) a development environment, (iii) a FIPA-compliant runtime
environment and (iv) an agent programming language (AF-APL); with a stated preference
for the BDI agent architecture according to the analysis of (Luck et al., 2004). Here, we
only evaluate the methodology components.

By employing UML and Agent UML, the Agent Factory methodology provides a vi-
sual, industry-recognized notation for its models - regarded by its authors as a major advan-
tage over other approaches, such as Gaia (Wooldridge et al., 2000) and Tropos (Bresciani
et al., 2004), which have non-standard (i.e. non-UML compliant) notations. These models
are capable of promoting design reuse (via the central notion of role), and being directly
implemented by automated code generation (Collier et al., 2004).

The Agent Factory describes three phases and an overall lifecycle approach. These,
and their relationship to OPEN stages, are as follows:

Cycle: Agent Factory is iterative across the first three tasks of the development process
(i.e. developing System Behaviour Model, Activity Model, and Interaction Model), but is
sequential regarding the remaining steps.

Support from OPEN: A combination of “Iterative, incremental, parallel life cycle”
(for iterative refinement) and “Waterfall life cycle” (for sequential development).

Life cycle: Agent Factory offers three phases, covering design, implementation and
deployment. However the first three tasks of the Design phase (i.e. developing System Be-
haviour Model, Activity Model, and Interaction Model) are more appropriate to analysis
rather than design activities. In other words, it appears that Agent Factory In fact more real-
istically can be said to cover four phases: analysis, design, implementation and deployment.

OPEN AND THE AGENT FACTORY 153

Support from OPEN: the three Agent Factory phases correspond to the Initiation,
Construction, and Delivery phases of OPEN.

5. TASKS, TECHNIQUES AND WORK PRODUCTS IN THE AGENT FACTORY
AND THEIR SUPPORT IN OPEN

In this section, we identify process component descriptions within the Agent Factory
documentation, captured here as instances of elements in the OPEN metamodel. In par-
ticular, we seek Tasks, Techniques and Work Products. For each of these three elements,
we analyze the Agent Factory descriptions and then recast them into the OPEN software
engineering approach. This leads us to propose three new subtasks for addition to the
OPEN repository as we extend this repository to encompass not only an object-oriented
approach to software development but, increasingly, an agent-oriented approach. These
new process components in the OPEN repository add to those already proposed to sup-
port agent-orientation in e.g. (Henderson-Sellers and Debenham, 2003; Henderson-Sellers
et al., 2004b; Tran et al., 2004).

5.1. Tasks in the Agent Factory and Their Support in OPEN

For each Agent Factory task identified, we first describe it and then create a parallel
OPEN method fragment.

5.1.1. Developing System Behaviour Model

Description: This task involves identifying the key system behaviors (i.e. sets of ac-
tivities and/or interactions that occur during the operation of the system), and the roles that
the agents will play while engaged in these behaviours.

Support from OPEN: The identification of system behaviours is supported by stan-
dard Requirements Engineering tasks in OPEN, particularly task “Use case modeling”
(because Agent Factory captures system behaviors through use cases). Roles can be iden-
tified via the task “Model agent’s roles” in Agent OPEN (Debenham and Henderson-
Sellers, 2003).

5.1.2. Developing Interaction Model

Description: This task investigates the system behaviours that involve interactions
between two or more roles, and identifies all the potential “interaction scenarios” that may
occur in each of these behaviours.

Support from OPEN: Agent OPEN offers tasks “Construct agent interaction proto-
col” and “Construct agent communication protocol” that can be extended to model inter-
actions at a higher-level of abstraction (i.e. inter-role interactions).

5.1.3. Developing Activity Model

Description: This task investigates each system behaviour and identifies all potential
“activity scenarios” that may occur within each behaviour. An activity scenario describes
what activities need to be performed by the participant role(s) in order to realize a particular
system behaviour.

154 B. HENDERSON-SELLERS ET AL.

Support from OPEN: The identification and modelling of activities within roles are
addressed by Agent OPEN task “Model agent’s roles”, particularly by its sub-task “Model
roles’ responsibilities” (Henderson-Sellers et al., 2004a).

5.1.4. Developing Protocol Model

Description: This task formalizes the interaction scenarios identified in the Interaction
Model with interaction protocols. Each protocol elaborately defines the inter-role interac-
tions in a particular system behaviour, encapsulating all possible variations.

Support from OPEN: This task can be supported by Agent OPEN’s tasks “Determine
agent interaction protocol” and “Determine agent communication protocol”, although at
the “role” level of abstraction rather than at the “agent” level.

5.1.5. Developing Agent Model

Description: This task identifies agent classes from roles, and models agent classes in
terms of their activities, roles, and roles’ protocols.

Support from OPEN: Agent OPEN task “Construct the Agent Model” (Tran et al.,
2004) directly supports this activity.

5.1.6. Defining Application-Specific Ontologies

Description: This task specifies the conceptualization of the target application domain
via a (set of) ontologies. These ontologies are needed to form the beliefs of individual
agents and the information exchanged between interacting agents.

Support from OPEN: The issue of ontology specification to be used in system oper-
ation is currently not addressed in OPEN. A new task is thus desirable

TASK NAME: Define ontologies
Focus: Domain conceptualization
Typical supportive techniques: Domain analysis
Explanation: A conceptualization of the target application domain needs to be spec-

ified. This conceptualization should contain all the concepts, entities, and relationships
that exist in the domain, and which are relevant to the needs of agents in the system (e.g.
communication and internal processing needs).

5.1.7. Building Agent Components

Description: This task generates agent components that are required by the final sys-
tem, particularly perceptor and actuator units.

Support from OPEN: Agent OPEN recently introduced a task “Design agent inter-
nal structure” (Tran et al., 2004) that addresses the design of agent internal modules. We
suggest adding two new sub-tasks to explicitly address the specification of perceptor and
actuator modules. These are subtasks to the existing Task: Design agent internal structure.

SUBTASK NAME: Define perceptor module
Typical supportive techniques: Environmental evaluation

OPEN AND THE AGENT FACTORY 155

Explanation: Define for each agent its required sensing abilities, and mechanisms
needed to convert raw data/percepts to beliefs. To promote reusability, sensing abilities
and mechanisms can be packaged into perceptor components that are later associated to
agents.

SUBTASK NAME: Define actuator module
Typical supportive techniques: Environmental evaluation
Explanation: Define for each agent the primitive actions that can be directly executed

by the agent on the environment. To promote reusability, sets of primitive actions can be
packaged into actuator components that are later bound to agents.

5.1.8. Building Platform Services

Description: This task identifies and constructs services that are required to be de-
ployed on the agent platform, e.g. message transport, migration, persistence services.

Support from OPEN: The OPEN task “Create a system architecture” can be extended
to include a new sub-task “Determine MAS infrastructure facilities”.

SUBTASK NAME: Determine MAS infrastructure facilities
Typical supportive techniques: Environmental evaluation
Explanation: Facilities required to support the operation of MAS as a whole and of

agents should be identified, as well as how they are managed (e.g. by agents).

5.1.9. Implementing Agent Classes

Description: This task generates AF-APL code to implement agents.
Support from OPEN: The OPEN task “Code” can be extended to cover the coding

of agent classes

5.1.10. Testing

Description: This task performs “protocol tests” on agent interaction protocols, and
“behaviour tests” on agent behaviours, in order to evaluate their correctness.

Support from OPEN: A range of OPEN Testing tasks, including “Design test suite”,
“Execute tests”, and “Report on test results”, can be extended to cater for agent-oriented
testing.

5.1.11. Deployment

Description: This task involves configuring the agent development platform and de-
ploying the application.

Support from OPEN: OPEN’s set of Deployment tasks, although initially intended
to support the deployment of OO applications, can be equally applicable to AO application
deployment.

5.2. Agent Factory Techniques and Their Existing Support in OPEN

For each Agent Factory technique identified, we first describe it and then create a
parallel OPEN method fragment.

156 B. HENDERSON-SELLERS ET AL.

5.2.1. For Developing System Behaviour Model

Description: Regarding the identification of system behaviours, the developer should
investigate both activity-oriented behaviours (i.e. those associated with a single role), and
interaction-oriented behaviours (i.e. those associated with two or more roles). Regarding
the identification of roles, Agent Factory offers no techniques.

Support from OPEN: Various standard OPEN techniques can be useful for system
behaviours identification, including “Scenario development”, “Activity grid construction”,
and “Service identification”. Role identification can be assisted by the conventional OPEN
technique “Role modeling” (although this technique is still weak in guidance for role
elicitation), and the newly-added technique “Environmental evaluation” in Agent OPEN
(Henderson-Sellers and Debenham, 2003).

5.2.2. For Developing Interaction Model

Description: For each interaction-oriented system behaviour in the System Behaviour
Model, the developer should define a number of “interaction scenarios”, each specifying
a potential set of interactions that may incur within the behaviour. Each scenario should
describe the types of messages sent among roles, and the order in which they are sent.
There typically exist one “standard” scenario and multiple alternate scenarios for each
interaction-oriented behaviour.

Support from OPEN: Various conventional OO techniques can be useful for the
identification and specification of interaction scenarios, including “Scenario development”,
“Collaboration analysis”, and “Interaction modeling”.

5.2.3. For Developing Activity Model

Description: The developer should specify at least one “activity scenario” for each
activity-oriented system behaviour, and zero or more “activity scenarios” for each interac-
tion-oriented behaviour. In each scenario, the activities to be performed by each participant
role should be specified. Multiple activity scenarios exist when there are different ways to
fulfil a behavior.

Support from OPEN: The identification and specification of activity scenarios can
be supported by conventional OPEN techniques “Scenario development”, “Responsibility
identification”, and “State modeling”.

5.2.4. For Developing Protocol Model

Description: Each interaction-oriented system behaviour typically requires one proto-
col to be specified. If multiple interaction scenarios have been identified for the behaviour
in the Interaction Model, they can be integrated into a single protocol. The developer may
make use of existing protocol templates, and/or formulate new templates by identifying
and extracting common interactions within the defined protocols.

Support from OPEN: Conventional OPEN technique “Interaction modeling” and
Agent OPEN techniques “Contract net”, “Market mechanisms”, and “FIPA-KIF compliant
language” can be applied to specify the protocols and exchanged messages.

OPEN AND THE AGENT FACTORY 157

5.2.5. For Developing Agent Model

Description: Agent classes can be derived from roles via a many-to-many correspon-
dence, i.e. each role can be mapped onto many agent classes, while each agent class can
be mapped to multiple roles. Agents are associated with activities, which are determined
by examining the potential “activity scenarios” for each system behaviour in the Activ-
ity Model, and selecting a scenario the agent should employ when realising a particular
behavior.

Support from OPEN: Regarding the identification of agents, OPEN technique “Intel-
ligent agent identification” can be applied (although it still requires enhancement). The de-
termination of agents’ activities can be assisted by various Agent OPEN techniques “Com-
mitment management”, “Activity scheduling”, “Task selection by agents”, “Deliberative
reasoning”, and “Reactive reasoning”.

5.2.6. For Defining Application-Specific Ontologies

Description: An ontology can be formed by mapping logical predicates to domain
relations, for example, predicate position(?lat, ?long) can be used to represent a user’s
position in latitude and longitude. No techniques are provided on how to identify domain
concepts/relations

Support from OPEN: Technique “Domain analysis” of OPEN can be used to support
domain concepts identification.

5.2.7. For Building Agent Components

Description: Perceptor and actuator units can be identified by reviewing activities
specified in the Activity Model. Perceptor units can be implemented as Java classes that
encapsulate sensing abilities and convert raw data into beliefs. Actuator units can be real-
ized as Java classes that contain actions directly executable by the agents.

Support from OPEN: Agent OPEN technique “Environmental evaluation” can be
applied to determine how, and what sensing/affecting abilities are required for, the agents
to interact with the environment.

5.2.8. For Building Platform Services

Description: FIPA-standards can be investigated to identify and build necessary plat-
form services.

Support from OPEN: No techniques are found from OPEN that explicitly support
the identification and design of infrastructure facilities. This is a topic for future research.

5.2.9. For Implementing Agent Classes

Description: Each agent class is implemented as a mental entity with beliefs (i.e.
knowledge about the current state of itself and its environment), commitments (i.e. current
and future activities that the agent has decided to perform), and commitment rules (i.e.
mappings between beliefs and commitments).

158 B. HENDERSON-SELLERS ET AL.

Support from OPEN: Various Agent OPEN techniques can be used to facilitate the
transformation of agent class design to implementation, including “3-layer BDI model”,
“deliberative reasoning: plans”, “reactive reasoning: ECA rules”, “Commitment manage-
ment”, “activity scheduling”, “task selection”, and “belief revision”.

5.2.10. For Testing

Description: No techniques are provided for the formulation and execution of proto-
col and behaviour tests.

Support from OPEN: Conventional testing techniques “Unit testing” and “Integra-
tion testing” of OPEN can be extended to cater for agent behaviors testing and agent inter-
actions testing respectively.

5.2.11. For Deployment

Description: Platform configuration file(s) need to be generated, specifying which
agents should initiated, which resources should be connected/created, and which facilities
need to be used.

Support from OPEN: This is a topic for future research.

5.3. Work Products of the Agent Factory

The Agent Factory specifically aims, where possible, to use pre-existing design nota-
tions (Collier et al., 2004). Thus, Agent Factory adapts UML and Agent UML diagrams
for its work products. The adaptations are outlined as follows:

5.3.1. System Behaviour Model

The system behaviour model is documented by using UML Use Case Diagrams where
actors represent the roles to be played by agents (denoted as «role» stereotyped enti-
ties), and use cases represent behaviours associated with roles (denoted as “role-use-case”
stereotyped entities).

5.3.2. Interaction Model

An interaction model uses UML Collaboration Diagrams to model “interaction sce-
narios”. Interacting objects represent roles (denoted with “role” stereotype), and message
types are FIPA-ACL performatives (denoted with “fipa-acl” stereotype).

5.3.3. Activity Model

An activity model in the Agent Factory is depicted with regular UML Activity Dia-
grams to model “activity scenarios”, with each swimlane representing the processing of a
role involved in the scenario.

5.3.4. Protocol Model

The Agent Factory protocol model is depicted with an Agent UML Sequence Diagram,
one for each protocol (Figure 2). There may be secondary sequence diagrams which model
protocol templates.

OPEN AND THE AGENT FACTORY 159

Figure 2. Example protocol model (adapted from Collier et al., 2004).

5.3.5. Agent Model

An agent model in Agent Factory is depicted using a UML Class Diagram that shows
all agent classes in the system and their associated roles. Each role class is characterized
by its associated protocols, while each agent class is characterized by a list of protocols
(not those specified in roles) and activities.

6. SUMMARY AND ACKNOWLEDGEMENTS

A method engineering-based approach is, by its nature, advantageous to a single metho-
dology “by itself”, since the ME-based approach encompasses the specific methodology
plus an arbitrarily wide range of additional method fragments that can be combined with
the original value, thus adding value to it.

As part of an extensive research programme to combine the benefits of method en-
gineering and to extend an existing object-oriented framework (OPEN) to create a highly
supportive methodological environment for the construction of agent-oriented information
systems, we have analysed here contributions from the Agent Factory AO methodology.
We have identified three new subtasks for pre-existing Tasks only. All other aspects of
Agent Factory can be satisfactorily simulated using method engineering with OPEN. This
means that a process engineer or project manager wishing to use the style of development
advocated by the Agent Factory need only take the OPEN repository, as enhanced here,
and select from it the appropriate method fragments from which to “method engineer” this
particular agent-oriented approach to information systems development.

We wish to acknowledge financial support from the University of Technology, Sydney
under their Research Excellence Grants Scheme. This is Contribution number 04/21 of the
Centre for Object Technology Applications and Research.

REFERENCES
Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J., and Perini, A., 2004, Tropos: an agent-oriented soft-

ware development methodology, Autonomous Agents and Multi-Agent Systems 8(3):203–236.
Brinkkemper, S., 1996, Method engineering: engineering of information systems development methods and tools,

Inf. Software Technol. 38(4):275–280.
Brinkkemper, S., Saeki, M., and Harmsen, F., 1998, Assembly techniques for method engineering, Procs. CAISE

1998, LNCS1413, B. Pernici and C. Thanos, eds., Springer Verlag, pp. 381–400.
Cockburn, A. S., 2000, Selecting a project’s methodology, IEEE Software 17(4):64–71.
Collier, R., et al., 2003, Beyond prototyping in the factory of agents, in: Multi-Agent Systems and Applications

III, LNCS 2691, V. Marik, J. Muller, and M. Pechoucek, eds., Springer-Verlag, New York, pp. 383–393.

160 B. HENDERSON-SELLERS ET AL.

Collier, R., O’Hare, G., and Rooney, C., 2004, A UML-based software engineering methodology for Agent Fac-
tory, Procs. SEKE 2004, Knowledge Systems Institute, Skokie, IL, USA (in press).

Debenham, J., and Henderson-Sellers, B., 2003, Designing agent-based process systems – extending the OPEN
Process Framework, Chapter VIII in: Intelligent Agent Software Engineering, V. Plekhanova, ed., Idea
Group Publishing, Hershey, USA, pp. 160–190.

Firesmith, D. G., and Henderson-Sellers, B., 2002, The OPEN Process Framework. AN Introduction, Addison-
Wesley, Harlow, Herts, UK.

Graham, I., Henderson-Sellers, B., and Younessi, H., 1997, The OPEN Process Specification, Addison-Wesley,
Harlow, UK.

Henderson-Sellers, B., 2003, Method engineering for OO system development, Comm. ACM 46(10):73–78.
Henderson-Sellers, B., and Debenham, J., 2003, Towards OPEN methodological support for agent-oriented sys-

tems development, in: Procs. First International Conference on Agent-Based Technologies and Systems,
B. H. Far, S. Rochefort, and M. Moussavia, eds., University of Calgary, Canada, pp. 14–24.

Henderson-Sellers, B., Giorgini, P., and Bresciani, P., 2003, Evaluating the potential for integrating the OPEN
and Tropos metamodels, in: Procs. SERP ’03, B. Al-Ani, H. R. Arabnia, and Y. Mun, eds., CSREA Press,
Las Vegas, USA, pp. 992–995.

Henderson-Sellers, B., Debenham, J., and Tran, Q. N. 2004a, Adding agent-oriented concepts derived from Gaia
to Agent OPEN, in: Advanced Information Systems Engineering. 16th International Conference, CAiSE
2004, Riga, Latvia, June 2004 Proceedings, LNCS 3084, A. Persson and J. Stirna, eds., Springer-Verlag,
Berlin, pp. 98–111.

Henderson-Sellers, B., Giorgini, P., and Bresciani, P., 2004b, Enhancing Agent OPEN with concepts used in the
Tropos methodology, in: Procs. ESAW’03 (Engineering Societies in the Agents World), LNAI Volume 3071,
A. Omicini, P. Pettra, and J. Pitt, eds., Springer-Verlag, Berlin.

Henderson-Sellers, B., Debenham, J., and Tran, N., 2004c, Incorporating elements from the Prometheus agent-
oriented methodology in the OPEN Process Framework, in: Procs. AOIS@CAiSE*04, Faculty of Computer
Science and Information, Riga Technical University, Latvia, pp. 370–385.

Henderson-Sellers, B., Tran, Q.-N. N., and Debenham, J., 2004d, Method engineering, the OPEN Process Frame-
work and Cassiopeia, in: The Symposium on Professional Practice in AI, E. Mercier-Laurent and J. Deben-
ham, IFIP, pp. 263–272.

Klooster, M., Brinkkemper, S., Harmsen, F., and Wijers, G., 1997, Intranet facilitated knowledge management:
A theory and tool for defining situational methods, in: Procs. CAISE 1997, LNCS1250, A. Olive and J. A.
Pastor, eds., Springer Verlag, pp. 303–317.

Luck M., Ashri, R., and D’Inverno, M., 2004, Agent-Based Software Development, Artech House, Boston,
pp. 208.

Nguyen, V. P., and Henderson-Sellers, B., 2003, OPENPC: a tool to automate aspects of method engineering, in:
Procs. ICSSEA 2003, Paris, France, Volume 5, pp. 7.

Ralyté, J., and Rolland, C., 2001, An assembly process model for method engineering, in: Advanced Information
Systems Engineering, LNCS2068, K. R. Dittrich, A. Geppert, and M. C. Norrie, eds., Springer, Berlin,
pp. 267–283.

Rolland, C., and Prakash, N., 1996, A proposal for context-specific method engineering, in: Procs. IFIP WG8.1
Conf. on Method Engineering, S. Brinkkemper, K. Lyytinen, and R. Welke, eds., Chapman and Hall,
pp. 191–208.

Rupprecht, C., Funffinger, M., Knublauch, H., and Rose, T., 2000, Capture and dissemination of experience about
the construction of engineering processes, in: Procs. 12th Conference on Advanced Information Systems
Engineering (CAISE), LNCS 1789, B. Wangler and L. Bergman, eds., Springer-Verlag, Berlin, pp. 294–
308.

Saeki, M., 2003, CAME: the first step to automated software engineering, Process Engineering for Object-
Oriented and Component-Based Development, in: Procs. OOPSLA 2003 Workshop, C. Gonzalez-Perez,
B. Henderson-Sellers, and D. Rawsthorne, eds., Centre for Object Technology Applications and Research,
Sydney, Australia, pp. 7–18.

Ter Hofstede, A. H. M., and Verhoef, T. F., 1997, On the feasibility of situational method engineering, Information
Systems 22:401–422.

Tran, Q. N., Henderson-Sellers, and B., Debenham, J. 2004, Incorporating the elements of the MASE method-
ology into Agent OPEN, in: Procs. ICEIS2004, I. Seruca, J. Cordeiro, S. Hammoudi, and J. Filipe, eds.,
INSTICC Press, Volume 4, pp. 380–388.

Wooldridge, M., Jennings, N. R., and Kinny, D., 2000, The Gaia methodology for agent-oriented analysis and
design, Autonomous Agents and Multi-Agent Systems 3:285–312.

MOTIVATION AND JOB SATISFACTION AMONG
INFORMATION SYSTEMS DEVELOPERS –

PERSPECTIVES FROM FINLAND, NIGERIA AND
ESTONIA: A PRELIMINARY STUDY

Princely Ifinedo∗

1. INTRODUCTION

Information Systems (IS) have become one of the most important assets in organi-
sations over the past decades. Adopting and using IS bestows a variety of advantages to
organisations that are adept at it (Senker and Senker, 1992). Developing IS within organi-
sations, unarguably serves the objectives of management. To that end, information systems
development (ISD) professionals are pivotal in the implementations of such systems and
their motivation and job satisfaction equally paramount. Some researchers have also com-
mented on economic value of IS professionals to organisations (Niederman and Crosetto,
1996) Apparently, there is a growing body of literature on the issue of motivation and job
satisfaction both in other fields (Locke, 1983; Herzberg et al., 1959; Scarpello and Camp-
bell, 1983) and in the Information Systems domain (Mumford, 1972, Hackman and Old-
ham, 1978; Bartol and Martin, 1982; Couger, 1988, 1989; Eldon and Abraham, 1991;Gold-
stein and Rockart, 1984; Baroudi and Ginzberg, 1985; McMurtrey et al., 2002). Over-
all, this attention can be attributed to the increased interest in the human resources (HR)
management of IS professionals (Niederman, et al., 1991, Champy, 1992) and the socio-
technical systems approaches to job design (Bostrom and Heinen, 1977; Pasmore, 1988).

Past research on the motivation of IS personnel (Couger and Zawacki, 1980) and job
satisfaction (Baroudi and Ginzberg, 1985; Goldstein and Rockart; Griesser, 1993) have
been carried out using IS personnel within a single country; namely, the US, with the ex-
ception of a handful of cases that straddle national boundaries. Such few cases include the
work of the following researchers (Couger, 1986; Couger et al., 1990; Bryan et al., 1995;
Couger and Ishikawa, 1995). Consequently, this present study aims to fill this research gaps
with its contribution to the discourse by using three new countries that have hitherto not

∗ Department of Computer Science and Information Systems, University of Jyväskylä, FIN - 40351, Jyväskylä,
Finland, premifinl@cc.jyu.fi.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 161

162 P. IFINEDO

been investigated. Moreover, cross-cultural IS research in similar areas is becoming pop-
ular and relevant. For example, differences were found among systems designers’ values
across nations (Kumar and Bjørn-Andersen, 1990). Also, Shore and Venkatachalam (1994)
indicate that dimensions of national cultures could impart systems analysis and design of
information systems development (ISD) projects, to mention but a few. Admittedly, the
study of ISD professional’s motivation and job satisfaction is pertinent in light of the in-
creasing number of organisations developing IS applications across national boundaries
(Carmel, 1999). In this era of globalisation of resources, useful insights emerging through
cross-cultural/national information systems research on the levels of motivation of ISD
professionals would, in turn, present information as to how to best manage differences
or similarities that may be uncovered in this area of human resource management of IS
personnel. Also, no study in the IS domain, to our knowledge has studied the nature of
motivation and job satisfaction of ISD professionals among the selected three countries
despite the increasing relevance of IS/IT in each of the countries. For example, Finland
is a force to reckon with in IS/IT (Lyytinen and Goodman, 1999); Estonia is making re-
markable progress in the use of information and communication technologies (ICT) and
Nigeria is embracing and using new ICT (IMG, 2003; Anakwe et al., 1999; Ifinedo, 2004).
The justification for the choice of the three countries is discussed below.

That said, the objectives of the paper are twofold: First, to find out if similarities/differ-
ences exist in the motivation, job satisfaction and job dissatisfaction factors for ISD profes-
sionals in the three countries, in view of any computer subculture (explained below) that
may exist. Second, to determine the relative importance of each job satisfaction/dissatisfac-
tion factor for each country. Comparisons are then made among the three, and relevant HR
implications for each country discussed. This article is organised as follows: The vignette
looks at introduction of the paper. The next section covers background of the study. Then,
the research hypotheses, methodology and analysis of results are discussed. The last sec-
tions of the paper deal with the discussions and conclusion.

2. BACKGROUND OF THE STUDY

Job satisfaction defines condition where an individual has a perception that work is not
a necessity imposed upon him or her. It shows the degree to which an individual feels pos-
itively or negatively affected by his/her job. It is an emotional response to one’s tasks,
as well as the physical and social conditions of the workplace (Herzberg et al., 1959;
Locke, 1983; Iaffaldano, and Muchinsky, 1985). The impact of motivation on jobs has
been a recurring theme in the behavioural sciences since the beginning of modern HR
management, and in the IS/IT domain studies as well (Bartol and Martin, 1982; Scarpello
and Campbell, 1983). It is known that management tends to devote substantive finance to
peopleware costs than to any other department within organisations (Griesser, 1993; Lucas
and Turner, 1982). Likewise, Couger and Amoroso (1990) found that motivation is a major
issue among chief information officers (CIOs) in organisations.

Clearly, motivation describes the intensity of a person’s desire to engage in some activ-
ity (Dessler, 2001). The themes of motivation and job satisfaction are couched in organisa-
tional behaviour (OB); therein, differences between the terminologies are made. Herzberg
et al.’s, (1959) highlighted in their Motivation-Hygiene Theory, the sorts of factors that

MOTIVATION AND JOB SATISFACTION AMONG INFORMATION SYSTEMS DEVELOPERS 163

Figure 1. Interaction between needs, motivation, job satisfaction and the environment.

can result in job satisfaction, which they termed “motivators” and the ones that merely
prevents job dissatisfaction (called hygiene factors). This paper took cognizant of such
knowledge by formulating two different measures for the concepts; namely, “motivators”
is seen as being distinct from “job dissatisfaction factors” in this paper. The interaction
between the concepts is further explained by (Rosenfeld and Wilson, 1999, p.75), where
a similar but different illustration to Figure 1 was utilised. Thus, the work of Herzberg
and colleagues, as well those of Hackman and Oldham’s (1978) who realistically extended
Herzberg et al.’s, (1959) concepts to the IS domain informed the approach used herein.
Similarly, the questionnaire used by another researcher (Hofstede, 2001) was incorporated
in so far as it avail us the opportunity to investigate motivation and job satisfaction of
ISD professionals from the three countries, on the “culture” front. The findings of that
research will be published elsewhere. Essentially, job satisfaction is often measured and
studied using several constructs. Cheney and Scarpello (1985) presents a variety of some
of those constructs in the IS domain. Many factors affect job satisfaction and motivation
(Lawler, 1994; Locke, 1983). And, the “sources of job satisfaction vary from one individ-
ual to the other” (Eldon and Abraham, 1991). Notwithstanding, we argued in the foregoing,
that this particular effort will rest primarily on the study of motivation and job satisfaction
from the work of (Herzberg et al.’s, 1959), though some items from other constructs such
as the Job Characteristics Model (JCM) developed by Hackman and Oldham (1978) are
also incorporated for participants to rank.

3. RESEARCH HYPOTHESES

As the world gets globalised, a variety of activities, concepts, and so on, arguably
move towards uniformity (Levitt, 1983). Interestingly, researchers in IS have commented
on the diffusion of ISD methods and attempts have been made at comparing ISD meth-
ods used regionally, in order to assess the degree to which uniformity holds (Pavlia and
Hunter, 1996). Such research might have arisen as conformance to the same methods may
be expected in a field that technical-oriented. This argument may be illuminated by the
comment that “professionals worldwide belong to the computer subculture” (Carmel, 1999,
p. 73). Camel cites an earlier publication by Constantine (2001) where the latter argues

164 P. IFINEDO

that “the computer subculture is stronger than national culture and that the programmer in
Moscow is more similar to his American programming peer than to other Russians” (ibid).
Carmel, further added that De Meyer and Mizushima (1989) made identical argument to
Constantine’s by stating that in the area of R&D, the scientific culture dominates national
culture.

Specifically, in extending the foregoing to the crux of this discourse - motivation and
job satisfaction of ISD professionals – we believe that there are in fact differing perspec-
tives to be garnered as one move from nation to the other. This is the basis upon which
the thesis of this paper rests. In this regard, we formulated the hypothesis below to test our
perception in regard of motivation and job satisfaction of ISD workers for the countries.
Of note, we distinguish between motivators and dissatisfiers; hence, the layers of hypothe-
ses presented. There are reasons why our viewpoint might be true. Our scan of relevant
literature reveal that there are suggestions that workers from economically poorer nations
tend to place more value on extrinsic job reward – fringe benefit, physical working con-
ditions, pay and so forth – than counterparts from wealthier nations (Elizur et al., 1991;
Hofstede, 1980, 2001). In the same vein, evidence indicate that intrinsic job reward (such
as achievement, advancement, and so on) rate highly amongst workers from more ad-
vanced nations (Elizur et al., 1991; Hofstede, 1980; Harpaz, 1990; Robinson, 1983; Couger
et al., 1990). Yet, others believe that no differences exist in how workers from developing
and developed countries view variables or items of job (dis)satisfaction and motivation
(see, for example; Adigun and Stephenson, 1992; Goldthorpe et al., 1968). This fact is cor-
roborated by Rubin and Hernandez (1988) who cites the work of Mata et al. (1985), and
writes that “Computer professionals, however, have traditionally been unimpressed and un-
affected by such standard extrinsic motivators as pay, fringe benefit, job security, chances
for promotion, and son on”.

As was stated, the objective of this study is to assess the similarities/differences that
may exist for motivation/job satisfaction - amongst the ISD professionals - across nations.
The relative rank ordering for each country is also presented. In view of the above, we
intend to elicit information from a few countries – three. The choice of the three countries
is informed by two reasoning: 1) the conclusions reached by work of Pavlia and Hunter
(1996) where they noted that, “when comparing [the] use of methods across different coun-
tries, organizational profile especially in term of size, revenue level . . . may be an important
intervening variable, 2) there are commonalities in motivation for IS workers, where simi-
lar economic conditions prevails; as gleaned from the publication of Couger and colleagues
(Couger et al., 1990). Therefore, attempts were made at selecting three different countries
at varying levels of economic performance, as our differentiator, we hope that better insight
could emerge through this delineation. The geographic proximity of two of the selected
countries is incidental. Thus, Finland is a rich country; Estonia an emerging economy and
Nigeria a developing country are chosen (see, CIA world Factbook (2004), for relevant
information). More importantly, the researcher has contacts in these three countries, which
may be helpful in the data gathering phase. The following hypotheses are formulated to
test our claims in line with our foregoing discussion.

H1a: In light of the emerging computer subculture globally, ISD professionals from the
different nations will attach the same importance to the factors of motivation.

MOTIVATION AND JOB SATISFACTION AMONG INFORMATION SYSTEMS DEVELOPERS 165

H1b: No significant statistical differences exist in the factors that motivate ISD person-
nel for the three countries.

H2: No significant differences exist in the factors of job satisfaction for ISD profes-
sionals for the three countries

H3a: ISD professionals from different nations will attach the same importance to the
factors of job dissatisfaction.

H3b: There will be no significant differences in the job dissatisfaction factors for ISD
professionals in the three countries.

3.1. Research Method – Participants and Procedures

The samples consists of systems analysts (42%), programmers/developers (47%) and
other IS personnel (11%) averaged across the three countries. The sample consists of 71
participants (mostly mid-level IS professionals) representing a convenience sample, which
is appropriate for a preliminary study of this nature. See Table 1 below for a summary. The
data for Finland was collected in February, 2002 while the data from Nigeria and Estonia
were collected between July – August, 2003. The respondents came from mainly software
development, telecommunications and network engineering firms, IT departments of edu-
cational, and finance organisations. Prior to distributing the questionnaires a pilot-test was
carried out using students in a polytechnic in Finland that has students from the chosen
countries, as well as faculty members of the same institution. Useful insight emerged that
assisted in the refinement of the final questionnaires adopted and distributed. The partici-
pants filled-out, a three-page long self-administered questionnaire. The service of contacts
within the sampled organisations was employed to distribute and collect the questionnaires,
which were numbered. The researcher then collected the returned questioners at specified
periods. The research took place in Oulu (Finland), Tallinn (Estonia) and Lagos, Benin
City (Nigeria).

The response rate of the returned questionnaires excluding the unusable questionnaires
is 68%, 43% and 76% for the Finland, Estonian and Nigerian sub-samples respectively.

Table 1. Profile of respondents for the three countries

166 P. IFINEDO

These figures together represent an average of 62%, which is appropriate for this type of
study. The participating organisations were selected at random. Non response error was
checked for, by dividing each sample in two parts in order to see if there are differences in
the pattern of responses – a common method used in statistics – none was found, indicating
a fairly representative sample. Low non-response rate was tackled with the assurance of
confidentiality and the usage of local languages in the questionnaire, except the ones for
the Nigeria sample in which English was used. Back-translation method (Brislin, 1986)
from English to Finnish and Estonian that converged at the second trail was employed.
A short cover-letter explaining the purpose of the research was also provided.

The questionnaire used has a couple of parts. The section that deals with motivation
utilises items whose construct and content validity have been verified and established (see,
for example, Couger and Zawacki, 1980). Also, the job dissatisfaction part consists of items
classified as “dissatisfiers” in Herzberg et al.’s, (1959) work. Other items on motivation and
job satisfaction considered important in these countries were incorporated (Adigun and
Stephenson; Hietanen, 2001). The ranking of motivation factors has been used by several
researchers; see for example, (Couger et al., 1990). This part of the questionnaire has 13
determinants of motivation. Participants were asked to rank the listed items from the most
important (1) to their motivation at their work place, to the least important (13). The second
part of the questionnaire uses a 4-item Likert-type scale to determine job dissatisfaction,
ranging from (strongly dissatisfied = 4, to not dissatisfied, at all = 1). Further, an item was
used to assess the influence of personality types on the participants. It uses a 3-item Likert-
type scale to measure the personality types (Eysenck and Wilson, 1975); namely, introvert
(quiet and reserved) = 1, in-between = 2 and extrovert (lively and confident) = 3. Lastly, the
job satisfaction measure developed by Hofstede (2001, p. 467) was incorporated without
any modification. It comprises 14 items and uses the 5-item Likert scale ranging from (not
at satisfied = 1 to extremely satisfied = 5).

Descriptive statistics were used to determine the relative order and importance of the
items of motivation and job satisfaction, whilst ANOVA One way test was used to test
for differences among the groups. Controlling tests involving age, personality type, work
contract, education, income (parity), years of working experience and current tenure of em-
ployment were conducted to check for statistical significance differences in these variables,
though not shown in the paper because of space restrictions. These tests were performed in
order to assess if variations exist among the groups of ISD professionals on those variables.
No differences were found, and the tests relating to the hypotheses began.

4. DATA ANALYSIS AND RESULTS

Hypothesis H1a predicted that ISD professionals from the three countries would at-
tach the same importance to the motivation factors. Table 2 below shows the results. The
results indicate differences between the two Western nations on the one hand, and the
developing country on the other. ISD personnel being subsets of their corresponding na-
tions and cultures; may attach different importance to such factors, as this study seems to
suggest. Research in other fields have shown that job satisfaction needs and work-goals
vary from countries to countries (Elizur et al., 1991; Harpaz, 1990). Apparently, this find-
ing does not support the view of a global computer subculture for software professionals

MOTIVATION AND JOB SATISFACTION AMONG INFORMATION SYSTEMS DEVELOPERS 167

Table 2. Descriptive Statistics for motivating factors the ISD professionals

across the globe (Carmel, 1999); at least, on the issue of job satisfaction and motivation.
However, the ranking orders for the two Europeans countries appear more agreeable and
uniform. In short, similarities are seen for the two economically advanced nations than for
the developing nation. Nonetheless, the hypothesis is rejected.

H1b predicted that there would be no significant statistical differences in the factors
that motivate ISD professionals from the three countries. The ANOVA One way test con-
ducted indicates that 4 factors exhibit significant statistical differences. They are as follows:
Opportunity for advancement: F= 4.65, p = .014; Task variety: F = 10.13, p = 0.000; Recog-
nition: F = 4.56, p = 0.015; and Feedback: F = 4.02, p = .024 (all significant at 0.01 level). A
strict test was employed by using the same number of subjects – 18 for each country. This
finding is consistent with expectations. Moreover, it has been suggested that IS profession-
als from developed countries accept task variety, feedback, interesting job and autonomy
as sources of motivation (Couger and Zawacki, 1980; Baroudi and Ginzberg, 1985; Couger
and Cotler, 1983). Surprisingly, though, in this study, it is the ISD professionals from the
less economically endowed nation that seemed to place more importance on such intrin-
sic factors as growth and advancement. This somewhat contradicts the work of (Elizur at
al., 1991; Couger et al., 1990). Regardless, the hypothesis is rejected as no uniformity was
observed here.

Also, H2 predicted no significant differences would exist in the job satisfaction factors
for the ISD professionals across board. This measure is the Hofstede’s job satisfaction con-
struct – not shown here. The ANOVA One way test (using 54 subjects) indicate there are
differences on four items on this factor, as well. The items include, working with people
who co-operate well with one another, having training opportunities, having opportunity

168 P. IFINEDO

Table 3. Ranking of job dissatisfaction factors among ISD professionals

for advancement and having opportunity for advancement. This means that the ISD profes-
sionals from the three countries hold differing views on these items/factors. This hypothesis
is rejected.

H3a hypothesized that the ranking order for the job dissatisfaction factors for ISD
professionals would be same. Table 3 shows the summary. Pay (extrinsic factor) ranks
among the highest sources of job dissatisfaction factors for the Nigerian and Estonian ISD
professionals; on the other hand, it occupies a moderate position for Finnish ISD profes-
sionals. This is consistent with other studies (Harpaz, 1990; Elizur et al., 1991). Speaking
about pay, McLean et al. (1996) concludes that pay does not lead to long-term satisfac-
tion among IS professionals, in accordance with Herzberg et al., (1959) classic; however,
it is noted as the most mentioned source of dissatisfaction for many IS employees. (See,
also Smits et al., 1995). Moreover, job security ranked highest for Finnish ISD profes-
sionals. Incidentally, this finding reflects realities in Finland where job security concerns
have consistently ranked highest as a de-motivator according to studies in the country (see,
Hietanen, 2001). The lack of fringe benefits ranks highly amongst the Nigerian and Es-
tonian samples and moderately with their Finnish counterparts. Promotion opportunities
and training opportunity appear equally important for all three samples. Nonetheless, this
hypothesis is rejected in so far as no same order of ranking is observed.

MOTIVATION AND JOB SATISFACTION AMONG INFORMATION SYSTEMS DEVELOPERS 169

Hypothesis H3b predicted that there would be no significant statistical differences in
job dissatisfaction factors for the groups. The ANOVA One way tests (using 54 subjects)
indicate there are no significant statistical differences for the items except for company pol-
icy and administration, inter-personal relations/co worker support, supervision, promotion
opportunities and haste. This hypothesis is also rejected.

5. DISCUSSIONS AND IMPLICATIONS

This paper addressed two main objectives: First, to determine whether similarities or
differences exist on motivation, job satisfaction and dissatisfaction for ISD professionals
from three selected countries, so as to see if any global professional computer subculture
(on those themes) can be supported; second, how do these factors rate for each country?
Overall, there were more marked differences than similarities regarding perception of mo-
tivational needs, job satisfaction and dissatisfaction factors. Generally speaking, our find-
ings support evidence from other fields that workers from different nations hold differing
viewpoints on the subject (Elizur et al., 1991; Harpaz, 1990). The findings of this paper
contradict the notion of commonalities in motivational needs at a global level (Couger
et al., 1990); although, there were more similarities between the Finnish and Estonian ISD
professionals in some instances than with their Nigerian counterparts. This led us to sug-
gest that such commonalities may be observable for nations with similar socio-economic
endowments, or perhaps cultural similarities. Nevertheless, this present work is not aimed
at providing a definitive answer in regard of that proposition. Our observation is that ISD
professionals in each country attach different importance to items of motivation and job
satisfaction despite the similarity in profession. To that end, we found no support for the
claim of “computer professional subculture”, at least, in regard of motivation and job sat-
isfaction factors.

The implications of this study are threefold: First, for IS research, it does not depart
from findings in extant literature that IS workers place less value on intrinsic motivators
(Couger and Zawacki, 1980) even when economic indicators may differ markedly. Simi-
larly, the results of this study highlights the import accorded such items as pay, job security
and so on that recur in the discourse of job dissatisfiers among IS professionals (Rubin
and Hernandez, 1988; McMurtrey, et al. 2002). Secondly, as per the usefulness for each
country, this work may help practitioners to identify and better manage their valuable as-
set – the ISD professionals. For example, in Nigeria, IS workers may be motivated with the
provision opportunity for growth, advancement and recognition; in Estonia and Finland,
ISD workers may be motivated by the availability of an interesting job with variety that
allows such workers to use their abilities/skills accordingly. Likewise, in managing “dis-
satisfiers” for a Finnish ISD professional, efforts should be made towards attenuating the
discomfort that may arise from lack of job security and promotion opportunities, whilst
for Estonian and Nigerian ISD professionals, monetary rewards appear more important.
As was illustrated in Figure 1, management in each country can bring the best out of their
ISD professionals only if they know which factors are important, and which ones are not.
Thirdly, this paper adds knowledge that may be valuable in the wider HR management
with its findings, which could be useful as human resources are increasingly being sought

170 P. IFINEDO

and engaged from all parts of the globe. One would expect that specific underpinnings
(on motivation and job satisfaction) of each nation are taken into consideration, when the
need for such arises. In general, this paper adds to the important discourse in HR manage-
ment, as it relates to IS professionals (Brancheau et al., 1996; Bostrom and Heinen, 1977;
Couger, 1989).

The limitations in this study include the following: The small-sized sample used, and
the bias from the usage of a convenience sample. Larger samples may yield different re-
sults. Thus, the generalisability and validity of the findings, is limited by the foregoing
reasoning. Another limitation is the heterogeneity among the participants studied, majority
were analysts and programmers, while others (11%) were Network Engineers and Admin-
istrators. Also, the incidence of bias on the parts of the respondents cannot be ruled out in
so far as some had to give back the filled-in questionnaire with their organisations.

6. CONCLUSION

Motivation and job satisfaction of ISD personnel are key issues in IS human re-
sources that needs to be seamlessly addressed by management (Brancheau et al., 1996;
Couger, 1989; Bartol and Martin, 1982; Couger and Amoroso, 1990). This paper used em-
pirical data to investigate motivation and job satisfaction among ISD professionals in three
economically different countries. This study found differences and similarities on the issue
of motivation, job satisfaction and dissatisfaction among ISD professionals for the three
countries. The evidence uncovered does not allow us to support the claim of a global pro-
fessional computer subculture; at least on the themes of this work. Instead, it is seen that
ISD professionals from different nation have differing viewpoints. It is worthwhile to note
that commonalities in perspectives were noticeable for motivation for the two countries that
are geographically and economically similar. The contribution of this paper thus, is that it
enhances our knowledge regarding the discourse of IS professionals’ job satisfaction and
motivation within the global economy characterised by cross-national collaborations. The
specific challenges to each of the countries studied were also discussed. Importantly, it is
concluded that factors of motivation - extrinsic and intrinsic - that may impact upon ISD
professionals may in fact, be specific to each nation. Further research using larger sample
size is needed to deepen our knowledge.

REFERENCES

Adigun, I. O., and Stephenson, G. M., 1992, Sources of job motivation and satisfaction among British and
Nigerian employees, Journal of Social Psychology 132(3):369–377.

Anakwe, U. P., Anandarajan, M., and Igbaria, M., 1999, Information technology usage dynamics in Nigeria: an
empirical study, Journal of Global Information Management 7(2):13–21

Bartol, K., and Martin, P., 1982, Managing information systems personnel: A review of the literature and man-
agerial implications, MIS Quarterly, Special Issue, pp. 49–70.

Baroudi, J. J., and Ginzberg, M. J., 1985, Impact of the technological environment on programmers and analysts
job outcomes, Communication of the ACM 29(6):546–555.

Bostrom, R., and Heinen, J. S., 1977, MIS problems and failures. A socio-technical perspective. Causes, MIS
Quarterly 3.

Brancheau, J. C., Janz, B. D., and Wetherbe, J. C., 1996, Key issues in information systems management: 1994–
1995, SIM Delphi results, MIS Quarterly 20(2).

MOTIVATION AND JOB SATISFACTION AMONG INFORMATION SYSTEMS DEVELOPERS 171

Brislin, R., 1986, The wording and translation of research instruments, in: Fields Methods in Cross-Cultural
Research, W. J. Lonner and J. W. Berry, eds., Sage, CA.

Bryan, N. B., McLean, E. R., Smits, S. J., and Burn, J. M., 1995, Work perceptions among Hong Kong and the
US I/S workers: a cross-cultural comparison, Journal of End User Computing 7(4):22–29.

Carmel, E., 1999, Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall, NJ.
Champy, J. A., 1992, Mission Critical, CIO, January 1992.
Constantine, L., 2001, The Peopleware Papers: Notes on the Human Side of Software, Prentice Hall, NJ.
Couger, J. D., and Cotler, M. A., 1983, The Effects of maintenance assignments on goal congruence for program-

mers and developers, in: Proceedings of ICIS, pp. 83–100.
Couger, J., 1989, New challenges in motivating information systems personnel, Journal of Information Systems

Management, Fall, pp. 36–41.
Couger, J. D., 1986, Effects of cultural differences on motivation of analysts and programmers: Singapore vs. the

United States, MIS Quarterly 10(2):188–196.
Couger, J. D., 1988, Motivators vs. demotivators in IS environment, Journal of Systems Management 39(6).
Couger, J. D., and Zawacki, R. A., 1980, Motivating and managing computer personnel, John and Wiley and

Sons, New York.
Couger, J. D., Adelsberger, I., Borovits M., Zviran, M., and Motiwalla, J., 1990, Commonalities in motivating

environments for programmers/analysts in Austria, Israel, Singapore, and the U.S., Information and Man-
agement 18:41–46.

Couger, J., and Amoroso, J., 1990, Elevating the Top IS Positions to CIO, Proceedings: International Conference
on Systems Science, January, pp. 324–330.

De Meyer, A., and Mizushima, A., 1989, Global R & D Management, R & D Management 19(2).
Dessler, G., 2001, Management: Leading People and Organizations in the 21st Century, Prentice Hall.
Eldon, Y. L., and Abraham, B. S., 1991, Stress dynamics of Information Systems Manager: A contingency Model,

Journal of Management Information Systems 7(4):107–130.
Elizur, D., Ingwer, B., Raymond, H., and Istvan, M. B., 1991, The structure of work values: A cross cultural

comparison, Journal of Organizational Behavior 12:21–38.
Eysenck, H. J., and Wilson, G., 1975, Know Your Own Personality, Harmondsworth, Penguin.
Goldstein, D. K., and Rockart, J. F., 1984, An examination of work-related correlates of job satisfaction in pro-

grammers/analysts, MIS Quarterly 8(2):103–115.
Goldthorpe, J. H., Lockwood, D., Bechhofer, F., and Platt, J., 1968, The Affluent Worker: Industrial Attitudes and

Behaviour, Cambridge University Press, Cambridge.
Griesser, J. W., 1993, Motivation and information system professional, Journal of Managerial Psychology

8(3):21–30.
Hackman, J. R., and Oldham, G. R., 1978, Development of the job diagnostics survey, Journal of Applied Psy-

chology 60(2):159–170.
Harpaz, I., 1990, The importance of work-goal: an international perspective, Journal of International Business

Studies, First Quarter, pp. 75–93.
Herzberg, F., Mausner, B., and Snyderman, B. B., 1959, The Motivation to Work, Wiley, New York.
Hietanen, J., 2001, Increase in atypical work weakens employees’ motivation, Finnish Ministry of Labour press

[id: FI0101173F], referenced in eiro (European industrial relation online, Dec. 2003).
Hofstede, G., 2001, Culture’s consequences: comparing values, behaviours, institutions, and organizations across

nations, Sage Publications.
Iaffaldano, M., and Muchinsky, P., 1985, Job satisfaction and job performance: A meta analysis’, Psychological

Bulletin 97(2):251–273.
Ifinedo, P., 2004, E-government – Precursors, Problems, Practices and Prospects: A Case of Nigeria, Proceedings

of the 2004 IBIM Conference, Amman, Jordan, 4–6 July 2004.
IMJ, 2003, Estonia Embraces Cyberspace, Information Management Journal, July/August, 2003.
Kumar, K., and Bjørn-Andersen, N., 1990, A cross-cultural comparison of IS designer values, Communication of

the ACM 33(5):528–538.
Lawler, E. E., 1994, Reviews of ‘Motivation in Work Organizations’, Worklife Report 9(3):20.
Levitt, T., 1983, The Globalisation of Markets, HBR, 1983, May/June.
Locke, E. A., 1983, The nature and causes of job satisfaction, in: Handbook of Industrial and Organisational

Psychology, M. D. Dunnette, ed., John Wiley and Sons, New York.
Lucas, H., and Turner, J., 1982, A corporate strategy for the control of information processing, SMR 23(3).
Lyytinen, K., and Goodman, S., 1999, Finland: the unknown soldier on the IT front, CACM 42(3).
Mata, T., Ramon, A., and Unger, E. A., 1985, Another look at motivating DP professionals, Comp. Personnel, 10.

172 P. IFINEDO

McLean, E. R., Smits, S. J., and Tanner, J. R., 1996, The importance of salary on job and career attitudes of
information systems professionals, Information and Management 31(3):291–299.

McMurtrey, M. E., Grover, V., Teng, J. T. C., and Lightner, N. J., 2002, Job satisfaction of Information Tech-
nology workers: The impact of career orientation and task automation in a CASE environment, Journal of
Management Information Systems 19(2):273–302.

Mumford, E., 1972, Job Satisfaction: A study of Computer Specialists, Longman, London.
Niederman, F., Brancheau, J. C., and Wetherbe, J. C., 1991, Information Systems Management Issues for

the 1990s, MIS Quarterly 15(4):475–495.
Niederman, F., and Crosetto, G., 1996, Valuing the IT workforce as intellectual capital, Proceedings of the 1999

ACM SIGCPR conference on Computer personnel research.
Palvia, S. C., and Gordon Hunter, M. G., 1996, Information systems development: a conceptual model and a

comparison of methods used in Singapore, USA, and Europe, JG IM 4(3).
Robinson, R. V., 1983, Review of Culture’s consequences: International differences in work-related values, Work

and Occupations 10:110–115.
Rosenfeld, R. H., and Wilson, D. C., 1999, Managing Organizations: Texts, Readings & Cases, MGH, London.
Rubin, H. I., and Hernandez, E. F., 1988, Motivations and behaviors of software professionals, Proceedings of

the ACM SIGCPR conference on Management of information systems personnel, pp. 62–71.
Senker, J., and Senker, P., 1992, Gain Competitive Advantage from Information Technology, JGM 17(3).
Scarpello, V., and Campbell, J. P., 1983, Job satisfaction: are all parts there?, Personnel Psychology 36.
Shore, B., and Venkatachalam, A. R., 1994, The role of national culture in systems and design, JGIM 3(3).
Smits, S. J., Tanner, J. R., and McLean, E. R., 1995, Herzberg Revisited: The Impact of Salary on the Job and

Career Attitudes of I/S Professionals, 1995 ACM SIGCPR Conference, Comp. Personnel Research.

A COMBINED NEURAL NETWORK AND DECISION
TREE APPROACH FOR TEXT CATEGORIZATION

Nerijus Remeikis, Ignas Skucas, and Vida Melninkaite∗

1. INTRODUCTION

As the volume of information continues to increase, there is growing interest in helping
people better find, filter, and manage these resources. Text categorization - the assignment
of natural language documents to one or more predefined categories based on their seman-
tic content - is an important component in many information organization and management
tasks. Automatic text categorization task can play an important role in a wide variety of
more flexible, dynamic and personalized tasks as well: real-time sorting of email or files,
document management systems, search engines, digital libraries, decision support systems
for design. Text categorization is now being applied in many contexts, ranging from docu-
ment indexing based on a controlled vocabulary, to document filtering, automated metadata
generation, word sense disambiguation, population of hierarchical catalogues of Web re-
sources, and in general any application requiring document organization or selective and
adaptive document dispatching.

A number of statistical classification methods and machine learning techniques have
been applied to text categorization, including techniques based on decision trees (Lewis
and Ringuette, 1994), neural networks (Wiener et al., 1995), Bayes probabilistic approaches
(Lewis and Ringuette, 1994). However there is still need more accurate text classifiers
based on new learning machine learning approaches.

The purpose of the current work is to describe ways in which hybrid machine learning
method can be applied to the problem of text categorization, and to test its performance
relative to a number of other text categorization algorithms. In this paper, we introduce
the use of a hybrid decision tree and neural network technique to the problem of text
categorization, because hybrid approaches can simulate human reasoning in a way that
a decision tree learning is used to do qualitative analysis and neural learning is used to
do subsequent quantitative analysis. Our approach is based on hybrid algorithm, which

∗ Vytautas Magnus University, Vileikos str. 8, Lt-3035 Kaunas, Lithuania, Nerijus Remeikis@fc.vdu.lt,
Ignas Skucas@fc.vdu.lt, Vida Melninkaite@fc.vdu.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 173

174 N. REMEIKIS ET AL.

was described in paper (Banerji, 1997) and has been shown to perform well on standard
machine learning tasks. The main idea of this method is to transform decision trees to
neural networks. Our proposed hybrid machine learning method for text categorization
task constructs the networks by directly mapping decision nodes or rules to the neural
units and compresses the network by removing unimportant and redundant units and con-
nections.

2. PROBLEM DEFINITION

Automatic text categorization has always been an important application and research
topic since the inception of digital documents. The text classification task can be defined as
assigning category labels to new documents based on the knowledge gained in a classifica-
tion system at the training stage. A wide range of supervised machine learning algorithms
has been applied to this area using a training data set of categorized documents. Although
text classification performance results has been quite encouraging, but there is still need
more accurate text classifies based on new learning machine learning approaches (Sebas-
tiani, 2002).

Performance of neural networks learning is known to be sensitive to the initial weights
and architecture – number of hidden layers and neurons in these layers. Traditionally, the
initial values of weights are determined randomly in the backpropagation neural network
(BPN) and modified by the generalized delta rule. Although the BPN has been imple-
mented in many applications, it still has some major drawbacks; namely, its convergence
tends to be very slow, the optimal number of hidden nodes is difficult to determine, and
usually it does not yield optimal solutions. Usefulness of good initialization, effect of ini-
tial values, prior weights are discussed in (Raudys, 2001). Recently, pattern recognition
techniques have been used to initialize weights. (Raudys and Skurichina, 1992) used a
piece-wise linear classiffier to initialize hidden layer weights of the three-layer neural net-
work. In (Sethi, 1991; Banerji, 1997) decision tree was applied to initialize the neural
network. These methods typically construct the networks by directly mapping decision
nodes or rules to the neural units. Text categorization datasets are large and increases very
rapidly. Growing decision trees with increasingly larger amounts of training data will re-
sult in larger decision tree sizes. As a result, the neural networks constructed from these
decision trees are often larger and more complex than necessary.

Error based pruning can be used to prune a decision tree. It uses a parameter, the
certainty factor, which affects the size of the pruned tree. Here, we show that varying
the certainty factor allows significantly smaller trees to be obtained with minimal or no
accuracy loss. Also, appropriate choice of certainty factor is able to produce trees that
are essentially constant in size in the face of increasingly larger training sets. Experimental
results support the conclusion that error based pruning can be used to produce appropriately
sized trees, which are directly mapped to optimal neural network architecture with good
accuracy.

This paper presents our attempt to improve text classification accuracy by neural net-
work initialized with decision tree classifier and to compare classification performance to
previous researches results.

A COMBINED NEURAL NETWORK AND DECISION TREE APPROACH 175

3. RELATED WORK

Combination of decision trees and neural networks can be classified into two groups:

1. In the first group neural networks may be used in the implementation of vari-
ous aspects of decision trees. For instance, (Gelfand and Guo, 1992) use neural
networks in the internal nodes of a decision tree to perform the task of feature se-
lection and decision boundary construction. In this approach, one is constructing
a tree of neural networks.

2. The second group uses decision trees to form the structure of the neural network.
The key idea is to construct a decision tree and then convert the tree into a neural
network. This is the direction (Sethi, 1991; Banerji, 1997) have taken. The main
idea here is that in the design of multilayer feedforward networks, the structure of
the network, i.e., the number of hidden layers and the number of neurons in each
hidden layer is not known in advance, and is often chosen rather heuristically
and by trial and error. The method described in (Sethi, 1991) offers one way to
uncover the structure of the network That is, they offer a method to implement a
pre-designed decision tree via a multilayer feed forward neural network. Perhaps
one of the main advantages of this approach, other than possibly eliminating guess
work in the design of multilayer neural networks, is that the network designed this
way usually has fewer connections.

Our method presented in this paper has some advantages over (Sethi, 1991; Banerji,
1997) method. Decision tree size grows approximately linearly with increasingly larger
amounts training set size. Neural networks constructed from these trees are often larger
and complex than necessary. When the certainty factor value is appropriately tuned for the
data set, error-based pruning can give trees that are essentially constant in size regardless
of the increasingly larger amount of training data.

4. DECISION TREE MAPPING TO NEURAL NETWORK

4.1. Decision Tree Construction Algorithm

An algorithm constructs the decision tree with a divide and conquer strategy. Each
node in a tree is associated with a set of cases. At the beginning, only the root is present,
with associated the whole training set and with all case weights equal to 1. At each node
the following divide and conquer algorithm is executed, trying to exploit the locally best
choice, with no backtracking allowed.

Let T be the set of cases associated at the node. The weighted frequency freq(Ci, T)

is computed of cases in T whose class is Ci , i ∈ [1, N]. If all cases in T belong to a same
class Cj (or the number of cases in T is less than a certain value) then the node is a leaf,
with associated class Cj .

If T contains cases belonging to two or more classes, then the information gain of
each attribute is calculated:

I = H(T) −
s∑

i=1

|Ti |
|T | × H(Ti), (1)

176 N. REMEIKIS ET AL.

where

H(T) = −
n∑

j=1

freq(Cj , T)

|T | × log2

(
freq(Cj , T)

|T |
)

, (2)

is the entropy function.
While having an option to select information gain, by default, however, C4.5 (Quinlan,

1993) considers the information gain ratio of the splitting T1, . . . , Ts which is the ratio of
information gain to its split information:

S(T) = −
s∑

i=1

|Ti |
|T | × log2

(|Ti |
|T |

)
. (3)

4.2. Training Multilayer Neural Network

Neurons in the input layer only act as buffers for distributing the input signals xi to
neurons in the hidden layer. Each neuron j in the hidden layer sums up its input signals xi

after weighting them with the strengths of the respective connections wji from the input
layer and computes its output yj as a function f of the sum as follows

yj = f
(∑

wjixi

)
, (4)

where f can be a simple threshold function, a linear or a sigmoid function.
There are many available learning algorithms in the literature (Rumelhart and Mc-

clelland, 1986; Haykin, 1994). Backpropagation with momentum is the most commonly
adopted neural network training algorithm (Rumelhart and Mcclelland, 1986). The back-
propagation algorithm employs a gradient descent technique to adopt the neural network
weights to minimise the mean squared difference between the ANN output and the desired
output. The change in weight �wji(k) between neurons i and j is as follows

�wji(k) = ηδjxi + α�wji(k − 1), (5)

where η is a parameter called the learning coefficient, α is the momentum coefficient, and
δj is a factor depending on output neuron or a hidden neuron. For output neurons

δj = ∂f

∂netj
(yj − ynet−j), (6)

where netj = ∑
i xiwji , yj , ynet−j are the target and the neural outputs for neuron j ,

respectively. For hidden neurons

δj = ∂f

∂netj

∑
q

wqj δq . (7)

As there are no target outputs for hidden neurons in (4), the difference between the
target and the actual neural output of a hidden neuron j is replaced by the weighted sum of
the δq terms already obtained for neurons q connected to the output of j . Thus, iteratively,

A COMBINED NEURAL NETWORK AND DECISION TREE APPROACH 177

beginning with the output layer, the δ term is computed for neurons in all layers and weight
updates determined for all connections according to (5).

Training a neural network by backpropagation with momentum training algorithm
to compute y involves presenting it sequentially with different training sets. Differences
between the target output and the actual output of the neural network are backpropagated
through the network to adapt its weights using (5)–(7). The adaptation is carried out after
the presentation of each set. Each training epoch is completed after all patterns in the
training set have been applied to the networks.

4.3. Decision Tree Error-Based Pruning

In general, a decision tree can be grown so as to have zero error on the training set.
Also, in general, over-fitting occurs and the tree needs to be pruned in order to generalize
well on the test set.

Error-based pruning considers the E errors among the N training examples at a leaf
of the tree to give an estimate of the error probability for that node. The assumption is
that these are E events in N independent trials which is, of course, not perfectly true. We
want to know what the observed result tells us about the probability of an error over the
entire population of examples that will end up at the leaf. Using the binomial theorem,
confidence limits can be calculated for the probability of error for a given confidence level.
The confidence level is the certainty factor parameter CF. The upper limit of the probability
is found. Given this value the predicted number of errors for each leaf of a test node being
considered for pruning can be calculated by multiplying the number of examples at the leaf
by the upper limit of the probability confidence limit. The predicted number of errors if a
node was a leaf can be calculated from the observed number of errors after its leaves are
collapsed. Error estimate for a node is:

e =
⎛
⎝f + z2

2N
+ z

√
f

N
− f 2

N
+ z2

4N2

⎞
⎠/(

1 + z2

N

)
, (8)

where f is the error on the training data, N is the number of instances covered by the
leaf and z is computed from normal distribution. The leaves are pruned if the number of
predicted errors after pruning is less than the sum of predicted errors across the leaves.
The smaller the CF becomes the more certain we are that the confidence interval contains
the true probability of error. That is, the confidence interval is wider, and the upper limit
on the probability that a particular example is in error is higher, making an example more
likely to be incorrect and hence more pruning will be done. With a CF = 100 we have no
confidence that the true error is in the interval and would simply take the observed error
rate at the leaf.

The first thing to recognize is that a tree pruned at CF2 can be obtained by pruning the
tree pruned at CF1 when CF1 > CF2. So, the search for the appropriate certainty factor
would consist of choosing an initial certainty factor, CFi , for pruning and then evaluating
the resultant tree on the validation set to determine its accuracy. Next, choose a new cer-
tainty factor lower than the last and prune the pruned tree. Evaluate the resultant tree on
the validation set. Continue creating new pruned trees until the stopping criterion is met.

178 N. REMEIKIS ET AL.

Figure 1. Transformation of decision tree to neural network.

4.4. Neural Network Initialization with Decision Tree Classifier

If we compare decision trees and neural networks we can see that their advantages and
drawbacks are almost complementary. For instance humans easily understand knowledge
representation of decision trees, which is not the case for neural networks. Decision trees
have trouble dealing with noise in training data, which is again not the case for neural net-
works, decision trees learn very fast and neural networks learn relatively slow, etc. Our idea
was to combine decision trees and neural networks in order to combine their advantages.
That is why we developed a combined approach for building decision trees.

First we build a decision tree that is then used to initialize a neural network. Such a
network is then trained using the same training objects.

The source decision tree is converted to a disjunctive normal form, which is a set of
normalized rules. Then the disjunctive normal form serves as source for determining the
neural network’s topology and weights. The neural network has two hidden layers. The
number of neurons on each hidden layer depends on rules in the disjunctive normal form.
The number of neurons in the output layer depends on how many outcomes are possible in
the training set. The conversion is described in the next steps (see Figure 1):

1. Build a decision tree, using any available approach.
2. Every path from the root of the tree to every single leaf is presented as a rule.
3. The set of rules if transformed into the disjunctive normal form, which is minimal

representation of original set of rules.
4. In the input layer create as many neurons as there are attributes in the training set.
5. For each literal in the disjunctive normal form there is a neuron created in the first

hidden layer (literal layer) of a neural network.

A COMBINED NEURAL NETWORK AND DECISION TREE APPROACH 179

6. Set weights for each neuron in the literal layer, that represents a literal in the form
(attribute ≥ value) to w0 = −σ ∗ value for each literal in the form (attribute
≥ value) to w0 = σ ∗ value. Set all the remaining weights to +β or −β with
equal probability. Constant σ is usually a number larger then 1 (usually 5) and
constant β is a number close to 0 (usually 0.05).

7. For every conjunction of literals create a neuron in the second hidden layer (con-
junctive layer).

8. Set weights that link each neuron in the conjunctive layer with the appropriate
neuron in the literal layer to w0 = σ ∗ (2n − 1)/2, where n is a number of literals
in the conjunct. Set all the remaining weights to +β or −β with equal probability.

9. For every possible class create a neuron in the output layer (disjunctive layer).
10. Set weights that link each neuron in the disjunctive layer with the appropriate

neuron in the conjunctive layer to w0 = −σ ∗ (1/2) Set all remaining weights to
+β or −β with equal probability.

11. Train the neural network using the same training objects as were used for training
the decision tree.

Such network is then trained using backpropagation. Mean square error of such net-
work converges toward 0 much faster than it would in the case of randomly set weights
in the network. Even if we would use neural network before the backpropagation stage, it
would already give good results.

5. EXPERIMENT AND RESULTS

5.1. Text Corpora

It is hard to find standard benchmark sets for text classification, where each method can
be tested and its performance compared reliably with other methods. The Reuters sets are
a notable exception. This collection consists a set of newswire stories classified under cat-
egories related to economics. Although different versions are available, many researchers
use it for benchmarking. We will use the ApteMod version of Reuters-21578 (Yang and
Liu, 1999). The ApteMod set has 7769 documents for training and 3019 for testing, after
stemming and stop word removal 24240 unique terms remain. The Aptemod version has
an average of 1.3 categories per document, with a total of 90 categories that occur in both
sets.

5.2. Feature Selection and Extraction

In text categorization, features are often measures of frequencies of words appearing
in a document. Feature selection chooses which features to be used in classification. It is
preferable to use less features than the raw measurements (say, frequency of each word), so
that classification will be performed in a feature space of a lower dimensionality. By reduc-
ing the dimensions of the feature space, it not only increases the efficiency of the training
and test processes, but also reduces the risk of overfitting the model to data. Feature ex-
traction computes the chosen features from an input document. In statistical classification,

180 N. REMEIKIS ET AL.

features are represented in a numerical vector, which is subsequently used by the classi-
fiers. Feature selection involves stop word removal, stemming, and term selection:

• Stop Word Removal. Words used in text indexing and retrieval are called terms.
According to the term discrimination model, moderate frequency terms discrimi-
nate the best. High frequency words, which are called stop words, have low infor-
mation content, and therefore have weak discriminating power. They are removed
according to a list of common stop words.

• Stemming. Stemming reduces morphological variants to the root word. For exam-
ple, “asks”, “asked”, and ”asking” are all reduced to “ask” after stemming. This
relates the same word in different morphological forms and reduces the number
of distinctive words. The Porter stemmer is a commonly used stemmer (Frakes
and Baeza-Yate, 1992).

• Term Selection. Even after the removal of stop words and stemming, the number
of distinct words in a document set may still be too large, and most of them
appear only occasionally. In addition to removing high frequency words, the term
discrimination model suggests that low frequency words are hard to learn about
and therefore do not help much. They should be removed to reduce the dimensions
of the vector space as well. We used information gain selection method (Yang and
Pedersen, 1997).

• Feature Extraction. After the terms are selected, for each document a feature
vector is generated whose elements are the feature values of each term. A com-
monly used feature value is the term frequency (number of occurrence of a term
in a document).

5.3. Classification

A number of classifiers have been tried on text categorization. In our experiment, we
focused on the evaluation of the neural network initialized with decision tree classifier
on text categorization. We compare its accuracy to those of classical decision tree C4.5
(Quinlan, 1993) and feedforward backpropagation neural network initialized with random
initial weights. Other the error back-propagation neural networks parameters that have
been used in the experiments:

• Learning rate – 0.6.
• Number of iteration – 500.

In our research we used Weka 3 (Witten and Frank, 2000), a machine learning software
in Java developed at the University of Waikato in New Zealand. Weka is a collection of
machine learning algorithms (neural networks, decisions trees) for solving real-world data
mining problems. Weka is also well suited for developing new machine learning schemes.
We implemented combined neural network and decision tree algorithm in this package.
Multilayer neural networks, decisions trees are also implemented.

5.4. Evaluation

The performance of category ranking can be evaluated in terms of precision and recall,
computed at any threshold on the ranked list of categories of each document. The category

A COMBINED NEURAL NETWORK AND DECISION TREE APPROACH 181

Table 1. The decision matrix for calculating the classification accuracy

assignment of a binary classifier can be evaluated using a two-way contingency table (see
Table 1).

The relationship between the system classification and the expert judgment is ex-
pressed using four values as shown in Table 1. Precision is defined as a/(a+b), and recall is
defined as a/(a+c).

For evaluating performance average across categories, there are two conventional me-
thods, namely macro-averaging and micro-averaging. Macro-averaged performance scores
are computed by first computing the scores for the per-category contingency tables and then
averaging these per-category scores to compute the global means. Micro-averaged perfor-
mance scores are computed by first creating a global contingency table whose cell values
are the sums of the corresponding cells in the per-category contingency tables, and then use
this global contingency table to compute the micro-averaged performance scores. There is
an important distinction between macro-averaging and micro-averaging. Micro-averaging
performance scores give equal weight to every document, and is therefore considered a
per-document average. Likewise, macro-average performance scores give equal weight to
every category, regardless of its frequency, and is therefore a per-category average.

5.5. Results

Decision tree size grows approximately linearly with increasingly larger amounts train-
ing set size. Neural networks constructed from these trees are often larger than necessary.
Large networks take a long time to learn, and tend to give accurate classification results
for training data, but not for unknown test data. There are various approaches to pruning
decision trees, including error-based pruning, reduced error pruning, minimum description
length pruning, and others (Quinlan, 1993). One well-known element of machine learning
folklore is that decision tree pruning methods generally do not prune hard enough. Here
we will show that, in general, an appropriate setting of the certainty factor for error-based
pruning will cause decision tree size to plateau.

Figure 2 shows results obtained with the Reuters-21578 data set. The training set size
is varied from 1000 to 9584. Data is plotted as the error-based pruning certainty parameter
is varied across values of 25 (the default), 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001. The
curve for the default certainty factor grows linearly. However, the family of curves clearly
shows that the behavior depends on the value of the certainty factor. If the certainty factor
is set as low as 0.001, then the average tree size varies between 61 and 373 over all training
set sizes. That is, the tree size is minimal and optimal, just as desired.

For evaluating the effectiveness of our system, we used the breakeven points. The
breakeven point is the point at which precision equals recall. Various background condi-
tions, often extraneous to the learning algorithm itself, may influence the results. These
may include, among others, different choices in pre-processing (stemming, etc.), indexing,

182 N. REMEIKIS ET AL.

Figure 2. Low certainty factor can give constant tree size with added training data.

Table 2. Precision/recall-breakeven point for ten most populated Reuters categories

dimensionality reduction, classifier parameter values. Table 2 summarizes micro-averaged
breakeven performance for our hybrid classifier and to previous researches results achieved
by neural networks and decision trees classifiers (Sebastiani, 2002). The measures used are
precision/recall-breakeven point, micro-average and macro-average on ten most populated
Reuters categories. Our system proves to perform well as compared to the neural networks
and decision trees methods.

6. CONCLUSIONS

This paper discussed a neural network initialization technique for text categorization.
It employs the use of neural networks initialized with decision tree classifier. Our study
provides evidence that hybrid machine learning approach can be used for the construc-

A COMBINED NEURAL NETWORK AND DECISION TREE APPROACH 183

tion of effective classifiers for automatic text categorization. We have presented a hybrid
decision tree and neural network algorithm for building the classifier.

Decision tree size grows approximately linearly with increasingly larger amounts train-
ing set size. Neural networks constructed from these trees are often larger and complex
than necessary. When the certainty factor value is appropriately tuned for the data set,
error-based pruning can give trees that are essentially constant in size regardless of the in-
creasingly larger amount of training data. The solution for choosing the certainty factor is
given in this paper. This generally requires values of the certainty factor much smaller than
the default value. Appropriate choice of certainty factor is able to produce trees that are
essentially constant in size in the face of increasingly larger training sets. Experimental re-
sults support the conclusion that error based pruning can be used to produce appropriately
sized trees, which are directly mapped to optimal neural network architecture with good
accuracy.

This paper showed that hybrid decision tree and neural network approach improved
accuracy in text classification task and are substantially better than single decision tree or
neural network initialized randomly text classifiers performance comparable to previous
researches results.

Although encouraging results have been obtained using hybrid approach based clas-
sifier, there is still much work remaining to be investigated. They include to create new
decision tree construction algorithm for textual data and to determine how much it has an
effect on hybrid classifier accuracy. These issues are left for our future works.

REFERENCES

Banerji, A., 1997, Initializing neural networks using decision trees, Computational Learning Theory and Natural
Learning Systems, MIT Press, IV, 3–15.

Frakes, W., and Baeza-Yates, R., 1992, Information Retrieval: Data Structures & Algorithms, Prentice Hall.
Guo, H., and Gelfand, S. B., 1992, Classification trees with neural-network feature extraction, IEEE Trans. Neural

Networks 3:923–933.
Haykin, S., 1994, Neural Networks: A comprehensive foundation, Macmillan College Publishing Comp., New

York.
Lewis, D. D., and Ringuette, M., 1994, A comparison of two learning algorithms for text categorization, in:

Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las
Vegas, pp. 81–93.

Quinlan, J. R., 1993, C4-5: Programs for machine learning, Morgan Kaufmann, San Mateo, CA.
Raudys, S., 2001, Statistical and Neural Classifiers: An integrated approach to design, Springer-Verlag, NY,

pp. 169–173.
Raudys, S., and Skurichina, M., 1992, The role of the number of training samples on weight initialization of arti-

ficial neural net classifier, Neuroinformatics and Neurocomputers. Proc. RNNS/IEEE Symposium, Rostov-
on-Don, Russia, pp. 343–353.

Rumelhart, D. E., and Mcclelland, J. L., 1986, Parallel distributed processing 1, MIT Press, Cambridge, MA.
Sebastiani, F., 2002, Machine learning in automated text categorization, ACM Computing Surveys 34(1):1–47.
Sethi, I. K., 1991, Decision tree performance enhancement using an artificial neural network implementation, in:

Artificial Neural Networks and Statistical Pattern Recognition: Old and New Connections, I. K. Sethi and
A. K. Jain, eds., Elsevier, Amsterdam, the Netherlands, pp. 71–88.

Wiener, E. D., Pedersen, J. O., and Weigend, A. S., 1995, A neural network approach to topic spotting, in:
Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and Information Retrieval, Las
Vegas, pp. 317–332.

Witten, I. H., and Frank E., 2000, Data mining: Practical Machine Learning Tool sand Techniques With Java
Implementation, Morgan Kaufmann Publishers, San Francisco, CA.

184 N. REMEIKIS ET AL.

Yang, Y., and Pedersen, J., 1997, A comparative study on feature selection in text categorization, in: Proceedings
of ICML-97, 14th International Conference on Machine Learning, Nashville, US, pp. 412–420.

Yang, Y., and Liu, X., 1999, A re-examination of text categorization methods, in: Proceedings of SIGIR-99,
22nd ACM International Conference on Research and Development in Information Retrieval, Berkeley,
US, pp. 42–49.

WORKING WITH METHODS:
OBSERVATIONS ON THE ROLE OF

METHODS IN SYSTEMS DEVELOPMENT

Päivi Ovaska∗

1. INTRODUCTION

Studies on large software projects’ failures show that projects are frequently not com-
pleted in time, are of heterogonous quality and often more money is needed than planned.1

System development practitioners and researchers agree that these failures result from ir-
rational application of development practices by system development practitioners.2 As a
solution to these problems, researchers have developed hundreds of new system develop-
ment methods3. The general status of methods has been described as “method jungle”,4, 5

an unorganized collection of methods more or less similar to each other.6, 7 When we in-
clude the in-house method development, the number of methods used rises to thousands.2, 8

Paradoxically, despite the efforts devoted to method development, no agreement on their
usefulness in organizations exists.9, 10 The two main reasons cited for this are that the,
mostly academic, method developers have no profound knowledge of the practical devel-
opment work3, 11–13 and that no consensus on what constitutes a method has so far been
reached.10, 14–16

This study deepens our understanding of earlier studies concerning the role of meth-
ods and summarizes four case studies performed in an international ICT company, reported
in17–20. These in-depth studies analyze two systems development projects within a com-
pany, which develops mobile services for the global and domestic telecommunication mar-
kets. The observations of our studies suggest that working with methods is more about
social interaction and mutual understanding between project participants than progress-
ing according to milestones and strictly following the prescribed phases of the method. In
our case studies, successful use of system development methods required good commu-
nication between project participants to adopt the method to the development situation at
hand. Without this communication the methods could not be used. When communication

∗ South Carelia Polytechnics, Koulukatu 5 B, FIN-55120 Imatra, Finland, paivi.ovaska@scp.fi.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 185

186 P. OVASKA

was successful, the methods were used for learning to understand the system and its re-
quirements. Without a common understanding of the system between project participants,
the estimation of project timetable and resources became unrealistic and caused schedule
overruns and wrong timing of resources.

The paper is structured as follows. Section 2 describes related research on the role
of methods in the literature and the terminology used in this context. Section 3 presents
the organization and the projects studied. In the next section (Section 4) a summary of the
case study narratives is presented. Section 5 presents the results of our study. In Section 6,
we discuss the findings of our study as well as its implications for research and practice.
Finally, we offer conclusions.

2. DEVELOPMENT METHODS IN LITERATURE

2.1. The Role and Use of Methods

The majority of system development methods have a common set of concepts, which
originate in the structured techniques of the 60’s and 70’s.15 These concepts include life-
cycle thinking,11 design strategies such as functional decomposition21 and information
hiding.22 It can be argued that even object-orientation and the definition of the Simula
programming language15, 23 can be traced to this period. Development practitioners tend
to be quite conservative in their selection of methods, with methods from the 70’s and
80’s still dominating in practice.14 Some studies argue that later methods, such as the
object-oriented ones are little used in practice.14 In contrast, some studies suggest that
object-oriented methods are widely used in practical organizations and they are becom-
ing more common.14 Recently, agile methods in general and Extreme Programming (XP)
in particular have gained much following among system development practitioners. Agile
methods were developed as an alternative for the complicated traditional methods. Agile
methods emphasize communication, development speed, lighter documentation and team
effectiveness.24, 25 However, no empirical evidence of their practicability or effectiveness
exists.25

There are only few reports on the use of methods in practice.8, 10, 14–16, 26 Some system
developers claim to use no methods, others state that they tend to use a part of a method
rather than following all the steps required by a particular method.3 Many organizations
have developed their own methods10 to better meets the needs of the organizational en-
vironment. One of the better known examples of this kind of in-house method is Nokia’s
OMT++, which is an enhanced version of OMT for designing network management sys-
tems for mobile phones.27 No evidence exists whether these in-house methods are used
more successfully than textbook methods.2 Studies of in-house method development indi-
cate that the selection of methods, their development and their introduction is done in an
ad-hoc manner, with no control over the adaptation.8, 28 Nandakumar and Avison16 go as
far as to say that methods are “treated primarily as a necessary fiction to present an image
of control or to provide a symbolic status in today’s organization”. In contrast, Undhelkas
and Mandapur29 propose a metaphor of a “road map” for development methods, suggest-
ing that methods may not be able to recognize all situational factors and are more useful
for a “foreigner” than for a “seasoned” practitioner.

OBSERVATIONS ON THE ROLE OF METHODS 187

As a reason for the limited use of methods it has been suggested that they do not
address the most troublesome aspects of development, especially the thin spread of appli-
cation domain knowledge, and conflicting requirements and breakdowns of the commu-
nication process.11 Further, they are too mechanistic and detailed,16 do not take different
development situations into account,26 and do not consider individual creativity, intuition
and learning over time.26 Also, by using methods one might lose sight of the fact that the
real objective is the development of an actual system.26

Previous studies have reported method usage rates from 62 to 87 percents.8, 26 These
studies assume that if a method is not followed in detail, it is not used at all.26 This does
not mean that the method does not have any influence on the development. Some studies
suggest that IS development in practice is not done according to any formalized meth-
ods, but rather providing learning methods and guidelines for participants on how to or-
ganize their work.30, 31 Cockburn argues that methods reside in the tacit understanding
shared by the participants, and in their habits of conversation.24 Obviously, researchers
and practitioners interpret the use methods differently.10, 14, 32 There is also unfortunate
terminological disagreement on method and methodology, which are discussed in the next
section.

2.2. Terminology and Concepts of Methods and Their Use

The simplest definition of a method is “the way of doing things”,33 which is a popular
definition among system development practitioners.10 Divergent opinions on what con-
stitutes a method, what is methodology and how these concepts are to be used, is very
confusing.

First, there is the method versus methodology debate. The use of these terms has been
confused.2, 10 Methodology is used as the study of methods, but also as a synonym for
method.2, 10

Second, various definitions of method exist. Dictionaries define the term “method” as
“the procedure of obtaining an object”34 and emphasize the process rather than the product.
In contrast, Wijers35 notes that text-book methods in IS focus on feasible specifications of
products rather than on the process of developing such specifications. Table 1 shows the
most widely used definitions of method.

Third, there is confusion about what constitutes a system development method and a
software development method. Generally, software development method refers to the de-
sign and production of software while systems development method involves more widely
people and organizational aspects.10

Fourth, the use of methods has been regarded from a number of points of view.14 The
use of methods can be seen from the users’ perspective: a number of people in different
roles use a method, users can be developers, project managers and quality managers.14, 36

Method use can be seen also from the perspective of the explicitness of use varying from
defined use (e.g. company standard enacted by a CASE tool) to implicit use as an influential
determinant of the way of working.14

Use of methods may also play several different roles in systems development. Ta-
ble 2 shows examples of the roles methods can play according to the existing litera-
ture.

188 P. OVASKA

Table 1. Examples of widely used definitions of systems development method

Table 2. Examples of systems development methods roles. Adopted from14

OBSERVATIONS ON THE ROLE OF METHODS 189

3. THE CASE STUDIES

In this section we describe the organization studied and two case projects chosen to
this study.

3.1. Case Organization

This study was performed in an international ICT company. The development of new
applications and services were the responsibility of in-house software development unit
or outsourced companies. The in-house software development unit was divided into three
departments at different geographical locations in Finland. The coordination between the
different sites was planned to be carried out by using common processes and written speci-
fications. In order to support informal communication across the sites, computer-mediated
communication devices such as video conferencing, Internet Relay Chat channels, shared
calendars and electronic mail were in place.

The use of an in-house software development unit for development of services was
mandated by the company’s top management. The in-house software development unit
employed approx. 150 persons. The unit’s work had previously focused on R&D work
in the company. During the past few years, it had developed its software development
skills and its own in-house methods to make the systems development more effective and
also to prove their capability to the company’s business units. Despite in-house software
development unit’s effort on method development, the business units of the company were
nor convinced of its competencies and methods. Quite often business units still preferred
outsourcing instead of developing in-house.

3.2. Case Projects

The customers of both the projects were internal ones. The projects took place during
the year 2001 and were planned and organized traditionally according to a waterfall model
with distinct requirement elicitation, analysis, software design, implementation and testing
phases. Both of these projects were developed based on an object-oriented approach and
followed principles of a well known object-oriented system development method, namely
UML.45 The methods were intended to be followed mainly as an ideal process (Table 2),
although they were intended to be adapted to the need of each individual project. The
methods did not give any guidance for the adaptation, the same phenomenon found in8.
The object-oriented method was selected by choosing one of the well known “text-book”
methods and combining this with a waterfall process model. In both projects, at least parts
of the systems were developed at three different sites in Finland.

The projects (EC project and DS project) developed mobile services to the global
and domestic telecommunication markets. A goal of both projects was the renewal of old
platform architecture to allow the services to be better and easier modifiable, maintainable
and scalable. The EC project developed an Electronic Commerce mobile service platform.
The system was intended to enable organizers or their sponsors to promote their products
in all kinds of events, such as ice hockey and football games. The system was composed of
two subsystems: the platform in which the services are run (Platform subsystem) and the
toolbox (Tool subsystem). The Tool subsystem allowed adding, configuring and simulating

190 P. OVASKA

Table 3. Characteristics of the studied projects

the services and was intended to run in a Windows PC and the service platform in an UNIX
environment.

The DS project developed a directory service platform for international markets. The
project was partitioned into two subprojects to facilitate easier management. Partitioning
was carried out on the basis of the architecture and technology: one subsystem had a highly
distributed, component-based architecture (Server) and the other was a centralized subsys-
tem (Client), which handled authentication, authorization and user interfaces. The func-
tionality of the services required subsystems to communicate only through an extensible
and configurable interface. Table 3 represents some characteristics of these projects.

4. SUMMARY OF THE CASE NARRATIVES

In this section we highlight issues and problems of method use observed in both
case study projects. These descriptions are summary of the narratives from the project,
described in more detail in19, 20. These narratives were formulated based on the qualitative
analysis using grounded theory approach.46

4.1. DS Project: Communication and Coordination18, 19

At the beginning of the DS project, software architecture was regarded as an impor-
tant method in the coordination of distributed software development. The allocation of the
development work was performed according to the software architecture. The software de-
velopment method in the company was also thought to guarantee coordination. During the
project, it became apparent that the actual allocation of work did not follow the plans and

OBSERVATIONS ON THE ROLE OF METHODS 191

Figure 1. Four different interpretations of the architecture in DS project. The same components are marked with
the same number.

the method did not guide the work at all. Every designer saw the architecture of the system
and its component dependencies differently (Figure 1).

Communication barriers and cultural differences caused by the architect’s one-sided
approach to project activities in the multi-site project hindered a common understanding
of the architecture of the other subsystem. In the Server subproject, which was completely
carried out at one site, the informal communication between project participants allowed a
shared understanding of the architecture to be developed.

In the later phases of development, the lack of common understanding of the archi-
tecture caused many coordination problems in the multi-site subproject. These problems
complicated the realization of the actual. The developers had to do many changes to the
interfaces and components before the integration of the components into a working system
succeeded. These problems surfaced in the testing phase, as the integration problems made
running the tests impossible.

4.2. EC Project: Communication and Understanding Requirements17, 20

In the beginning of the EC project, many communication problems and a number of
disagreements about project goals, used development methods and strategies emerged. A
small user interface part was neglected in the beginning, but grew bigger in during the
course of the project. The project participants followed the in-house development methods
strictly because they needed guidance for their development decisions. The line organiza-
tion managers based their resource decisions also on the methods. The strong reliance on
methods, the disagreements between participants and the communication problems seemed
to inhibit the understanding of the user interface part of the system and its requirements.
The understanding of user interfaces improved when the two technical persons involved in
the project discovered that this former small user interface part was not only comprised of
few user interfaces, but it was also a separate subsystem with its own functionality. This
understanding increased radically when the user interface designer and another designer
joined the project and the project moved towards more iterative development and conver-

192 P. OVASKA

Figure 2. Three models of the system in the EC project. Analysis model resides in the left upper corner, design
model in the right upper corner and implementation model in the middle down. The increased understanding of
Tool subsystem requirements can be seen as crowing size of the Tool subsystem ‘box’.

sations between the customer and the developers to better satisfy the customer needs and
expectations.

Figure 2 shows the requirement evolution process during the project in a form of three
conceptual models of the system (analysis, design and implementation models).

Although there were problems in the beginning of the project, in the later phases the
project group’s ability to solve the disagreements and turn the development towards a more
iterative way made the actual system a success. The final system met customer require-
ments well and the customer was satisfied with the result. The development still required
more time than initially estimated and the schedule of the project exceeded the original plan
by more than 40%. The requirements in the other subsystem changed repeatedly through-
out the process causing delays. The original time schedule had been planned according to
the initial requirement specification. Therefore, project managers were unable to estimate
the new time budget during the development phase. Nobody involved in the project could
see the current state of the project not having a good enough understanding of the system
and obvious changes to the project schedule came always as a surprise to the majority of
the participants. Changes were made eight times during the second half of the development
phase, and every time two weeks were added to the schedule. As a reason it was always
stated that the Tool subsystem was not ready.

OBSERVATIONS ON THE ROLE OF METHODS 193

5. OBSERVATIONS

5.1. The Use of Methods

The case study descriptions above indicate that the use of methods in the company re-
quired a lot of communication between participants. Despite the development of in-house
methods, the methods did not guide the participants in the various project situations, nor
was there training on identifying situations where deviations from the method are nec-
essary. Without this communication the method failed. This happened in the multi-site
DS subproject causing coordination problems in the later phases of development. In the
same-site DS subproject, the designers were experienced and “knew what to do”. Still the
methods were used for communicating architectural decisions between designers. When
in the EC project communication succeeded, the understanding of the system improved.
The understanding of the system arose mainly from the communication between partici-
pants, not from the system itself, nor from the descriptions alone. This understanding was
a result of a learning process, where system development participants were able to change
their understanding of the system according to changing development situations. Estima-
tion difficulties arose in both projects because the participants misunderstood the system
and development situation.

5.2. The Role of Methods

During the analysis, it became evident that the role of methods in the practical work
varied according to the position and background of the participant. For example, managers
and designers used methods in their work for different purposes. Managers used meth-
ods for project planning purposes, estimating project resources and timetable, whereas
less experienced designers used methods more to learn the system, its requirements and
development practices. The more experienced designers used methods mainly for commu-
nicating architectural decision. The role of methods from project stakeholders perspective
are summarized in the next table (Table 4).

6. DISCUSSSION

Our observations have several implications for the systems development research by
suggesting that methods are not followed strictly, but used more as resource in project plan-

Table 4. Role of methods from method user’s perspective

194 P. OVASKA

ning and a vehicle of communication and learning. Our observations support the findings
of the limited method use.8, 10, 14–16, 26 We extend this by suggesting that working with
methods is more social interaction and mutual understanding than progressing according
the milestones and following method stages ín a strict manner. Iivari and Maansaari14

summarize the method use besides strict reliance of methods also as rules, resource, re-
minders and vehicle for learning. Some of these are in line with our observations, namely
resource in project planning41 and vehicle of learning,44 also observed in30, 31. Unhelkas
and Mandapur29 propose that methods are more useful for inexperienced practitioners than
experienced ones, but our findings do not support this. In our case studies, more experi-
enced designers used methods to communicate and understand the architecture of the sys-
tem in the same way. This observation supports Cockburn’s24 argumentation that although
methods are not explicitly used, they still reside in the tacit understanding held between
participants, and in their habits of conversation.

As illustrated in Section 4, the methods’ role in development work is slightly different
than many of the currently available methods assume. Our study emphasizes the commu-
nication and social interaction between project stakeholders in adopting the methods to the
development situation at hand. Systems development is not a rational process but depends
on the circumstances and is more an ‘ad hoc’ improvisation process towards a working sys-
tem. Methods serve as resources for systems development but do not determine its course.
Suchman41 calls this kind of activity situated action in the area of human - machine com-
munication. Thus, there is a need to update the situation by developing methods better
suited for the needs of the current development environment, also recommended in15. The
following highlights some issues that should be taken into account in the derivation of new
development methods:

• Our study emphasizes the communication and social interaction between pro-
ject participants. The methods should support communication, not be mere tools
and techniques for communication, but also serve as a boundary object to which
several stakeholders associate their particular meanings.11, 47

• As our studies indicate, the development lifecycle model and development strat-
egy is situation dependent. Neither waterfall model nor prototyping and iterative
development are suitable for every situation. Methods should also guide the devel-
opment in multi-site environments with geographically and culturally dispersed
teams. This means that methods should rather be guiding practices in different
situations than phases determining the course of systems development.

• As we observed from the EC project, factors can emerge in business or develop-
ment environment that keep the participants from understanding the system and
its requirements. The important role of methods is to guide how these factors can
be identified.

7. CONCLUSIONS

In this paper, we have sought to illustrate the use of system development methods by
drawing on the insights gained from two case studies on system development method use
and adaptation in an international ICT company.

OBSERVATIONS ON THE ROLE OF METHODS 195

The findings extend the earlier understanding of method usage by suggesting that
working with methods is complex social interaction and a mutual understanding process
between project participants. The methods were used in our case study as a vehicle of com-
munication and learning and as a resource in project planning among system development
participants, not as a list of phases to be followed in detail. Method use requires commu-
nication between project participants to adopt the method to the development situation.
Without communication, methods use failed. When participants gained common under-
standing of the appropriate development strategy and method, the method use became a
learning process. In this learning process, system development participants changed their
understanding of the system, according to changing development situations. Without the
common understanding of the system between project participants the estimation of project
timetable and resources did not succeed. Based on the observations of our study, we argue
that methods are used more as support and guide the development than strict phases to be
followed in detail.

While these in-depth studies enable us to gain insights into the complex social interac-
tions in working with methods, it also means that we must be cautious about generalizing
from these studies concerning only one company. The understanding gained in this study
provides a basis for understanding similar phenomena in similar settings, rather than en-
abling us to understand phenomena in different contexts. It also provides a basis from
which we can continue the study of the methods’ role in systems development.

REFERENCES

1. K. Lyytinen and D. Robey, Learning Failure in Information System Development, Information Systems Jour-
nal 9(2), 85–101 (1999).

2. J.-P. Tolvanen, Incremental Method Engineering with Modeling Tools – Theoretical Principles and Empirical
Evidence, in: Department of Computer Science and Information Systems (University of Jyväskylä,
Jyväskylä, 1998), p. 301.

3. B. Fitzgerald, Formalized systems development methodologies: a critical perspective, Information Systems
Journal 6(1), 3–23 (1996).

4. D. Avison and B. Fitzgerald, Information Systems Development Methodologies: Techniques and Tools
(Blackwell, Oxford, McGraw-Hill, 1995).

5. N. Jayaratna, Understanding and Evaluating Methodologies (McGraw-Hill Book Company, 1994).
6. R. Hirschheim, J. Iivari, and H. Klein, A Comparison of Five Alternative Approaches to Information Systems

Development, Australian Journal of Information Systems 5(1), 3–29 (1997).
7. D. Avison, Information systems development methodologies: a broader perspective, in: Method Engineering:

Principles and method construction and tool support, edited by S. Brinkkemper, K. Lyytinen, and R.
Welke (Chapman & Hall, 1996), pp. 263–277.

8. N. Russo and J. Wynekoop, The Use and Adaptation of System Development Methodologies, in: Managing
Information & Communications in a Changing Global Environment: Proceedings of the Information
Resources Management Association International Conference, edited by M. Krosrowpour (Idea Group
Publishing, Atlanta, 1995), p. 162.

9. K. Lyytinen, A taxonomic perspective of information systems development: theoretical constructs and rec-
ommendations, in: Critical issues in information systems research, edited by H. Boland (John Wiley &
Sons Ltd., 1987), pp. 3–41.

10. J. Wynekoop and N. Russo, Systems development methodologies: unanswered questions, Journal of Infor-
mation Technologies 10, 65–73 (1995).

11. B. Curtis, H. Krasner, and N. Iscoe, A Field Study of the Software Design Process for Large Systems,
Communications of the ACM 31(11), 1268–1287 (1988).

196 P. OVASKA

12. D. G. Wastell, The fetish of technique: methodology as a social defence, Information Systems Journal 6,
25–49 (1996).

13. L. Introna and E. Whitley, Against method-ism:exploring the limits of method, Logistics Information Man-
agement 10(5), 235–245 (1997).

14. J. Iivari and J. Maansaari, The usage of systems development methods: are we stuck to old practices?, Infor-
mation and Software Technology 40, 501–510 (1998).

15. B. Fitzgerald, Systems development methodologies: the problem of tenses, Information Technology & People
13(3), 174–185 (2000).

16. J. Nandhakumar and D. Avison, The fiction of methodology development: a field study of information sys-
tems development, Information Technology & People 12(2), 176–191 (1999).

17. P. Ovaska, Measuring Requirement Evolution – A Case Study in the E-commerce Domain, in: International
Conference in Enterprise Information Systems, ICEIS 2004 (Porto, Portugal, INSTICC-Institute for
Systems and Technologies of Information, Control and Communication, 2004), pp. 669–673.

18. P. Ovaska and A. Bern, Architecture as a Predictor of System Size – A Metaphor from Construction Indus-
try, in: The 16th International Conference on Advanced Information Systems Engineering, CAISE’ 04
Forum (Latvia, Riga, Riga Technical University, Faculty of Computer Science and Information Tech-
nolgy, 2004), pp. 193–203.

19. P. Ovaska, M. Rossi, and P. Marttiin, Architecture as a Coordination Tool in Multi-Site Software Develop-
ment, accepted to Software Process: Improvement and Practice, 2004.

20. P. Ovaska, On the Organizational Factors in the Understanding of IS Requirements, in: 26th Information
Systems Research Seminar in Scandinavia (Porvoo Finland, 2003).

21. C. P. Gane and T. Sarson, Structured Systems Analysis: Tools and Techniques (Prentice Hall, 1979).
22. D. L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, Communications of the

ACM 15(5), 330–336 (1972).
23. C. Nygaard and O.-J. Dahl, Simula: an ALGOL-based simulation language, Communications of the ACM

9(9), 671–678 (1966).
24. A. Cockburn, Agile Software Development: A Cooperative Game, in: The Agile Software Development Se-

ries, edited by Cockburn and Hicksmith, 2000.
25. P. Abrahamsson, et al., New Directions on Agile Methods: A Comparative Analysis, in: 25 th International

Conference on Software Engineering (Portland, Oregon, 2003), p. 244.
26. B. Fitzgerald, An empirical investigation into the adoption of systems development methodologies, Informa-

tion & Management 34, 317–328 (1998).
27. J.-M. Aalto and A. Jaaksi, Object-Oriented Development of Interactive Systems with OMT++, in: Technol-

ogy of Object-Oriented Languages and Systems (TOOLS 14) (Prentice-Hall, 1994), pp. 205–218.
28. K. Smolander, V.-P. Tahvanainen, and K. Lyytinen, How to Combine Tools and Methods in Practice – a Field

Study, in: Second Nordic Conference CAISE ’90 (Stockholm, Sweden, Lecture Notes in Computer
Science, 1990).

29. B. Unhelkas and G. Mandapur, Practical aspects of using methodology: A road map approach, Report of
Object Analysis and Desing 2(2), 34–36, 54 (1995).

30. L. Mathiassen, et al., Method Engineering: Who’s the Customer?, in: Method Engineering. Principles of
Method Construction and Tool Support, edited by S. Brinkkemper, K. Lyytinen, and R. Welke (Chap-
man & Hall, London, 1996), pp. 232–245.

31. R. Baskerville, J. Travis, and D. P. Truex, Systems without method: The impact of new technologies on
information systems development projects, in: Transactions on the impact of computer supported tech-
nologies in information systems development, edited by K. E. Kendall, K. Lyytinen, and J. I. DeGross,
(1992), pp. 241–260.

32. J. Bubenko, Information system methodologies – a research view, in: Information Systems Design Method-
ologies: Improving the practice, edited by T. W. Olle, H. G. Sol, and V.-S. A. A (Elsevier Science
Publishers B.V., 1986), pp. 289–312.

33. I. O. Angell and B. H. Straub, Though this be madness, yet there is method in’t, Journal of Stratetic Infor-
mation Systems 2(1), 5–14 (1993).

34. R. Baskerville, Structural Artifacts in Method Engineering: The Security Imperative, in: IFIP TC8 Working
Conference on Method Engineering: Principles of method construction and tool support (Great Britain,
Chapman & Hall, 1996), pp. 8–28.

35. G. Wijers, A. ter Hofstede, and N. van Oosterom, Representation of information modeling knowledge, in:
Next Generation of CASE tools, edited by K. Lyytinen and V.-P. Tahvanainen (IOS Press, Amsterdam,
the Netherlands, 1992), pp. 167–223.

OBSERVATIONS ON THE ROLE OF METHODS 197

36. B. Henderson-Sellers, Who need an object-oriented methodology anyway?, Journal of Object-Oriented Pro-
gramming 8(6), 6–8 (1995).

37. R. Hirschheim, H. Klein, and K. Lyytinen, Information Systems Development and Data Modeling: Concep-
tual and Philosophical Foundations (Cambridge University Press, Cambridge, 1995).

38. D. Avison and B. Fitzgerald, Information Systems Development: Methodologies, Techniques and Tools, 2nd
edition (McGraw-Hill, New York, 1995).

39. J. Rumbaugh, What is a method?, Journal of Object-Oriented Programming 8(6), 10–16 (1995).
40. R. Searle, Speech Acts, An Essay in the Philosophy of Language (Cambridge University Press, Cambridge,

1969).
41. L. Suchman, Plans and Situated Action (Cambridge University Press, Cambridge, 1987).
42. P. Ehn and M. Kyng, The Collective Resource Approach to Systems Design, in: Computers and Democracy,

edited by G. Bjerkenes, P. Ehn, and M. Kyng (Avebury, Aldershot, 1987), pp. 17–57.
43. D. L. Parnas and P. C. Clements, A rational desing process: how and why to fake it?, IEEE Transactionson

Software Engineering 2, 251–257 (1986).
44. P. Checkland and J. Scholes, Soft System Methodology in Action (Wiley, Chichester, 1990).
45. I. Jacobsson, G. Booch, and J. Rumbaugh, The Unified Software Development Process (Addison-Wesley

Professional, 1999).
46. B. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative Research (Adline,

Chigago, 1967).
47. G. C. Bowker and S. L. Star, Sorting Things Out: Classification and Its Consequences (MIT Press, Cam-

bridge, MA, 1999).

JMINING – INFORMATION DELIVERY
WEB PORTAL ARCHITECTURE AND

OPEN SOURCE IMPLEMENTATION

Algirdas Laukaitis, Olegas Vasilecas, and Raimondas Berniunas∗

Abstract In this paper we present a new framework and its Java based open source implemen-
tation for building web information delivery portals (IDP). The framework provides
the necessary infrastructure for development and management of web portal using
only web browser interface. Presented framework enables speedup of information
delivery portal development compared with some commercial available solutions.
All presented components are implemented as separate open source project JMining
(VGTU Java open source project). The contribution of this paper is threefold: Firstly,
we introduce a IDP framework based on atomic application objects container. Pro-
posed framework is characterized by its simplicity and a possibility to build complex
information delivery web portals. Secondly, we show new way of deploying appli-
cations into portal using only web browsers. We discuss new requirements for web
browsers and show that up today only few of them meets them. Thirdly, all presented
concepts are implemented as Java open source project. We present discussion about
open source projects and importance for support for such projects from academic en-
vironment. Our research shows that until now there was no open source project in
information delivery portals domain and we think that our project can fulfil such gap.

Keywords: Information delivery web portals, data analysis visualization objects, XML,
OLAP, databases web interface, Java, open source software

1. INTRODUCTION

Data environments are becoming more and more complex as the amount of informa-
tion a company manages continues to grow. Information delivery web portals have emerged

∗ Vilnius Gediminas Technical University (VGTU), Sauletekio av. 11 LT-2040, Vilnius, Lithuania,
algirdas@isl.vtu.lt, olegas@fm.vtu.lt, r.berniunas@one.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 199

200 A. LAUKAITIS ET AL.

Figure 1. Three tier JMining architecture.

as the preferred way to bring together information resources. Using information delivery
web portal, your organization’s employees, customers, suppliers, business partners, and
other interested parties can have a customized, integrated, personalized, and secure view
of all information with which they need to interact.

There are many commercially successful information delivery web portal products
that are available in the market. Figure 1 presents architecture of IDP implemented by our
project JMining8 and similar tree tier architecture is implemented by many IDP providers.
We have no intention to describe this architecture in details and for details about our im-
plementation as open source project JMining we refer to8 or SAS,12 Oracle,10 Microsoft,9

Information builders,7 etc for details of some commercial implementations. Instead, in
Section 2 of this paper we describe architecture of middle tier that is based on atomic ap-
plications container. We show that for some category of users our approach can be more
preferential than some commercial alternatives. A fundamental idea behind proposed ar-
chitecture is the way atomic applications are deployed into web server environment. In
this section we discuss this novel way of web applications deployment. We show that our
method can be more suited for some middle size IDP implementations compared with
existing commercial alternatives.

In the past ten years, open source software has become one of the most discussed top-
ics among software users and practitioners. The increasing interest in open source software
has been motivated by several factors:

1. The success of products such as Linux (operating systems), Apache1 (http servers,
etc.), MySQL4 (DBMS), GATE3 (NL processing), Weka13 (machine learning), etc.

2. The uneasiness about the Microsoft or Oracle monopoly in the software industry.

JMINING – INFORMATION DELIVERY WEB PORTAL ARCHITECTURE 201

3. The increasingly strong opinion that “classical” approaches to software develop-
ment are failing to provide a satisfactory answer to the increasing demand for effective and
reliable software applications.5

The lack of open source project for information delivery web portal was one of the
reason that triggered our project JMining. In Section 3 we describe some aspects of open
source software development and the way we see our contribution in this software domain.

2. ATOMIC APPLICATIONS ARCHITECTURE AND DEPLOYMENT

The system for building information delivery portals that we developed we call JMin-
ing. Hereafter, we will use this name to describe the architecture of the system as well as
the main objects.

JMining is implemented as database and platform independent. Data base system ac-
cessed by one of the following protocols (ODBC, JDBC or XML). The JMining is server-
based application written completely in Sunŕs Java programming language. Because the
JMining modules are written in Java, they can run on any server platform that supports a
Java Virtual Machine. Data used by the portal: account credentials, access controls, demo-
graphics, personalization parameters, and configuration information can be stored within
an X500 directory services database accessible through LDAP (Light-weight Directory
Access Protocol) or a simple user access control modules can be used as alternative way
to control accounts and the other users personal settings. In Figure 1 can see three tiers of
portal. For detailed description for each tier we refer to.8

In this section we will concentrate mainly on a fundamental idea in our architecture
which we call atomic applications container. There where two main problems that we chal-
lenged by creating our framework JMining and its open source implementation:

1. Creating small business applications without programmers involved has been an in-
creasing trend between knowledge workers. Such applications has been created with some
PC based product from which Microsoft Access is the most popular. On the other hand
when we dealing with sharing knowledge between corporate workers with the use of web
portals, programmers and other IT stuff must be involved. If the knowledge worker want
to share knowledge with other corporate employees in the form of software application
it can specify business requirements and to acquire IT resources to build necessary web
applications. The biggest drawback of such approach is a time of building necessary appli-
cations and the development cost involved. The problem is well understood by information
delivery portal vendors and more sophisticated solutions are constantly provided. But most
solutions provided requires PC based software components. After application is written by
analyst on its PC he can involve some mechanisms of deploying application to web server.
We have put the requirement in our architecture to remove PC based components and to
achieve the way of doing analysis and sharing knowledge directly on the web server with
the use only web browser.

2. The second problem is flexibility related of reporting objects templates. In most
commercial products there is a set of generated templates and user has no possibility to
extend this set. In the context of information delivery portals we separate two kind of tem-
plates. One is for knowledge worker and the second one for software developers. Templates

202 A. LAUKAITIS ET AL.

generated as the script of atomic application solution can be used by others knowledge
workers. Programmers can write new Java objects that has a purpose of data visualization.

To solve the problems mentioned above we propose IDP framework based on so called
atomic applications container. By atomic application we understand the small web appli-
cation which contains following components: database script, user interface HTML page,
data representation script (XML, XSL, etc.) and documentation page (additionally there
is connection to DBMS parameters, name of the application, and parent name of the ap-
plication to organise all atomic applications in one single directory structure). Atomic ap-
plication structure in some way resemblance to well know web applications developing
technologies like Servelets, JavaServer Pages (JSP) and Active Server Pages (ASP). With
such technologies like JSP you can have the full power of general programming language
like Java. But on the other hand it is unlikely that such technology can be handed by non-
programmer or person without Java knowledge. On the other hand by putting more con-
straint on the web applications structure we achieved that nonprogrammer can successfully
develop web applications. Surely that doesn’t mean that no IT skills required. The user of
our software actually is the user who previously used such products like Microsoft Access
to develop some local based database applications. Such user mostly has a good under-
standing of a database model as well as some basic SQL knowledge (sure most often that
is no need for the user to write SQL sentences, instead it is done by interactive software
wizards).

Next we provide basic structure for atomic application.

Atomic application

Atomic application represents one of the basic classes. Object derived form the class
(like a brick in the house) is used to build an enterprise information delivery web solution.
As mentioned above the set of such atomic applications can bring full portal solution to
some business subject. The goal for us was to find minimum number of components needed
for such a class. Below we describe in details these components. Figure 2 presents the main
components of the atomic application. We like to mention that the biggest implementation
of information delivery portal based on proposed architecture at one of Lithuania compa-
nies has more than 1000 atomic applications that represents the information delivery portal
for the 2000 employees.

The basic structure in JMining portal is the object with the following attributes.
SQL – set of SQL statements that are send to DBMS. There unlimited number of SQL

statements that can be send to SQL server within one request but the last one must be
SELECT type SQL statement. The reason for this is that system always tries to represent
the last statement to user. Figure 3 shows the syntax of this module.

These statements are then executed in the selected database to retrieve information and
to display it to the user through selected reporting template which can have graphical or
textual formats. Also the users have the choice of modifying these SQL statements as well
as reporting templates to create their own applications.

User interface HTML page – html document used to set user request parameters
which can be used later to form dynamic SQL statements. Even if the primary intention of
this parameter was to support dynamic SQL statements, it can be used as an independent
HTML page for other web portal need. User has choice to keep parameter values perma-

JMINING – INFORMATION DELIVERY WEB PORTAL ARCHITECTURE 203

Figure 2. Part UML class diagram for the atomic application attributes.

nently to the end of internet session or just to the end of request implementation by web
server.

Type of visualization object – used to choose selected data representation object from
web server (e.g., graphic, bar char, some form of text (XML, HTML, TXT) layout, etc.).

XML (XSL). Extensible Markup Language (XML)14 offers its users many advantages,
including: simplicity, extensibility, openness. XML as the atomic application component
is used as some script for data visualisation(e.g., it can say which column forms x or y
axis in a graphic or which field represents grouping, total variables and how they must
be presented in the HTML document, etc.). From DBMS selected data are parsed with
statements that are extracted from XML document. If the data comes from XML document
(it is common situation in organizations that some data now can be received from XML
documents instead traditional of DBMS) XSL15 document can be used to transform data
to HTML format.

1. The proposed structure of atomic application is optimal in the following way: it
contains the minimum number of components that are required for building complex web
portal. Before building JMining system the project team has been involved into several
projects to build web based applications using traditional Java techniques (servlets,JSP,
Java beans). After analysis of developed solutions we found that separating data base
scripts (SQL), HTML document and XML document can speedup web applications de-
velopment. Proposed architecture is well suited when developer or analyst must introduce

204 A. LAUKAITIS ET AL.

Figure 3. SQL module syntax.

some small changes into application. Changes made in one atomic application has no ef-
fect on the rest of atomic applications. The speedup of development is achieved by XML
repository library as an developer can search for ready to use atomic application templates.
We found that the big effectiveness can be achieved if some development process is done
not by programmers but by data analysts. Proposed architecture is robust to some faults
done by non professional programmers (bugs can effect only one atomic application but
the whole system is unaffected).

2. One exclusive property of proposed architecture is that the whole development and
deployment is done only through web browser interface. Developers has a huge feasibility
and mobility by choice of the platform. Security level is the same as in most web based
e-commerce applications.

3. One of the problems that faces data-intensive web-based information systems is that
generating web pages on the fly can lead to severe performance problems.2 We propose pre-
generation of web pages, OLAP cubes and graphs. They are stored in server RAM area on
the base of individual atomic applications. Developer of an individual atomic application
can set the schedule which shows at what frequencies the results generated by atomic
applications are stored in servers main memory. Such approach is well suited for pages or
OLAP cubes that changes on the daily bases.

Note concerning web browsers

We must to mention that we have tested three browsers with the JMining: Netscape
Navigator 7.1, Microsoft Internet Explorer and Opera. Until now Netscape Navigator has
one bug and that makes Netscape Navigator not suitable for updating the atomic application
management container. The rest of the JMining portal operations can be handled without
problems with Netscape Navigator. Opera and Microsoft Internet Explore handle JMining
interfaces without errors.

The problem with Netscape Navigator is that this browser loses some information
that was entered in browser scrolling text box as another complex HTML document. That
means that if you entered HTML document into HTML page scrolling text box, Netscape
Navigator may lose some information.

JMINING – INFORMATION DELIVERY WEB PORTAL ARCHITECTURE 205

3. JMINING AS OPEN SOURCE SOFTWARE

At the initial stage of our project we understood that to be successive in promoting
our ideas the code of our project must be open source. One of the reason that computer
scientist ignored open source as the way to develop information systems is a cost involved
and lack of resources to backup new ideas and concepts with softwares realizations. On
the other hand the success of open source software has led a number of researchers and
experts to believe that open source might really be the answer to the software crisis.5

There are two groups of system developers that can participate by their delivery for
JMining evolution. One group are system users themselves. By doing analysis and report-
ing and by changing generated templates in JMining system they can contribute they ideas
for other users of the system in the for of atomic application templates.

The second one is Java programmers which can contribute to the system by writing
additional components for data visualisation or data analysis. Such module like OLAP
has been proposed and written by programmers outside initial project group. There is sig-
nificant number of sites were professionals can contribute their modules and solutions for
review and evaluation.6 But until now there was no fully developed product for information
delivered portals as free and open source software.

We hope that our paper will stimulate new research in this new software area. Finally
we recommend for the readers of this paper constantly to check JMining official page8 for
changes and new research results.

REFERENCES

1. Apache Software Foundation; http://www.apache.org/.
2. P. Atzeni, G. Mecca, and P. Merialdo, Design and Maintenance of Data-Intensive Web Sites, in: Proc.

EDBT’98 (1998).
3. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, and Y. Wilks, Experience of using GATE for NLP

R/D, in: Proceedings of the Work-shop on Using Toolsets References 200 and Architectures To Build
NLP Systems at COLING-2000 (Luxembourg, 2000); http://gate.ac.uk/.

4. MySQL AB; http://www.mysql.com/products/mysql/.
5. A. Fuggetta, Open source software – an evaluation, Journal of Systems and Software 66(1), 77–90 (2003).
6. Java review service; http://www.jars.com/.
7. Information Builders, Leveraging Your Data Architecture for Enterprise Business Intelligence, White Paper,

(2004); http://www.informationbuilders.com.
8. Vilnius Gedimino Technical University, JMining project; http://193.219.146.140:8080/j mining info/

index.html.
9. Microsoft corporation, Building a Corporate Portal using Microsoft Office XP and Microsoft SharePoint

Portal Server, White Paper (2001).
10. Oracle corporation, Oracle9iAS Portal 3.0.9.8.2 Architecture and Scalability, White Paper (2002).
11. M. Schrefl, E. Kapsammer, W. Retschitzegger, and B. Proll, Self-maintaining web pagesan overview,

Proceedings of the 12th Australasian Database Conference (ADC) (Queensland, Australia, Janu-
ary/February, 2001).

12. SAS corporation, SAS Information Delivery Portal, White paper (2000).
13. I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques with Java imple-

mentation (Morgan Kaufmann, San Francisco, 2000).
14. World Wide Web Consortium, Extensible Markup Language; http://www.w3.org/XML/.
15. World Wide Web Consortium, Extensible Stylesheet Language; http://www.w3.org/Style/XSL/.

CONCEPTUAL FRAMEWORK FOR
INTEGRATION OF MULTIAGENT AND

KNOWLEDGE MANAGEMENT TECHNIQUES
IN INTELLIGENT TUTORING SYSTEMS

Janis Grundspenkis∗

1. INTRODUCTION

At present many approaches, methods, and technologies for education and training
support already exist, and new ones appear very rapidly. Education and training is very
broad area of research and development where ideas and solutions from different fields like
pedagogy, psychology, multimedia, and information technology, etc. amalgamate. May be
it is the reason why so wide spectrum of terminology is used. The following are only
few more frequently used terms out of many others: online education, training or tutoring,
computer based education, Internet augmented teaching, Internet or Web aided education,
instruction or learning. The large number of terms confuses not only novices but also those
who are working in the field. In (Anohina, 2003) an attempt has been carried out to clarify
the terminology used in the field. The classification has been proposed that is based on two
criteria: technological concepts (computer, distance, E-, Internet, online, resource based,
technology, Web) and concepts taken over from pedagogy (education, instruction, learning,
teaching, training, and tutoring). It is shown that boundaries between possible subfields
marked with different terms are fuzzy and sometimes disappear at all. At the same time
the described situation reflects great interest and activities in this field, manifests that it
is relatively new and permanently changeable research and development topic, and shows
that many relevant problems have not been solved yet.

Although today’s learning settings are quite distinct from those of recent past and
more distance education environments have been developed and new distance learning
techniques and systems used, the experience obtained till now shows that learning effec-
tiveness is still behind the desired level. One of the reasons is that intelligent support pro-
vided by these systems is far behind of that demonstrated by the human teacher who is
able to adapt to each learner individually. In other words, distance education systems (even

∗ Department of Systems Theory and Design, Riga Technical University, 1 Kalku Street, LV1658, Riga, Latvia.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 207

208 J. GRUNDSPENKIS

those that include, so called, student model), as a rule, are insufficiently adaptive to require-
ments of individual learners or their groups. Faster changes started with the development of
WWW technology, when Web-based intelligent tutoring systems become the mainstream
area of research and development (Yang et al., 2002). In result, new methodologies ap-
pear, for instance, (Traxler, 2002), and agent technologies are used to improve the quality
of Web-based education (Johnson, 2003). In (Johnson, 2003) several animated agents, so
called, guidebots are described, while in (Duh, 2001) a multiagent virtual seminar sys-
tem (MAVIS) is proposed. More information about intelligent tutoring systems may be
acquired by visiting several Web sites (see list at the end).

In this paper a novel conceptual framework for the development of intelligent tutoring
systems based on integration of multiagent and knowledge management techniques is pro-
posed. The implementation of the proposed conceptual model is going on now, and at the
present moment only a prototype of two components has been implemented and tested.

The paper is organized as follows. In the second section a potential role of knowl-
edge management in development of intelligent tutoring systems is described. The sec-
tion contains discussion on notions of intellectual capital, corporate memory, its different
forms (knowledge attic, knowledge sponge, and knowledge pump), and multilevel enter-
prise memory. The third section is devoted to the proposed conceptual model of intelligent
tutoring system that has three layers – systems, multiagent, and knowledge worker’s layers.
Knowledge worker’s layer is described in more details. Conclusions include the outline of
future work and short overview of future intelligent agents and their potential impact on
the evolution of intelligent tutoring systems.

2. THE ROLE OF KNOWLEDGE MANAGEMENT IN INTELLIGENT
TUTORING SYSTEM DEVELOPMENT

In all education systems regardless of their kind (face-to-face, distance learning or hy-
brid) there are two groups of actors, namely, supervisors and students who are working
with knowledge. These actors of the intelligent tutoring system are considered to be the
knowledge workers supported by groupware technology to assist interacting group. Com-
munities of knowledge workers are one of the four components of knowledge management
architecture (Borghoff and Pareschi, 1998). According to the proposed conceptual model
the group of students and a supervisor being part of intelligent tutoring system is embedded
into a knowledge management system as it is shown in Figure 1.

There are several aspects that should be taken into account considering a potential role
of knowledge management in distance education. Knowledge management is defined as a
process through which organizations create, store, and utilize their collective knowledge
(Sarvary, 1999). In other words, knowledge management is the formalization of and access
to experience, knowledge, and expertise that create new capabilities and enable more effec-
tive performance of organizations. The main objective of knowledge management system’s
architecture is to provide an effective knowledge flow. Effective knowledge flow is strongly
connected with knowledge sharing that enhances the learning capability both at individual
and organizational levels.

The knowledge management system enables to turn information into action, that is, en-
ables an effective learning process. It is obvious, that enhancing of the learning capability is

CONCEPTUAL FRAMEWORK FOR INTEGRATION OF MULTIAGENT 209

Figure 1. Intelligent tutoring system and its environment: knowledge management system.

one of the main goals of any tutoring system as well. The most relevant aspects of effective
learning process are construction of knowledge, co-operation, and teamwork in learning
and learning through problem solving. In other words, the knowledge management sys-
tem supports expansion of individual’s personal knowledge to the knowledge of the group
as a whole. To achieve this goal, the intelligent tutoring system must become a learn-
ing organization that requires the capacity to expand individual’s (supervisor’s) personal
knowledge and the ability to work in teams (student group). Knowledge management tools
and techniques (knowledge environment) are effective technological solutions for knowl-
edge creation (development, acquisition, inference, generation), knowledge storage (repre-
sentation, preservation), knowledge aggregation (creation of meta-knowledge), use/reuse
(access, analysis, application), and transfer (distribution, sharing). Moreover, knowledge
management environment must contribute both personal knowledge and organizational
knowledge as well. It is quite obvious that practically all mentioned aspects are impor-
tant in teaching and learning process.

A closer look at the nature of knowledge helps to clarify why knowledge management
plays so important role in the proposed conceptual framework. First, each educational or-
ganization to be competitive permanently must enhance its knowledge assets or at least
must keep them at the needed level. Unfortunately, education organization very easily may
loose its knowledge assets when some teachers are leaving the organization. To avoid loses
(at least to the certain extent), organization must extend its intellectual capital. According
to (Stewart, 1994) intellectual capital is intellectual material that has been formalized in
some useful order, captured in a way that allows it to be described, shared, distributed, and
leveraged to produce a higher valued asset. Intellectual capital has two major components
(Koenig and Srikantaiah, 2000): information/knowledge capital and structural capital. In-
formation and knowledge capital is the organization’s information and knowledge that can
be informal and unstructured as well as formal. The structural capital is mechanism to
capture, store, retrieve, and communicate that information and knowledge, i.e., to take ad-

210 J. GRUNDSPENKIS

vantage of the information and knowledge capital. Knowledge capital, in turn, includes all
the organization’s tacit and explicit knowledge.

Different types of knowledge that education organization possesses and various pos-
sessors is the second factor why knowledge management may play an important role in
the context of intelligent tutoring systems. The most popular is distinction between tacit
knowledge and explicit knowledge proposed in (Nonaka and Takeuchi, 1995). Tacit knowl-
edge is personal knowledge embedded in individual experience. It is shared and exchanged
through direct, face-to-face contact and can be communicated in a direct and effective way.
Explicit knowledge is formal knowledge that can be found in textbooks, documents, data
and knowledge bases, etc. It is straightforward that users of intelligent tutoring system
have tacit knowledge while the system itself captures explicit knowledge. From the learn-
ing perspective the distinction is between built-in knowledge and self-acquired knowledge
(Kirikova and Grundspenkis, 2002). All knowledge possessors are divided into natural
knowledge possessors (only human beings) and artificial knowledge possessors (Kirikova
and Grundspenkis, 2000). In the context of this paper intelligent tutoring system is regarded
to be an artificial knowledge possessor.

The third aspect showing the potential role of knowledge management in intelligent
tutoring system development is the mode in which collection and retrieval of knowledge is
performed. This aspect is closely connected with the notion of corporate memory defined
in (van Heijst et al., 1998): a corporate memory is an explicit, disembodied, persistent
representation of the knowledge and information in an organization. The simplest form
of corporate memory management is called the knowledge attic that is characterized by
passive collection and passive distribution of knowledge from the corporate memory. This
type of corporate memory often is the most feasible in practice because it is not intrusive
and emphasizes the bottom-up nature of learning. At the same time it requires a high dis-
cipline of the knowledge worker but rather frequently it is not a case even at the university.
Knowledge sponge corporate memory is featured by active collection and passive distrib-
ution of knowledge. This case is very similar of that implemented in traditional distance
learning systems during their evolution. The knowledge pump corporate memory is charac-
terized by active collection and active distribution of knowledge. The ultimate goal of any
intelligent tutoring system and also of any academic organization should be development,
implementation, and maintenance of this type of corporate memory.

Typically knowledge management tools and techniques practice converting informa-
tion to knowledge and connecting people to knowledge (Borghoff and Pareschi, 1998). The
concept of the multilevel enterprise memory has been developed as a structure that can sup-
port the creation, preservation, storage, aggregation, use, reuse, and transfer (distribution,
sharing) of the individual knowledge worker’s knowledge, experience, and lessons learnt
as well as intelligent tutoring system’s knowledge (Grundspenkis, 2003). Due to the scope
of this paper it is impossible to give details neither about the multilevel enterprise memory
nor about well known technological components of knowledge management systems that
are applicable for the intelligent tutoring system development. Let only point out that the
multilevel enterprise memory is modelled as a sequence of seven phases of knowledge life
cycle, namely, identification of knowledge sources, knowledge acquisition, formalization,
representation, processing, application, and use.

CONCEPTUAL FRAMEWORK FOR INTEGRATION OF MULTIAGENT 211

3. CONCEPTUAL MODEL OF INTELLIGENT TUTORING SYSTEM

A conceptual model has three layers as it is shown in Figure 2.
At the system’s layer traditional components of intelligent education systems are in-

cluded, namely, the student model, the expert model, the domain knowledge base, the in-
terface, and the tutoring module (Figure 3).

In fact, these components correspond to the learning agent architecture (Russell and
Norvig, 2003). If one compares the learning agent architecture and the components of the
system’s layer it is easy to see that the interface plays the role of an agent’s sensors and
effectors, the domain knowledge base corresponds to the agent’s built-in knowledge base,
the expert model corresponds to the critic and the learning element, and the student model
is equivalent with the learning and performance elements. The tutoring module to the cer-
tain extent corresponds to the problem generator but in the proposed conceptual model
the planning and searching agents play an important role, too. The purpose of the plan-
ning agent (the domain planner) is to provide the appropriate learning plan. The searching
agents are needed in case if several plans exist.

Figure 2. Three layers of the conceptual model.

Figure 3. The architecture of system’s layer.

212 J. GRUNDSPENKIS

At the multiagent layer the group of students and the supervisor are modelled as a
multiagent system (Wooldridge, 2002). The teaching and learning process at the multia-
gent layer is considered to be cooperative work and communication of agents. Each actor
(student) is modelled as a learning agent with reinforcement learning capability. The intel-
ligent tutoring system offers a sequence of subtasks for students to solve. Teacher (critic)
provides each learning agent with the reward (positive or negative) at the end of the learn-
ing session. One interesting future research perspective may be the swarm intelligence
approach (Engelbrecht, 2002) to simulate evolution of interacting student group from the
wheel structure that represents the student group when it starts the learning process to the
star structure where each student communicates with all others using the intelligent tutor-
ing system embedded in the knowledge management environment.

The knowledge worker’s layer is the support layer of students and the supervisor in-
volved in the teaching and learning process. Students and supervisors are supported by a
plethora of intelligent agents. The knowledge worker is supported by agents that conceptu-
ally may be located in three circles (Grundspenkis and Kirikova, 2004). The internal circle
is shown in Figure 4. Let discuss the potential role of different intelligent agents in the
intelligent tutoring system.

The knowledge worker is surrounded with personal agents. Personal agents belong
to humans, support human computer interaction, and help knowledge workers to acquire,
process, and use knowledge. The most appropriate agents at this circle are search, assis-
tant, filtering, and work-flow agents described in (Knapik and Johnson, 1998). The most
commonly used are search agents and they work in different ways. Some agents search
titles of documents or documents themselves, others search directories on the Web. Filter-
ing agents may monitor the data stream searching the text for knowledge and phrases as
well as the list of synonyms, and try to forward only the information that the user really
needs. More advanced filtering agents can be trained by proving the sets of examples illus-
trating articles that users choose to read. Assistant agents are designed to wait for events
such as E-mail messages to occur, then to sort them by sender, priority, subject, time, etc.
Workflow agents are useful for task coordination, appointment, and meeting scheduling. In

Figure 4. The internal circle of agents.

CONCEPTUAL FRAMEWORK FOR INTEGRATION OF MULTIAGENT 213

near future smart agents (Case et al., 2001) will appear that will be able to acquire, store,
generate, and distribute knowledge. Search and filtering agents definitely must be included
in any intelligent tutoring system based on agent paradigm. Search agents may search the
domain knowledge base for knowledge needed at the particular learning stage (knowledge
contents are defined by the tutoring module). Filtering agents may monitor the data stream
and try to forward only information that the student really needs. Personal assistants and
work-flow agents also may be included to extent intelligent support of teaching and learn-
ing process.

The medium circle in shown in Figure 5. Communications between individuals of
the multiagent community is the most relevant issue for effective knowledge acquisition,
sharing, and distribution. In the medium circle such communication management agents
as messaging, team, collaborative, and cooperative agents are included. Messaging agents
can connect students within the group and with the supervisor no matter where they are
and what communication medium is used. Team agents facilitate communication in the
group of students, while cooperative and collaborative agents are able to cooperate and to
collaborate with filtering agents in the interior circle.

The external circle of agents is shown in Figure 6. There are agents for communication
with external systems, for instance, network agents, network software distribution agents,
database agents, connection and access agents, and intelligent Web agents.

Without any doubt, the most important role may play intelligent Web agents because
nowadays the Web is the richest source of data, information, and knowledge that is needed
in learning and is accessible for any user. Unfortunately, currently the Web contains a lot

Figure 5. The medium circle of agents.

214 J. GRUNDSPENKIS

Figure 6. The external circle of agents.

of data, more and more structured data (structured documents, online databases), simple
metadata but very little knowledge, i.e., very few formal knowledge representations (Zhong
at al., 2003). The reason is that the knowledge is encoded using various languages and
practically unconnected ontologies. As a consequence, each knowledge source requires the
development of a special wrapper for its knowledge to be interpreted and hence retrieved,
combined, and used. Efforts to solve this problem resulted in the appearance of a new
paradigm, so called Web intelligence for developing the Web-supported social network
intelligence. Many details on developed approaches and tools in this hot research topic may
be found in (Zhong et al., 2003) where intelligent Web agents, Web mining and farming
for Web intelligence, intelligent Web information retrieval, Web knowledge management,
etc. are discussed.

4. CONCLUSIONS

In this paper the system approach is used for the development of the conceptual frame-
work for the intelligent tutoring system. The tutoring system is based on the intelligent
agent and multiagent paradigm while the knowledge management system plays the role
of its environment. A synergy effect is expected if agent technologies are integrated with
knowledge management (Grundspenkis, 2003), especially in a hybrid course development
where part of contents is taught in the traditional face-to-face manner, and another part
using distance learning facilities.

CONCEPTUAL FRAMEWORK FOR INTEGRATION OF MULTIAGENT 215

This conceptual framework till now is only implemented for the prototypes of the
student and the expert models. Further work is required to add more implemented models
and agents in the system and to evaluate them in practice.

The potential of intelligent agents in development of intelligent tutoring systems is
rather high. Today one can notice only the first steps towards intensive use of agent tech-
nologies. The future evolution of suitable agents for intelligent tutoring systems is con-
nected with information agents and their extension – knowledge agents that will be able
to learn from their environments and from each other as well as to cooperate with each
other (Knapik and Johnson, 1998). They will have access to many types of information
and knowledge sources and will be able to manipulate information and knowledge in or-
der to answer queries posed by students and their knowledge agents. Teams of agents will
be able to search Web sites, heterogeneous databases, and knowledge bases, and work
together to answer queries that are outside the scope of any individual intelligent agent.
These agents will execute searching in parallel, showing a considerable degree of natural
language understanding using sophisticated pattern extraction, graphical pattern matching,
and context-sensitive search. Coordination of agents will be handled either by supervising
agents or via communications between agents. As the result, more and more activities per-
formed by humans in teaching and learning process will be automated. This, in turn, will
crucially impact the evolution of intelligent tutoring systems making them more and more
intelligent.

REFERENCES

Anohina, A., 2003, Clarification of the terminology used in the field of virtual learning, in: Scientific Proceedings
of Riga Technical University, 5th series, Computer Science, Applied Computer Systems, Vol. 17, Riga, RTU,
pp. 94–102.

Borghoff, U. M., and Pareschi, R., 1998, Introduction, in: Information Technology for Knowledge Management,
U. M. Borghoff and R. Pareschi, eds., Springer Verlag, Berlin, Heidelberg, New York, pp. 3–16.

Case, S., et al., 2001, Enhancing e-communities with agent-based systems, Computer, July, 2001, pp. 64–69.
Duh, Ch. M., et al., 2001, A multi-agent virtual seminar system (MAVIS) in collaborative distance learning,

in: New Perspectives on Information Systems Development, G. Harindranath, et al., eds., Kluwer Acad-
emic/Plenum Publishers, New York, pp. 355–366.

Engelbrecht, A. P., 2002, Computational Intelligence, John Wiley & Sons, The Atrium, Southern Gate, Chich-
ester, England.

Grundspenkis, J., 2003, Development of hybrid intelligent systems: integration of structural modelling, intelligent
agents and knowledge management techniques, in: Scientific Proceedings of Riga Technical University, 5th
series, Computer Science, Applied Computer Systems, Vol. 17, RTU Publishing, Riga, pp. 7–30.

Grundspenkis, J., and Kirikova, M., 2004, Impact of intelligent agent paradigm on knowledge management, in:
Intelligent Knowledge-Based Systems, C. T. Leondes, ed., Vol. 1., Kluwer Academic Press, NY, pp. 164–206
(to appear).

Johnson, W. L., 2003, Using agent technology to improve the quality of web-based education, in: Web Intelli-
gence, N. Zhong, J. Liu, and Y. Y. Yao, eds., Springer-Verlag, Berlin, Heidelberg, pp. 77–101.

Kirikova, M., and Grundspenkis, J., 2000, Using knowledge distribution in requirements engineering, in: Knowl-
edge Based Systems, Vol. 1, C. T. Leondes, ed., Academic Press, San Diego, pp. 149–184.

Kirikova, M., and Grundspenkis, J., 2002, Types of knowledge and knowledge sources, in: Scientific Proceedings
of Riga Technical University, 5th series, Computer Science, Applied Computer Systems, Vol. 13, Riga, RTU,
pp. 109–119.

Knapik, M., and Johnson, J., 1998, Developing Intelligent Agents for Distributed Systems, McGraw Hill, NY.

216 J. GRUNDSPENKIS

Koenig, M. E. D., and Srikantaiah, T. K., 2000, The evolution of knowledge management, in: Knowledge Man-
agement for the Information Professional, T. K. Srikantaiah and M. E. D. Koenig, eds., ASIS Monograph
Series, Medford, New Jersey, pp. 23–36.

Nonaka, I., and Takeuchi, H., 1995, Knowledge Creating Organizations, Oxford University Press, New York.
Russell, S., and Norvig, P., 2003, Artificial Intelligence. A Modern Approach, Pearson Education International,

NJ.
Sarvary, M., 1999, Knowledge management and competition in the consulting industry, California Management

Review 41:95–108.
Stewart, T. A., 1994, Your company’s most valuable asset: intellectual capital, Fortune 130(68):68–74.
Traxler, J., 2002, Developing web-based education using information systems methodologies, in: Information

Systems Development. Advances in Methodologies, Components, and Management, M. Kirikova, et al.,
eds., Kluwer Academic/Plenum Publishers, New York, pp. 69–77.

van Heijst, G., van der Spek, R., and Kruizinga, E., 1998, The lessons learned cycle, in: Information Technology
of Knowledge Management, U. M. Borghoff and R. Pareschi, eds., Springer Verlag, Berlin, Heidelberg, New
York, pp. 17–34.

Web Intelligence, N. Zhong, J. Liu, and Y. Y. Yao, eds., Springer-Verlag, Berlin, Heidelberg, 2003.
Wooldridge, M., 2002, Introduction to Multiagent Systems, John Wiley and Sons, The Atrium, Southern Gate,

Chichester, England.
Yang, A., Kinshuk, and Patel, A., 2002, A plug-able web-based intelligent tutoring system, in: Proceedings of

the Xth European Conference on Information Systems, ECIS 2002, S. Wrycza, ed., Vol. 2, Wydawnictwo
Uniwersytetu Gdanskiego, Gdansk, Poland, pp. 1422–1429.

LIST OF WEB SITES

http://www.info.uqam.ca/∼nkambou/DIC9340/cheikes95gia.pdf
http://www.dcs.napier.ac.uk/∼dbenyon/IITpaper.pdf
http://www.sts.tu-harburg.de/∼st.ziemer/its.pdf
http://www.iitg.ernet.in/engfac/sbnair/public html/ai/batch1997/intelligent tutoring system learnPro/

intelligent tutoring system learnPro.pdf
http://www.ssgrr.it/en/ssgrr2000/papers/capuano.pdf
http://www.aect.org/intranet/publications/edtech/19/index.html
http://www.sacla.org.za/SACLA2002/Proceedings/Papers/Padayachee.pdf

COMBINING SIMULATION MODELS WITH THE
INFORMATION SYSTEM FOR AN OPERATIVE

CONTROL OF THE OIL TERMINAL

Henrikas Pranevicius and Vytautas Pilkauskas∗

1. INTRODUCTION

Nowadays, interoperability becomes vitally important for modern information tech-
nology solutions. The users would like to get the ability to allow software applications to
use other applications. This effort to expose functionality has resulted the plans of Web
services creating. These plans originated as companies tried to figure out distributed com-
puting. The advantage is heavy computational tasks over multiple computers in a network.
Distributed computing system makes the results appear to the end-user as if they were the
product of running an application on a single, supper powerful machine. Definitions of
Web services may change but the core concept is that all applications are made of self-
describing components that can be activated on the fly over the network. The interoper-
ability of a simulation model is the ability to provide services to and accept services from
other simulation models or simulation model related components with the important goal
to make an effectively operating environment.

Interoperability, in this meaning, requires two or more different simulation models
which can exchange data and are able to interpret it. This must include effective data shar-
ing and consistent data interpretation.

The High Level Architecture (HLA) is the most famous technology being used for
realization of interoperability of simulation models. Recently Web services technologies
have been created for integration of separate program components (Short, 2002). This pa-
per presents subsystem for creation of tankers loading schedule. This subsystem integrates
two simulation models (oil terminal and railway) and the database of oil products terminal
information system.

The integration of simulation models and database has been done using service-orien-
ted architecture and component based development approach.

∗ Kaunas University of Technology, Studentu 50 LT-Lithuania, hepran@if.ktu.lt, vytpilk@ktu.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 217

218 H. PRANEVICIUS AND V. PILKAUSKAS

The paper is structured as follows: a short description of the aggregate method is
presented the second section; the model of logistics processes of oil transportation through
Klaipeda oil terminal and the research results are presented in the third section; possible
technologies for integrating simulation models into information systems are reviewed in
the fourth section; the architecture of system for creation of tankers loading schedule is
presented in the fifth section.

2. THE USE OF PLA FORMALISM FOR HARBOUR PROCESSES ANALYSIS

Object orientation has become the dominant approach to the analysis and design com-
puterised systems. OOA&D method has been well tested. At the same time, formal meth-
ods are becoming more popular for designing complicated information systems. There are
a number of motivations behind using formal methods (Pranevicius, 1992):

• permits prepare formal description of analysed system having one meaning;
• properties of model may be analysed using mathematical proof techniques;
• formal description approach is a theoretical background developing software tools

for computerised analysis (validation verification, simulation) of formal specifi-
cations.

In this paper piece-linear formalism (PLA) (Pranevicius, 1992) will be used for cre-
ation the dynamical model of business processes in Klaipeda oil terminal, which will be
used in terminal operative information system.

Piece-linear aggregate formalism. In the application of the aggregate approach for
system specification represents the system as a set of interacting piece – linear aggregates
(PLA). The PLA is taken as an object defined by a set of states Z, input signals X and
output signals Y. The aggregate function is considered in a set of moments in time t ∈ T.
The state z ∈ Z, the input signals x ∈X, and the output signals y ∈ Y are considered to be
time functions. Along with these sets, transition H and output G operators must be known
as well.

The state z ∈ Z of the piece-linear aggregate is the same as the state of a piece-linear
Markov process, i.e.:

z (t) = (υ(t), zυ (t)) ,

where υ(t) is a discrete state component taking values on a countable set of values; and
zυ(t) is a continuous component comprised of zυ1(t), zυ2(t), . . . , zυk(t) co-ordinates.

When there are no inputs, the state of the aggregate changes in the following manner:

υ (t) = const,
dzυ (t)

dt
= −αυ,

where αυ = (αυ1, αυ2, . . . , αυk) is a constant vector.
The state of the aggregate can change in only two cases: when an input signal arrives

at the aggregate or when a continuous component acquires a definite value. The theoretical
basis of piece-linear aggregates is their representation as piece-linear Markov processes.

Aggregate functioning is examined on a set of moments time T ={t0, t1, . . . , tm, . . .}
at which one or several events take place, resulting in aggregate state alternation. The set

COMBINING SIMULATION MODELS WITH THE INFORMATION SYSTEM 219

of events E which may take place in the aggregate is divided into two non-intersecting
subsets E′ = E′ ∪ E′′. The subset E′ = {e′

1, e
′
2, . . . , e

′
N } comprises classes of events

(or simply events) e′
i , i = 1, N resulting from the arrival of input signals from the set

X = {x1, x2, . . . , xN }. The class of events e′′
i = {e′′

ij , j = 1, 2, 3, . . .}, where e′′
ij is an event

from the class of events e′′
i takes place the j -th time since the moment t0. The events from

the subset E′ are called external events. A set of aggregate input signals is unambiguously
reflected in the subset E′ i.e., X → E′. The events from the subset E′′ = {e′′

1 , e′′
2 , . . . , e′′

f }
are called internal events where e′′

i = {e′′
ij , j = 1, 2, 3, . . .}, i = 1, f being the classes of

the aggregate internal events. Here, f determines the number of operations taking place in
the aggregate. The events in the set E′′ indicate the end of the operations taking place in
the aggregate.

For every class of events e′′
i from the subset E′′, control sequences are specified {ξ(i)

j },
where ξ

(i)
j is the duration of the operation which is followed by the event e′′

ij as well as

event counters {r(e′′
i , tm)}, where r(e′′

1, tm), i = 1, f is the number of events from the class
e′′
i that have taken place in the time interval [t0, tm].

In order to determine start and end moments of operation, taking place in the aggre-
gate, the so-called control sums {s(e′′

i , tm)}, {w(e′′
i , tm)}, and i = 1, f are introduced,

where s(e′′
i , tm) is the moment in time of the start of operation followed by an event

from the class e′′
i . This moment in time is indeterminate if the operation was not started;

w(e′′
i , tm) is the moment in time of the end of the operation followed by the event from

the class e′′
i . In the case there are no prioritised operations, the control sum w(e′′

i , tm) is
determined in the following way:

w
(
e′′
i , tm

) =
⎧⎨
⎩

s′ (e′′
i , tm

) + ξr(e′′
i ,tm)+1,

∞,

if at the moment tm an operation is taking
place, which is followed by the event ei;
in the opposite case.

The meaning of the aggregate state coordinates can be specified. The discrete com-
ponent of the state, ν(tm) = {ν1(tm), ν2(tm), . . . , νp(tm)}, presents the system state, i.e.
counters of transmitted and received information packets, readiness for information trans-
mission etc.

zν(tm) = {
w
(
e′′

1, tm
)
, w

(
e′′

2 , tm
)
, . . . , w

(
e′′
f , tm

)}
are control coordinates specifying the moment when evolutionary events occur.

When the state of the system z(tm), m = 0, 1, 2, . . . , is known, the moment tm+1 of
the following event is determined by a moment of input signal arrival to the aggregate or
by the equation:

tm+1= min
{
w
(
e′′
i , tm

)}
, 1 ≤ i ≤ f.

3. LOGISTICS PROCESSES IN KLAIPEDA OIL TERMINAL

Modern and especially international industry is closely linked with sea transportation.
For this reason, harbours play a very important role in transportation chains.

220 H. PRANEVICIUS AND V. PILKAUSKAS

Figure 1. Main components of the logistics process for transporting oil through Klaipeda.

Figure 2. Structural scheme of queuing system, which represents transportation of oil products through Klaipeda.

Solving logistic tasks in modern harbours worldwide is extremely important not only
as place for transshipment and storage but also as places of partial manufacturing and
especially as distribution centers.

For harbours as the most significant links in transport chains, logistics supply is very
important. The essence of this supply is a preparing rhythmic work of all types of transport;
aggregating and assigning loads according to a means of transportation (ship, train, etc);
spending as little as possible to execute necessary tasks.

Figure 1 presents the main components of logistic processes for transporting oil
through Klaipeda.

Oil transportation creates the following flows:

• Flows of orders for oil products transported through terminal;
• Flows of trains;
• Flows of tankers.

Figure 2 presented the structural scheme of Klaipeda oil terminal (Pranevicius et al.,
1999).

COMBINING SIMULATION MODELS WITH THE INFORMATION SYSTEM 221

Figure 3. Dependencies of platforms occupation with respect to transported amount of oil.

Analyses of Klaipeda oil terminal were performed considering different infrastruc-
tures (number of platforms, embankments, reservoirs and their capacities, etc). Analyses
performed with the simulation model established the main factors influencing transporta-
tion times through Klaipeda terminal are the amount of transported oil annually and the
operative control algorithms used.

In order to fulfill user requirements to deliver oil to destination within a specified time,
the incoming flow of orders needs to restrict in some cases.

Simulation experiments carried out defined functional requirements for reengineering
the Klaipeda oil terminal information system. Thus, the use of simulation models for load-
ing processes in the terminal and transportation of oil products by rail in the operative
control system.

Simulation Results.
Technological parameters of terminal:

a) Time during which oil products are poured from wagons to reservoirs for each
kind of oil.

b) Rate of pouring oil from reservoirs to tanker.

Parameters characterizing control of terminal:

a) Order performance decision-making algorithm, which evaluates the number of
wagons, which are in railway station.

b) Order performance decision-making algorithm, which does not evaluate the num-
ber of wagons, which are in railway station.

c) Algorithm carrying orders of tankers and evaluating only needed amount empty
reservoir for realization of order.

d) Algorithm carrying orders of tankers and evaluating needed amount empty reser-
voir for realization of order and number of wagons in railway station.

Figure 3 depicts dependencies of platforms occupation with respect to transported
amount of oil. Figure 4 depicts similar dependencies for embankments. Figure 5 depicts
distribution functions of service time of orders for transportation oil.

Simulation results show that up to 8 megatons per year of oil products can be trans-
ported through Klaipeda oil terminal.

222 H. PRANEVICIUS AND V. PILKAUSKAS

Figure 4. Dependencies of embankments occupation with respect to transported amount of oil.

Figure 5. Distribution function service time for order for different kinds of oil product (transportation amount is
6 megatons).

4. POSSIBLE TECHNOLOGIES FOR INTEGRATING SIMULATION MODELS
IN INFORMATION SYSTEMS

Service-oriented architecture and component-based development (Brown et al., 2003)
were used to develop a prototype of the Tanker Loading Operative Control System
(TLOCS) at the Klaipeda oil terminal.

Service-oriented architecture is not a new idea and has taken on importance because of
emerging web services technology. A service is generally implemented as a coarse-grained,
distributed software entity that exists as a single instance and interacts with applications
and other services through a loosely coupled (often asynchronous), message-based com-
munication model (Matthew, 2003).

While the services encapsulate the business functionality, some form of inter-service
infrastructure is required to facilitate service interactions and communication. Different
infrastructure forms are possible because services may be implemented on a single ma-
chine, distributed throughout a set of computers in a local area network or distributed more
widely throughout several companies’ networks. A particularly interesting case is when
the services use the Internet as the communication mechanism. The resulting web services

COMBINING SIMULATION MODELS WITH THE INFORMATION SYSTEM 223

share the characteristics of more general services, but they require special consideration as
the result of using a public, insecure, low-fidelity mechanism for inter-service interactions.

The World Wide Web Consortium (W3C) Web Services Architecture Working Group:
has formulated a definition: “A web service is a software application identified by a URI,
whose interfaces and binding are capable of being defined, described and discovered by
XML artifacts and supports direct interactions with other software applications using XML
based messages via Internet-based protocols.”

Web Service is a collection of functions packaged together and published on a network
for use by other client programs. At a very high level of abstraction, we might think of a
Web Service as a type of Remote Procedure Call (RPC) or messaging system. The idea of a
client application requesting a service from a server application is not new; the difference is
all in the plumbing. A Web Service, as its name implies, is based on common, Web-related
technologies: TCP/IP, HTTP, FTP, SMTP, and XML. In addition, three new specifications –
Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL) and
Universal Description Discovery and Integration (UDDI) – together form the foundation
set of technologies that define Web Services.

“Any Web Service can interact with any other Web Service. Web services can also
aggregate to provide higher-level functions. After all, they are just software components,
and all software components have the potential to invoke Web Services. By implication,
some Web Services will have dependencies on other services that are either invisible to
the client or require client participation. For example, a Web Service might require that the
client use another Web Service to create some token or value that it must then pass on to
the next service. Or, a Web Service might internally invoke other services before returning
a result to the client.”

Because of the additional transport overhead associated with Web services and the
expectation that services will, by their nature, be remote, it is important to reduce the time
a requestor spends waiting for responses. By making a service call asynchronous, with a
separate return message, we allow the requestor to continue execution while the provider
has a chance to respond. For services that expect a very high load, we would need to
decouple the part that listens to the requestor and the part that services the request itself.
This is already a well known pattern (Figure 6), in which a message queue is used to
decouple a service facade from the service implementation (Brown et al., 2003).

Such a pattern can be easily implemented in both .NET and J2EE using services pro-
vided by those platforms:

• MSMQ for .NET and Java Message Queue Service (JMS) or message-driven
beans for J2EE.

• This provides the developer with a simpler scalability model; rather than han-
dling a set of threads with synchronization for the requests, the implementation
can simply add additional queue listeners to pick messages from the queue, even
across multiple machines.

Integrating the simulation model in an information system requires data access in
database management system. Microsoft’s NET has a new mechanism for accessing data:
ADO.NET. One of the general ADO.NET element is the DataSet. The DataSet can be filled
either from a data source (using DataAdapter object) or dynamically from a program code

224 H. PRANEVICIUS AND V. PILKAUSKAS

Figure 6. Decoupling a service facade from the service implementation.

(simulation model). Using these DataSet properties makes integrating simulation model
program code with an information system database.

PLA formalism is used to create the simulation model. Then the discrete coordinates
of the aggregate state are entered in the elements of the DataSet table.

5. TANKERS LOADING OPERATIVE CONTROL SYSTEM ARCHITECTURE

The service-oriented architecture and component-based development approaches
(Short, 2002; Matthew, 2003) have been used for developing Loading Operative Control
System (TLOCS) in Klaipeda oil terminal (Pranevicius et al., 2003). The created TLOCS
system consists of (Figure 7):

• The terminal simulation model of loading processes in the terminal;
• The railway simulation model of oil transportation through the railway;
• The terminal Web service;
• The railway Web service;

The terminal web service provides:

• Web based simulation interface for terminal simulation model;
• Combined terminal simulation model and terminal IS;
• Interoperability between terminal simulation model and railway simulation mo-

del.
• Visualization tanker loading processes.

The railway web service provides:

• Interoperability between terminal simulation model and railway simulation model.

COMBINING SIMULATION MODELS WITH THE INFORMATION SYSTEM 225

Figure 7. Architecture of TLOCS system.

Figure 8. Aggregate model of oil terminal.

Terminal Simulation Model of Loading Processes in Terminal (Figure 8). Oil is deliv-
ered to terminal by train. Single kind of oil is transhipped in terminal. Duration of tran-
shipment from train tanks to reservoir depends on oil temperature and this dependency
is known. Two platforms are used for transhipment of oil in terminal. Arrived trains are
placed to queue when both platforms are occupied. Trains are served according FIFO ser-
vicing strategy. Terminal has one embankment.

Mathematical description of two aggregates (Railway and Station) is presented below.

226 H. PRANEVICIUS AND V. PILKAUSKAS

Aggregate RAILWAY

1. The set of input signals: X = ∅.
2. The of output signals: Y = {y1}, y1 ∈ {arrive train}, when arrive train – the train has
arrived.
3. The set of external events: E′ = ∅.
4. The set of internal events: E′′ = {e′′

1}, e′′
1 – event which occurs, when train arrives.

5. Controlling sequence: e′′
1 → {η}∞i=0, η – time duration, after which arrives a next train.

6. The set of discrete co-ordinates of state: ν(t) = ∅.
7. The set of continuous co-ordinates of state: zν(t) = {w(e′′

1 , t)}, where w(e′′
1 , t) – time

instance when arrives a new train.
8. Initial state: w(e′′

1 , t0) = t0 + η0.
9. Transition operators:
H(e′′

1): w(e′′
1 , tm+1) = tm + ηm.

G(e′′
1): Y = {y1}, where y1 = {arrive train}.

Aggregate STATION

1. The set of input signals: X = {x1, x2}, x1 ∈ {arrive train}, x2 ∈ {shunt}
2. The of output signals: Y = {y1}, y1 ∈ {start pump, end pump}.
3. The set of external events: E′ = {e′

1, e
′
2}.

4. The set of internal events: E′′ = {e′′
1 , e′′

21, e
′′
22}.

5. Controlling sequence: e′′
1 → {ηi}∞i=1, e′′

21 → {ξ1i}∞i=1, e′′
22 → {ξ2i}∞i=1, ηi , ξij – durations

of operations.
6. The set of discrete co-ordinates of state: ν(t) = {Q(t), rate21(t), rate22(t)}, Q(t) –
queue in which is stored arrival times of trains, rate2i (t) – intensity of pouring oil from the
i-th platform.
7. The set of continuous co-ordinates of state:
zν(t) = {w(e′′

1 , t), w(e′′
21, t), w(e′′

22, t)}
8. Initial state: #Q(t0) = 0, rate21(t0) = 0, rate22(t0) = 0.
Transition operators:
H(e′

1):
Q(tm+1) = Enq(Enq(Q(tm), tm), tm), where Enq – operator placing of new element to
Q(t).
H(e′

2): Q(tm+1) = Deq(Q(t)), w(e′′
1 , tm+1) = tm + ηm.

H(e′′
1): w(e′′

2i , tm+1) = tm + ξim, rate2i (tm+1) = ξim, i = min{j | rate2j (tm) = 0}.
G(e′′

1): Y = {y1}, where y1 = {start pump}.
H(e′′

2i): rate2i (tm+1) = ξim,
G(e′′

2i): Y = {y1}, where y1 = {end pump}.
Railway Simulation Model of Transportation Oil Through Railway (Figure 9). Model

simulates transportation of oil products from oil plants to Klaipeda oil terminal.
This imitation model consists of three kinds of aggregates:
PLANT, simulates the loading process of oil products and the departing of the trains

from the oil plant.
LINE, simulates the moving of the train over the certain railway line. There is a ability

to connect a few aggregates of the same type and to get needed configuration of the railway.

COMBINING SIMULATION MODELS WITH THE INFORMATION SYSTEM 227

Figure 9. Railway aggregate model.

Figure 10. Tanker loading schedule.

TERMINAL RAILWAY STATION, simulates the departing of the train to the terminal
railway station.

Client program for visualization tankers loading processes. Web client program of the
described task solution has been created. Structure of window for graphical chart of tankers
loading schedule is presented in Figure 10.

228 H. PRANEVICIUS AND V. PILKAUSKAS

6. CONCLUSIONS

The created formal specification of oil terminal activity processes, the simulation
model and the performed researches showed that terminal operative management may be
improved by using simulation models of oil products transportation through the railway
and simulation models of technological processes of oil loading in the terminal. These
models must be integrated into corresponding terminal and railway information systems in
which information about oil transportation process in the railway and loading works in the
terminal is fixed.

Such model system allows forecasting technological processes run in oil terminal.
The PLA formalism and the object-oriented library PRANAS allowed creating imita-

tional models programme realizations using the MS Framework.NET technologies. These
technologies allowed integrating imitational models with corresponding information sys-
tems databases and realizing models interoperability.

REFERENCES

Brown, A., Johnston, S., and Kelly, K., 2003, Using Service-Oriented Architecture and Component-Based De-
velopment to Build Web Service Applications. A Rational software whitepaper from IBM (September 15,
2003); http://www.rational.com/media/whitepapers/TP032.pdf.

Matthew, M., 2003, Microsoft .NET Distributed Applications: Integrating XML Web Services and .NET Remoting,
Microsoft Press, Washington, p. 692.

Pranevicius, H., 1992, Aggregate approach for specification, validation, simulation and implementation of com-
puter network protocols, in: Lecture Notes in Computer Science No 502, Springer-Verlag, pp. 433–477.

Pranevicius, H., Pilkauskas, V., and Makackas, D., 1999, Interaction of various kinds of transportation at Klaipeda
Harbour, in: Proceedings of The International Workshop “Harbour, Maritime & Industrial Logistics Mod-
elling and Simulation”, Genoa, pp. 124–129.

Pranevicius, H., and Makackas, D., 2002, Simulation of stewodoring works in the Klaipeda oil terminal, Journal
of Vilnius Gediminas Technical University and Lithuanian Academy of Sciences, TRANSPORT, Vol. XVII,
N 5, pp. 188–193.

Pranevicius, H., and Pilkauskas, V., 2003, The use of Simulation Models in Maritime Information Systems, in:
The International Workshop on Harbour, Maritime and Multimodal Logistics Modelling & Simulation,
Riga, pp. 338–344.

Short, S., 2002, Building XML Web Services for the Microsoft .NET Platform, Microsoft Press, Washington,
p. 426.

ASPECT-ORIENTED ANALYSIS AND DESIGN
USING ACTIVITY BASED COSTING

Arjan Visser and Kees van Slooten∗

1. INTRODUCTION

In business, reducing and controlling the costs of business activities has management’s
attention. The real costs of business activities as part of a business process to support the
customer are often higher than the budget, and there are often insufficient possibilities for
control. To get a better understanding of the costs of business activities, an organization
may apply Activity-Based Costing (ABC) to determine prices of products and services.
There exists a lot of literature about Activity-Based Costing, e.g. Glad and Becker (1997).
Activity-Based Management (ABM) uses ABC to collect data about costs. Hixon (1995)
defines ABM as follows: “Activity-based management is the management and control of
enterprise performance using activity-based information as the primary means of deci-
sion support”. Hammer et al. (1993) define BPR as follows: “Re-engineering is the fun-
damental rethinking of business processes to achieve dramatic improvements in critical,
contemporary measures of performance, such as cost, quality, service and speed”. Achiev-
ing lower costs by rethinking business processes and business activities is a main goal of
such approaches. ABC and ABM may play an important role in this rethinking process,
i.e. analyzing and designing business processes and activities. Different aspects of ana-
lyzing and designing an object system like a business process will be dealt with in this
paper. Van Slooten and Brinkkemper (1993) define an object system as follows: “. . .the
part of reality, or universe of discourse, considered as problem area. . .”, and distinguish
the following important aspects of the analysis and design process: problem, organization,
process, information, and behavior. The problem-oriented aspect uses methods, techniques,
and tools to articulate and solve the problems of the object system; e.g. ISAC analysis of
change (Lundeberg, 1982) is a good example supporting this aspect. The organization-
oriented aspect uses methods, techniques, and tools to specify the organizational structure
and culture to support the problem-solving aspect; e.g. organization charts and responsi-
bility matrices may be applied to model the structural aspects. Process-oriented methods

∗ University of Twente (BBT), Department of Business Information Systems, P.O. Box 217, 7500 AE Enschede,
The Netherlands, a.a.visser@alumnus.utwente.nl, c.vanslooten@utwente.nl. Fax: +31.53.4893509.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 229

230 A. VISSER AND K. VAN SLOOTEN

Figure 1. Hierarchy of aspects.

structure the processes and functions of the object system; e.g. decomposition of the object
system as explained by (Van Slooten and Brinkkemper, 1993) supported by Lano matri-
ces (Lano, 1979). The focus of information-oriented methods is on modeling information;
e.g. Lano matrices and/or entity/relationship models. The behavior-oriented aspect encom-
passes temporal and dynamic aspects of the object system; e.g. dynamic, Petri-net-based
modeling of the procedures of the object system. The process, information, and behavior
aspects support the organization aspect, which supports the problem aspect implying a hi-
erarchical relationship between aspects (Figure 1, based on Van Slooten, 1995). Situated
Method Engineering (Van Slooten, 1996) may be applied to decide upon fitting methods
or method components.

In Section 2 some principles of ABC and ABM will be explained, followed by the
construction of a new model for reducing and controlling costs in Section 3. A case study
to test the proposed model is given in Section 4, followed by our conclusions in Section 5.

2. ABC AND ABM

Activity-Based Costing is a costing system that takes into account the fact that some
costs are not related to the volume, but are dependent on the sort and number of activities
that have to be executed for the generation of products and services. The ABC method
is developed in the 1980’s in the United States, primarily to meet manager’s needs for
accurate information with regard to the costs of resources, necessary for products, services,
clients and channels (Cooper and Kaplan, 1988).

Activity-Based Costing divides costs into direct costs and indirect costs. Direct costs
are costs specifically incurred for a certain cost object, and indirect costs are costs not
specifically incurred for a certain cost object, but for the entire production and sale.

The ABC concept is based on the assumption that the generation of products and ser-
vices generates an internal request for activities (Staubus, 1988). By applying the ABC
approach, indirect costs are assigned to a product by linking costs to activities. The al-
location of costs in Activity-Based Costing is represented in Figure 2 (Glad and Becker,
1997).

The direct costs are assigned directly to the diverse cost objects (product types). For
this assigning process relatively simple methods can be used, in which costs are propor-
tionally spread over the cost objects. The indirect costs are assigned indirectly to the cost
objects in several successive steps. In the first phase, all actions executed in the depart-
ments, which are directly or indirectly connected to the production or service are grouped.
In this way groups of activities are formed. Furthermore, an activity driver determines the

ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY BASED COSTING 231

Figure 2. The ABC system.

costs of an activity. An example of an activity driver is the cost per resource unit. Activities
can be distinguished into primary and secondary activities. Primary activities are activities,
which directly contribute to the department’s objective. Secondary activities are activities
which support a primary activity. The costs of secondary activities are assigned to the pri-
mary activities. The second phase will assign these costs to the cost object by a so-called
cost driver. An example of a cost driver is the cost per hour for executing the activity. The
last phase relates to the assignment of the arbitrarily assignable indirect costs. These are
costs, which just have almost no relationship with any activity or cost object. Examples
of these costs are general management expenses and small expenses such as mail which
cannot be related to a specific activity directly. Glad and Becker (1997) state that these
expenses are normally of a small amount in relation to the total expenses (less than 5 % of
total expenses) and can be spread over the cost objects proportionally.

Besides the static analysis of the ABC system, one can try to influence the system
in order to lower costs. With respect to cost reduction two aspects are relevant: The size
of reduction and the method of reduction. The size of reduction is about the cost level
to which costs have to be reduced. The method of reduction is about the way costs are
reduced. According to the ABC system, costs can be reduced on two points. On the one
hand, directly by reducing the costs of resources and, on the other hand, indirectly by
taking care that fewer resources are needed to perform the activities. The latter point can
be achieved for example by performing the activities more efficiently, eliminating them or
outsourcing them. In the one case, a cost reduction plan is delivered and, in the other case,
a route for the restructuring of activities is delivered.

This is the point where Activity-Based Management (ABM) comes in. ABM tries
to influence the ABC system in order to lower costs. The purpose of ABM is to reach
a continuous improvement of performance on important business processes through cost
control. Hixon (1995) defines ABM as follows: “Activity-based management is the man-
agement and control of enterprise performance using activity-based information as the pri-
mary means of decision support”. So, ABM uses the ABC system to collect data on costs.
These are initially used to expose the origin of the costs of the supporting activities and
next to carry out a so-called value analysis to determine which activities must be improved
to enhance the value created by the performed activities.

In conclusion, it can be stated that cost savings can be realized by analyzing costs and
by controlling them through improved structuring of the organization’s activities.

232 A. VISSER AND K. VAN SLOOTEN

3. A NEW MODEL FOR ASPECT ORIENTED ANALYSIS AND DESIGN USING
ABC AND ABM

Activity-Based Costing is a costing system for fixing cost prices. To reduce and control
costs, it is necessary to have insight into costs. Insight into the construction of costs can
be gained on various levels. It can vary from insight into the total costs to insight into the
costs per unit. However, to gain insight on the level of a cost price, the total costs have
to be known first. Then the total costs can be broken down by means of methods for cost
allocation, such as the ABC method, in order to gain insight on the level of a cost price.
Insight into the total costs also enables insight into the development of costs, but on a
very global level. However, to be able to analyze, explain and forecast cost patterns, it is of
importance to know the behavior of costs. The behavior of costs indicates whether costs are
direct or indirect and fixed or variable. Other influences on cost behavior are the economic
lifetime and the depreciation method of the relative product. To trace the behavior of costs,
there has to be insight on the level of the cost price. This implies that costs of all units
have to be known, so that it can be stated whether costs are direct or indirect and fixed
or variable. The development of costs also shows how costs develop during the year, and
which costs contribute to the budget possibly being exceeded.

To reduce costs, it is necessary to analyze where reductions in costs can be made,
based on the ABC system. On basis of the information about the construction of costs and
the related activities, an ABM program can be delivered. Using this ABM program, an
assessment can be made about costs and activities in order to take measures for reducing
these costs. Besides, ABM delivers the information for the improvement or redesign of
activities, which are involved in the controlling of processes. So, ABM is used to determine
the origin of certain costs, on the basis of which ways to reduce costs can be decided on.
Then, on the one hand, the direct costs are to be reduced, and so, on the other hand, are the
indirect costs by improving the activities. To define which activities are to be considered for
improvement, a value analysis (of activities) can be applied. The value analysis determines
the performance of the various activities. The activities for each department have to be
defined first. The usual procedure begins with an interview with the manager concerned
(Cooper, 1990; Cooper et al., 1992; Innes and Mitchell, 1990) in order to draw up a list
of activities needed to manufacture the products or perform the services. The definition of
activities is followed by these indications:

• Significant activities (5% < consuming time/department’s time × 100);
• Estimated time percentage spent on each activity;
• Activity input(s), output(s) and output measure(s);
• Classify activities as primary or secondary and value- or nonvalue-added;
• Link activity to a business process.

Thereupon, the departmental resources required to perform the activities are traced for
each activity. According to Pryor and Sahm (1989), at least 90 percent of the departmental
resources should be spent on primary activities and not more than 10 percent on secondary
activities. A value-added activity is an activity that tries to meet the customer’s or organiza-
tion’s demand and expectations. A nonvalue-added activity is an activity that does not try
to meet this. According to the ABM method, companies aim to reduce the percentage of

ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY BASED COSTING 233

resources spent on nonvalue-added activities to zero. The value-analysis activity provides
both information for the enhancement of activities’ performance and information for a
better structuring and design of activities. This forms the basis for the reduction in indirect
costs and creates better possibilities for the control of the indirect costs of the ABC system.
The problem with ABM is that it is programmed to deny and annihilate anything which is
not on its list of routine activities, whether it is of genuine value or not (Armstrong, 2002).
Besides, Armstrong (2002) says of ABM: “ABM is really nothing more than an updated
and partially automated form of cost reduction and control”. So ABM just delivers an as-
sessment about activities, but does not provide a method for activity improvement. Despite
attempts to represent ABM as an instrument of quality management, the most it can ac-
tually achieve is rescaling of existing activities, not a modification of them (Armstrong,
2002).

In order to enhance the performance of the activities, the scaling of the activities or
the activities in their own right have to be influenced. Based on the current process struc-
ture and the information from the ABC system, Aspect-Oriented Analysis and Design may
indicate how an improved process structure can lead to a more efficient ABC system. By
applying Aspect-Oriented Analysis and Design, quality improvement and cost reduction
are achieved by redesigning processes from the bottom up or at least by efficiently cutting
in processes, and integrating and efficiently linking them together (workflow management).
Aspect-Oriented Analysis and Design provides a complete method for the reengineering
of processes. During the ABM-phase, the activities considered for improvement are de-
termined. Aspect-Oriented Analysis and Design reflects the important elements for the
redesign of activities in order to obtain significant improvements on performance and ef-
ficiency. The collection of activities to be changed or influenced is the object system. The
aspects of the object system to analyze are: problem, organization, process, information
and behavior. Based on this analysis, the needs for change can be identified in order to
make recommendations for a renewed object system with a higher performance on activi-
ties to reduce indirect costs.

Figure 3 shows the relationships between Activity-Based Costing, Activity-Based Ma-
nagement and Aspect-Oriented Analysis and Design. This model shows the sequential
steps to be taken to reduce costs and gain better control on these costs. The model is based
on the assumption that Activity-Based Costing is applied as the costing system.

The first step of the model consists in determining the construction of costs according
to the ABC system, the development of costs and at which points budget exceeding can be
expected. Having gained insight into costs, the next step is to try to manage the costs of
the ABC system. ABM traces the origin of costs, on the basis of which recommendations
can be made towards reducing costs or adjusting the budget. The indirect costs are ana-
lyzed on the relative performances of the causal activities by means of a value analysis in
order to define which activities can be improved. The third step then consists in improving
the (structuring of) activities with the aim of achieving better control of the costs caused
by these activities. To this end, the problems as experienced with the object system are
defined. Subsequently, the organization, process and information function, and the behav-
ior of the object system are analyzed in order to make recommendations for improving
the (structuring of) activities. All aspects are involved into the design of the new object
system.

234 A. VISSER AND K. VAN SLOOTEN

Figure 3. Model for reducing and controlling costs.

Possibly, the new structuring of activities may show a need for adjustment of the ABC
system, such as a redefining of primary and secondary activities, resources, activity drivers
or cost drivers.

This model concretely shows the sequential steps to be taken in order to reduce costs
and get a better control on costs. The model consists of elements that are generic in situa-
tions where ABC plays an important role. Due to the general character of the model, it can
be seen as a generic instrument for cost reduction and cost control improvement.

4. CASE STUDY

In 2003, a large international bank in Europe showed a need for the reduction of tele-
phone call costs and for a better control on these costs. The management had indicated a
huge overspend of the telephony budget with a lack of hands-on instruments to get a grip
on these costs. The bank used the ABC system to define the cost prices of its telephony
cost objects. In order to make recommendations for reducing these costs and to get a better
control, the model as described above was applied.

Activity-Based Costing

The first step of the model is to gain insight into costs applying the ABC system.
Cost insight comprises two elements: What is the construction of costs and how do costs
develop? The ABC system classifies activities as primary and secondary (see Table 1).

The primary activities of the ABC system were the ordering and delivery of telephone
calls related products and services, and the passing on of those costs. The secondary, or
supporting, activities were the processing of the requests, the execution of an administra-
tion system, the control of invoices, and the management of the exploitation account. The

ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY BASED COSTING 235

Table 1. ABC system of telephony

costs of the activities were determined by assigning the costs of the resources needed to
these activities. The costs of the resources needed for the execution of these activities were
the personnel costs, the call charges, the costs of the data network, and the costs of tele-
phone call products. The final stage was to allocate the costs of the activities to the ultimate
cost objects. The direct costs were allocated directly to the cost objects. The indirect costs
were allocated to the cost objects by assigning them to activities. The following cost ob-
jects were identified: fixed telephone call standard, mobile telephone call standard, fixed
telephone usage and mobile telephone usage. The allocation of the costs of resources to
the cost objects occurred as follows. The call charges were traced to the telephone-usage
cost objects directly. The costs of the data network and the costs of telephone call products
were traced to the telephone call standard cost objects. The personnel costs were indirect
costs and related to the activities of the ABC system, and therefore had to be allocated in
a different way. The indirect costs were linked to the activities by means of the activity
driver. The activity driver for the personnel costs was the cost price per hour for the per-
formance of the activities. Using the cost driver, the costs of the activities were allocated
to the cost objects. The cost driver of the activities was the cost price per user for using the
service.

Having gained insight into the ABC system on telephone call costs, the development
of costs was determined. The development of costs depends on the cost properties and the
expected quantitative development of costs over a given time span. The cost’s properties
indicate whether costs are direct or indirect, and fixed or variable. By quantifying costs, the
costs expected to be realized are fixed in relation to the budget. So, the development of the
costs indicates the cost properties and the costs realized in relation to the budget. From the
estimation of the development of costs it became clear that the call charges and the costs of
telephone call products were expected to exceed by far the budgetary restrictions on these
costs.

236 A. VISSER AND K. VAN SLOOTEN

Activity-Based Management

To make recommendations for the reduction in the telephone call costs, the causes of
the budget overrun had to be traced. To this end, interviews were conducted with relevant
managers and workers in the telephone call organization. The costs of calling appeared to
be higher than budgeted for both fixed and mobile telephone calls, but the cellular phone
costs were a factor 1.5 higher than the fixed calling costs, although the number of fixed
telephone connections was three times higher than that of mobile ones. Closer investigation
revealed a disproportionately large number of private calls by cellular phone users outside
office hours. This indirectly implied that the possessors of cellular phones took advantage
of the uncontrolled and unlimited use of the business telephones. On the other hand, the
costs of telephone call products were expected to greatly exceed the budget. From the
interview results it appeared that it had something to do with the fact that there were product
orders still passing through the request process that were not taken into account when
drawing up the budget. Besides, there were a lot of cellular phones in circulation, which
were no longer used but still being depreciated.

The next step of Activity-Based Management is to look for possibilities for cost re-
duction. To reduce the calling costs, a so-called calling limit per traffic category was set
up. Before, there was just a total budget on call charges which could be easily exceeded,
as there was no control on these costs. By setting up a calling limit per traffic category, the
call charges per worker could be limited and better controlled. A traffic category defines
the rights according to telephone calls: is the person authorized to make international calls,
cellular phone calls et cetera? Each worker was assigned to one of the traffic categories.
This could be any one of the categories classified according to function or department. For
each traffic category a calling limit was fixed. On the basis of this calling limit per traffic
category a more exact total budget for call charges could be fixed. Thus, budgets could be
set up for each department as derived from this total budget. In doing so, managers are held
responsible for the call charges in their department, while affording decentralized control
to reduce the call charges.

In addition to reducing telephone call costs, the budget had to be prevented from be-
ing exceeded by telephone call costs by making adjustments to the framing of the budget.
This required a more accurate determination of call charges, which could be done by using
the calling limits per traffic category. Also, running costs had to be taken into account to
a greater extent when designing the budget, and unique costs had to be determined more
accurately. By applying these points more exactly during the framing of the budget, one
could better protect it from an unrealistic estimation of real costs.

The last stage of ABM consists in executing the value analysis. For this, all activities
of the ABC system are listed and judged in terms of performance. It is determined for
each activity whether it is a significant activity, what the estimated time percentage is
that is spent on each activity, what the activity input(s), output(s) and output measure(s)
are, whether the activity is primary or secondary and value or nonvalue-added, and to
which business process the activity is linked. Based on this analysis, the following could
be concluded: 85 % of the total time spent on activities was consumed by the secondary
activities; most of the time was spent on the processing of the requests, the executing of
the administration and the control of invoices; and there were too many activities with

ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY BASED COSTING 237

Table 2. Problem groups

Problem group Interest group
Administration of data is not transparent Administrative organization

Running time of administration Management
and invoicing is too long Administrative organization

Finance
Client

Customers’ requests are not standardized∗ Administrative organization
Client

∗ By customer(s) and client(s) the internal worker(s) of the bank is (are) meant.

no added value for the customer or the organization. This demonstrated that there was a
sufficient basis for the rescaling of activities in order to get a better control on costs.

Aspect-Oriented Analysis and Design

The method of Aspect-Oriented Analysis and Design is used for rescaling the activities
as determined by the value analysis. This method analyzes the object system on aspects of
problem, organization, processes, information and behavior. The object system analyzed
was the administrative organization of the telephone costs.

For the analysis of the problem aspects of the object system, the change analysis from
the ISAC approach of Lundeberg (1982) was used. For this, the problems as experienced
by the diverse interest groups of the object system were summarized and grouped. From
the interviews with the diverse interest groups the following groups of problems emerged
(see Table 2): the administration of data was not clear, the running time of administration
and invoicing was too long and the customers’ requests were not transparent.

For the analysis of the organization aspects of the object system, the telephony or-
ganization was schemed using an organization chart and a responsibility matrix. Figure 4
shows the responsibility matrix for the telephony organization.

From the analysis of the organization it became clear that the activities of the tele-
phone call system were too much fragmented over various departments. Many people were
responsible for partial aspects of the telephony, but no one could be held ultimately respon-
sible for all telephony activities.

While a lot of activities having a close connection with each other were executed
separately by various departments, cooperation was being hindered and so was the running
time of the processes.

To analyze the process and information aspects, all processes with the corresponding
information were schemed in so-called Lano matrices (Lano, 1979). Lano matrices can be
drawn up to conveniently scheme the process and information flows of the object system.
Lano matrices were drawn for all main and some subprocesses. Figure 5 shows the Lano
scheme for the primary process of ordering and delivering. From the analysis of the Lano
matrices it appeared that a lot of information systems were stand-alone, although on the
basis of the findings from the Lano matrices an exchange of data between those systems
was expected. This slowed down the running time of the processes.

238 A. VISSER AND K. VAN SLOOTEN

Figure 4. Responsibility matrix for the telephony organization.

Figure 5. Lano matrix for the primary process of ordering and delivery.

To represent the behavior of the object system, methods from MERISE were used
(Tardieu, 1986). MERISE is a Petri-net-based dynamic modeling technique that makes it
possible to scheme the relationships between events and processes chronologically. From
the findings of the MERISE schemes it appeared that many people were occupied full-
time with the processing and entering of request and mutation data. In addition, there were
several ways of recording a request, which resulted in a lack of clarity for customers about
the request process and in difficulties in managing the request process.

According to the change analysis (Lundeberg, 1982), on the basis of the analyses and
the goals of the interest groups, the needs for change per interest group were listed. The
following needs for change were identified: make the recording of requests and cost charg-
ing data clearer; shorten the running time of the processes for ordering, delivery and cost

ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY BASED COSTING 239

charging; and make the request process more transparent for customers. To meet the needs
for change several change alternatives were formulated and evaluated. On the basis of the
evaluation one change alternative was selected, namely, that of embedding the solution in
an infrastructure already available for the administration of IT products.

The new object system was designed in accordance with the aspects from the method
of Aspect-Oriented Analysis and Design. In the new organizational structure, two new
departments would be initiated, i.e. a service department and a finance department. The
service department is charged with the processing of clients’ requests. The finance depart-
ment is charged with all money circulation concerning the telephone calls, from invoice
control to cost charging. The increased clustering of activities benefits cooperation.

According to the new organizational structure, two primary processes are centralized:
the service process and the accounting process. The service process deals with the requests
for services (delivery of a product or a service), the processing of the service request,
the delivery of the service and the administration. The accounting process ensures that
incoming invoices are compared with the internal administration, and that these costs are
passed on to the client.

The behavior of the new object system is designed as follows. All service requests are
centralized by a web portal, accessible by clients via a personalized login. The client can
enter a request for a product or a service. This can be a request for an order, a request for
the solution of a problem, a request for change or a request for information. The request
data will be stored in the back-portal information systems and processed by the service de-
partment. Data for an order are stored in an order system, which can automatically generate
a purchase order to the supplier and receive invoices from the supplier. First, the service
department checks whether the product is in stock or whether the service can be delivered
internally. When the product or service can be delivered, an email is sent to the client with
specific information. Data about the clients, the order and the costs is stored in another
system. This system also keeps the data about the traffic categories and the corresponding
calling ceilings up to date. Another system stores all telephony-related troubles as entered
by the clients. The service department attends to those troubles via a helpdesk which is
also accessible by telephone. All those systems are linked together for optimized data ex-
change. On the other hand, clients could view their data and call charges via de web portal.
The web portal also shows a product catalogue with all information about telephone call
related products and services.

As a result of the renewed scaling of processes and activities of the new object sys-
tem, some new main activities and corresponding supporting activities could be pointed
to. For comprehensive cost control, it is important that the cost price of the cost objects
is built up on the basis of these activities. The main processes (service, accounting) were
dedicated as the primary activities of the ABC system. The support and, therefore, the
new secondary activities according to the primary-activity service were the requests for
services, the processing of the service request, the delivery of the service and the adminis-
tration. The secondary activities according to the primary-activity accounting were invoice
control, cost charging and cost administration.

This case illustrates the way the telephone call costs at a large bank were reduced
and could be better controlled by applying the model for reducing and controlling costs as
described above. By sequentially following the steps of the model, insight could be gained

240 A. VISSER AND K. VAN SLOOTEN

into the costs according to the ABC system, costs could be reduced, and the activities of the
ABC system could be rescaled to improve performance of these activities for cost savings
to be realized. Simultaneously, the rescaling of activities brought up a need for changing
the ABC system through which cost prices could be determined more exactly and costs
could be managed more efficiently.

5. CONCLUSIONS

Organizations use ABC for an accurate determination of cost prices. In this context
the business activities are considered as being responsible for the origin of costs. However,
organizations are continuously looking for opportunities to reduce and control costs. ABM
can be used to find out the causes of costs and provide a judgment on the activities. ABM
is a static instrument for making assessments, however, and does not provide assistance
for the improvement of activities. To this end, Aspect-Oriented Analysis and Design can
be used to analyze the structuring of processes and improve this structuring in order to
reduce costs and gain better control on these costs. The model is based on the assumption
that ABC is applied for cost price fixing in the organization. First, the construction and de-
velopment of the costs are examined to gain optimal insight into the costs. Thereupon, an
activity-based management program is initiated geared to reducing costs. To this end, the
costs are quantified, the causes of the costs are located and a value analysis is executed on
the activities. Finally, the object system of the relevant processes and activities is analyzed
on the basis of Aspect-Oriented Analysis and Design. According to this method, the fol-
lowing aspects regarding the object system have to be determined: problem, organization,
processes, information and behavior. From a rescaling of activities it may appear that the
ABC system needs some adjustment in order to get sharper cost price fixing.

The model as described above has been put into practice at the telephony organization
of a large bank in Europe. From this research it appeared that the model is a practical in-
strument for cost reduction and cost control improvement in accordance with the activities
of the ABC system. Application of the model disclosed many malfunctions of the organi-
zation of the underlying activities. Due to the improved structuring of processes, one could
make considerable savings on costs of the ABC system, and maintain far better control on
these costs.

REFERENCES

Armstrong, P., 2002, The costs of activity-based management, Journal of Accounting, Organizations and Society
(27):99–120.

Cooper, R., 1990, Implementing an activity-based costing system, Journal of Cost Management, Spring, pp. 33–
42.

Cooper, R., and Kaplan, R. S., 1988, How cost accounting distorts product costs, Management Accounting, April,
pp. 20–27.

Cooper, R., and Kaplan, R. S., 1991, The Design of Cost Management Systems, Text, Cases and Readings,
Prentice-Hall, Inc., New Jersey.

Cooper, R., et al., 1992, Implementing Activity-Based Cost Management: Moving from Analysis to Action: Expe-
riences at Eight Companies, Institute of Management Accountants (USA) / Peat Marwick.

Glad, E., and Becker, H., 1997, Activity-Based Costing and Management, Juta & Company Limited, Cape Town.
Hammer, M., and Champy, J., 1993, Reengineering the Corporation, Harper Business.

ASPECT-ORIENTED ANALYSIS AND DESIGN USING ACTIVITY BASED COSTING 241

Hixon, M., 1995, Activity-based management: its purpose and benefits, Management Accounting (CIMA)
73(6):30–31.

Innes, J., and Mitchell, F., 1990, Activity based costing research, Management Accounting (CIMA) 68(5):28–29.
Lano, R. J., 1979, A Technique for Software and Systems Design Methodologies, North-Holland, Amsterdam.
Lundeberg, M., 1982, The ISAC Approach to Specification of Information Systems and its Application to the Or-

ganisation of an IFIP Working Conference, in: Information Systems Design Methodologies: A Comparative
Review, T. W. Olle, H. G. Sol, and A. A. Verrijn-Stewart, eds., North-Holland, pp. 173–234.

Pryor, T., and Sahm, J., 1989, Using Activity Based Management for Continuous Improvement, A Step-by-Step
Approach, ICMS, Inc., Arlington, Texas.

van Slooten, K., and Brinkkemper, S., 1993, A method engineering approach to information systems development,
in: Information System Development Process, N. Prakash, C. Rolland, and B. Pernici, eds., Elsevier Science
Publishers, North-Holland.

van Slooten, K., 1995, Integrating method fragments for information systems analysis and design, in: Proceedings
of ECIS’95, June, Athens.

van Slooten, K., 1996, Situated method engineering, in: Information Resources Management Journal, Summer,
Idea Group Publishing, pp. 24–31.

Staubus, G. J., 1988, Activity Costing for Decisions, Garland Publishing, New York & London.
Tardieu, H., 1986, La Méthode Merise, Les Editions d’Organization, Paris.

ON CODING AND CODEBOOKS IN MULTIMEDIA
INFORMATION SYSTEMS

Moshe Porat∗

Abstract Multimedia tools are becoming an essential means in human interaction, electronic
commerce and markets such as the worldwide web system. This increasing amount
of information transmitted via communication channels has to be handled in an ef-
ficient manner to avoid congestion and delays in the network service. In this work,
a new approach to multimedia data transmission and storage is proposed. One of its
basic assumptions is that in many situations the multimedia information could be de-
composed into basic components or codewords that represent a significant part of the
data. To illustrate the capabilities of the proposed approach, a compression system
for video streams is developed and tested. The system is based on the observations
that in most multimedia systems, building blocks of recent history of the stream can
describe present details of the multimedia information. A straightforward example is
taking the background image of a video sequence as a codeword. However, there are
more complex codewords such as typical repeated movements in the transmitted im-
age e.g., lip and eye movements of humans in a scene. Experimental results indicate
a high compression ratio of more than 100:1, obtaining almost lossless visual repro-
duction with signal-to-noise ratio higher than 1000:1 (30 db). Unlike MPEG or the
like, the proposed approach can be similarly used also for other components in the
multimedia stream. Our conclusion is that codewords and codebooks could be very
efficient in developing multimedia information systems and transmission methods.

1. INTRODUCTION

Multimedia tools play an important role in visual information systems. With today’s
technology, a significant part of human interaction is based on transmitted voice, images
and video streams over communication channels – land-lines and wireless. Some of these
communication links and storage means are also becoming essential tools in electronic
commerce and markets such as the worldwide web system. This increasing amount of

∗ Department of Electronics, Computers and Communication, Faculty of Electrical Engineering, Technion—
Israel Institute of Technology, Haifa 32000, Israel, mp@ee.technion.ac.il.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 243

244 M. PORAT

information transmitted via band-limited channels has to be handled efficiently to avoid
congestion in the network service. Information compression is thus becoming an inherent
part of most multimedia networks, with the goal of allowing nearly lossless reproduction
of the original information despite a significant reduction in the transmitted data rate.

The main part of the multimedia stream is images and video, which contains more
than 90% of the transmitted data. In many situations, however, the inherent redundancy in
images and image sequences is relatively much higher than in speech. In fact, for many
sequences, the differences between consecutive frames are often very minor. For exam-
ple, in the case of video communication (videophone), where commonly the source image
comprises head-and-shoulder information, the inherent redundancy is very significant. An-
other situation is in e-commerce where a product is shown from different angles. Under
such conditions, where the background remains almost unchanged and the major relevant
information relates to localized limited changes, improved techniques may be used for
multimedia transmission.

Generally, there are four basic approaches to image coding: (1) entropy coding in
which no loss of information is expected; (2) predictive strategies where mainly the changes
are dealt with; (3) transform-based coding where a transformed version of an image is
coded; and (4) cluster coding which basically relates to vector quantization (VQ).

In other cases of data coding for transmission, such as in speech coding and facsim-
ile, it is known that better compression might be available if additional information related
specifically to the source of the transmitted data is considered. Usually this was done by
developing a model for the information source and coding the parameters of the model
instead of the raw information. The source of data in speech, the human voice, has been
described by many models. The digital facsimile can be also considered as based on mod-
eling the scan of a typical printed page, where short sequences of black and some longer
sequences of white are more common than other combinations. In the area of image cod-
ing, however, it is generally agreed that images are not created by a well defined source
and thus lack common characteristics.1 Such models as exist in the image processing area
rely on general assumptions like spatial high correlation, as used in the Markov process
model.1 There are other models related to the influence of blurring and defocusing, for
example, but not many attempts have been made to model image sources, except perhaps a
few works related to the human face as consists of several moving objects.2 These models
are of limited use. The basic assumptions, even though stated as general as possible, do not
fit into many images, and by their very nature do not rely on information related directly
to specific applications for which the visual communications system is designed.

A review of more sophisticated approaches to image coding is “Second Generation
Image-Coding Techniques” by Kunt et al.,3 however, with regard to still images. One of
the emphases in this review is on coding edges as an important feature of the visual infor-
mation. A similar approach to coding of oriented edges is reported also by Giunta et al.4 for
the case of low bit rate coding. Those methods are based on decomposition of the sequence
into several bands,5, 6 with various techniques applied to different bands. This approach of
subband decomposition is in accordance with many findings related to the basic struc-
ture of the human visual system, where cells and groups of cells are sensitive to limited
spatial-frequency bands, and are likely to be parts of different processing mechanisms of
the human pattern recognition systems.7

ON CODING AND CODEBOOKS IN MULTIMEDIA INFORMATION SYSTEMS 245

Figure 1. Blocks and sub-blocks. Each block and sub-block contains 4 consecutive frames.

Accordingly, a need exists for a multimedia coding system which encodes and com-
municates at a lower bit rate and uses information about the specific characteristics of
the source, the viewer, and the visual system, to reproduce the information with minimal
distortion. In this paper a new approach is introduced based on the above principles and
motivation.

2. THE MODEL AND THE SYSTEM

The model used in this study assumes specific properties related to the nature of multi-
media streams. In particular, the main assumption is that changes or events of recent history
are likely to repeatedly appear in the same area of the image where they have previously
appeared. If not similarly repeated (up to allowed distortion), they are likely to be encoded
as transformed versions of previous details.8 Furthermore, if a specific event cannot be
matched accurately according to coarse partitioning of the frame, a more refined descrip-
tion can be used.9 According to this model a frame or a frame is divided into blocks and
sub-blocks as shown in Figure 1.

In this figure an image is divided into sub-blocks or vectors of 4 × 4 × 4 pixels. In this
figure, sixteen vectors comprise a block. Typically, an image is divided into at least 25 or
36 blocks, each of them plays a localized role in the compression of the information.

Based on the above assumptions and structure, the proposed system is presented in
Figures 2 and 3.

In the first stage of the process (Figure 2) the blocks of the image after Image Partition
are used for training localized codebooks (CB).10 These codebooks are based on the recent
localized history of the sequence, thus contain significant information which can be readily

246 M. PORAT

Figure 2. Block diagram of the first stage of the system. Localized codebooks (CB) are trained by the recent
history of the sequence, and then used to encode the next frames. D indicates Delay, and Q represents Quantizer.

used for quantizing the next frames of the sequence. The Delay (D) is needed to allow
updating of the codebooks before quantization (Q).

An illustration which indicates the size of the localized codebooks is shown in Fig-
ure 4. This example relates to a sequence of head-and-shoulder (Miss America) which rep-
resents a typical videophone interaction. In this illustration, codebooks of the background
are small in size (indicated by dark grey and black) while codebooks of active areas like
the head, and in particular the eyes and the mouth, are larger (light grey and white).

Most of the sub-blocks (vectors) of each block are adequately encoded in this stage by
relatively sparse codebooks, with up to 512 code-words in the illustrated example. Some
of the vectors, however, as shown in Figure 5, require additional attention due to distortion
above a pre-determined threshold. These vectors are shown in the example of Figure 5 by
black areas. Usually most of these blocks can be encoded using adjacent codebooks as
shown schematically in Figure 3. It is assumed that these vectors refer to motions which-
have crossed the borders of their block (codebook) thus can be found in one of the adjacent
codebooks, possibly after Transformation (T) of rotation or scaling.

ON CODING AND CODEBOOKS IN MULTIMEDIA INFORMATION SYSTEMS 247

Figure 3. In the second stage of the system, adjacent localized codebooks are searched for best match, using – if
required – Transformed (T) versions of codewords. CB, D and Q are as indicated in the first stage.

Figure 4. Example of the size of the codebooks used in the basic level of the encoder. There are 9x9 blocks in
this example (head-and-shoulder scene of Miss America, see next figures), where the grey level of each block
represents the number of code-words used. The dark areas use small size codebooks, brighter areas use larger
codebooks. The maximum number of codewords in a codebook here is 512 (white).

248 M. PORAT

Figure 5. Reconstructed frame based on vectors found in localized codebooks, as shown in the block diagram
of Figure 2. Black areas were not encoded properly in this stage and are searched for best match in adjacent
codebooks in the second stage (Figure 3).

The model has several parameters. In terms of history, two parameters relate to the
duration of the history used, and to the typical duration of each movement, respectively.
The latter also determines the minimum expected delay of the system. A localization pa-
rameter relates to the size of areas considered as likely to contain repeated motions during
the timeperiod defined as history. In the next stages of the system, a refined process is
carried out with regard to those areas which were not encoded adequately in the first two
stages. Usually only very small number of vectors require this additional process. A pyra-
midal approach that can be adopted here may introduce additional parameters, mainly the
factor by which the size of the blocks is changed between adjacent levels of the pyramidal
representation.

3. IMPLEMENTATION DETAILS AND RESULTS

The system was implemented according to the structure illustrated in Figures 2 and
3 with three pyramidal levels. The length of the history used for training the codebooks
was of one second, with delay of 4 frames (about 1/10 of a second). To avoid the need to
transmit the codebooks to the receiving end, the recent history of the transmitted sequence
was used for training the codebooks so that the same codebooks could be created at the
remote receiver, thus only an index representing each codeword was transmitted via the
transmission line.

Typical results are shown in Figures 6–9. To afford comparison to previously proposed
schemes, a three-dimensional vector quantization with one global codebook is used in the
example of Figure 6. In this example small vectors of 2×2×4 pixels were used obtaining
high quality results at a compression ratio of 14:1. Increasing the size of the vectors to
4×4×4, still with a global codebook, improves the compression without significant loss
of quality: in Figure 7, the same quality is obtained at a compression ratio of 62:1. In
comparison, the new model-based approach is presented in Figure 8.

ON CODING AND CODEBOOKS IN MULTIMEDIA INFORMATION SYSTEMS 249

Figure 6. Original (left) and reconstructed (right) frame from the sequence Miss America, using a global code-
book with 2 × 2 × 4 blocks. The compression here is 14:1.

Figure 7. Original (left) and reconstructed (right) frame from the sequence Miss America, using a global code-
book with 4 × 4 × 4 blocks. The compression here is 62:1.

Figure 8. Original (left) and reconstructed (right) frame from the sequence Miss America, using localized code-
books with 4 × 4 × 4 blocks. The compression is 100:1.

250 M. PORAT

Figure 9. Comparison of the Global approach (left, 62:1) to the localized version (right, 100:1).

This localized approach provides a much higher compression ratio of more than 100:1,
with the same quality of the perceived information. For additional comparison of the lo-
calized vs. the global approach, three examples of the global (left) and localized (right)
versions are shown in Figures 9.

ON CODING AND CODEBOOKS IN MULTIMEDIA INFORMATION SYSTEMS 251

4. SUMMARY AND CONCLUSIONS

This paper has presented a new history-based approach to multimedia coding using
localized history of the sequence as a training set for vector quantization. In addition to
the quality of the resultant sequences, the implementation of this approach can be sys-
tematically organized in a parallel manner by its very nature since localized codebooks
are created for each block and searched for independently. It should be noted that even
for communication by serial machines, reduced complexity is achieved by processing of
many small codebooks instead of a combined one.This approach resembles the technique
described in 12, 13, however, here the codebooks and the VQ process are localized, thus
providing both higher quality and more efficient results. There is also a major difference
when compared to the popular MPEG system in both the use of history and in its applica-
bility to additional components of the multimedia stream. Based on its performance, it is
suggested that the new localized approach to multimedia coding be further analyzed and
integrated in presently available methods.14

ACKNOWLEDGMENTS

This research was supported in part by the HASSIP Research Program HPRN-CT-
2002-00285 of the European Commission, and by the Ollendorff Minerva Center. Minerva
is funded through the BMBF.

REFERENCES

1. Special Issue on Sequence Coding, IEEE Trans. Image Processing (September, 1994).
2. C. S. Choi, H. Harashima, and T. Takebe, Analysis and Synthesis of Facial Expressions in Knowledge-

based Coding of Facial Expressions in Knowledge-based coding of facial Image Sequences, ICASSP,
1991.

3. M. Kunt and M. Kocher, Second-generation image-coding techniques, Proc. of the IEEE 73(4), 549–573
(1985).

4. C. I. Podilchuk, N. S. Jayant, and P. Noll, Sparse Codebooks for the Quantization of Non-dominant Sub-
bands in Image Coding, International Conference on Acoustic Speech and Signal Processing, 1990,
pp. 2101–2104,

5. G. T. R. Giunta, Image sequence coding using oriented edges, Image Communication 2(4), 429–440 (1990).
6. C. I. Podilchuk, N. S. Jayant, and N. Farvardin, 3-D subband coding of video, IEEE Trans. on Image Process-

ing 4(2), 125–139 (1995).
7. J. W. Woods and S. D. O’Neil, Subband coding of images, IEEE Trans. on Signal Processing ASSP-34(5),

1278–1288 (1986).
8. M. Porat and Y. Y. Zeevi, The generalized gabor scheme in biological and machine vision, IEEE Trans. on

Pattern Analysis and Machine Intelligence PAMI-10(4), 452–468 (1988).
9. N. Katzir, M. Lindenbaum, and M. Porat, Curve segmentation under partial occlusion, IEEE Trans. on Pat-

tern Analysis and Machine Intelligence PAMI-16(5), 513–519 (1994).
10. M. Porat and Y. Y. Zeevi, Localized texture processing in vision: Analysis and synthesis in the Gaborian

space, IEEE Trans. on Biomedical Engineering BME-36(1), 115–129 (1989).
11. Y. L. Linde, A. Buzo, and R. M. Gray, An algorithm for vector quantizer design, IEEE-COM 28, 84–95

(1980).
12. S. Panchanathan and M. Goldberg, Adaptive algorithms for image coding using vector quantization, Signal

Processing: Image Communication 4, 81–92 (1991).

252 M. PORAT

13. G. Goldberg and H.-F. Sun, Image sequence coding by three-dimensional block vector quantization, IEE
Proceedings, Pt. F 133(5), 482–486 (1986).

14. D. Furman and M. Porat, On content-based very low bitrate video coding, The Very-Low Bitrate Video
(VLBV) Conference (Madrid, 2003).

LINKING AND PROPAGATING BUSINESS
RULE CHANGES TO IS DESIGN

Wan M. N. Wan Kadir and Pericles Loucopoulos∗

1. INTRODUCTION

Among the main challenges faced by today’s information system (IS) are the frequent
changes of its business environment.1 Many approaches in IS development attempt to pro-
vide techniques, and tools for producing a more resilient software system.

Experience has shown that a practical solution for the above problem is very hard
to achieve unless we address the root cause for business change which in turn impacts
on the need to change the support IS. One such cause is traced to business rules.2 We
subscribe to the view that business rule changes bring the highest impact on both software
and business processes compared to other changes such as altering code for elegance or
speeding execution.3, 4 This viewpoint raises the need to explicitly consider business rules
in software modeling for assisting future evolution.5

To date many business rule approaches have emerged that attempt to address the evolu-
tion problem. These approaches can be divided into two broadly defined areas: (a) business
rule specification and (b) business rule externalization. The former aims to provide com-
plete guidelines to capture and specify rules, whilst the latter attempts to separate business
rules from other parts of software system. Whilst the field is well served in each area the
issue of linking business rules specified during an analysis phase to a software architecture
defined during a design phase remains open.

The aim of our research work is to bridge the gap between the two. It is based on the
premise that rapid changes in a business environment need to be rapidly implemented on
the support software system. By having a specification of business rules in the first place
the process of the evolving these rules during analysis is greatly facilitated. If however, this
business rules specification requires a laborious interpretation and analysis of the necessary
changes to the software architecture, the advantages are minimized.

∗ Wan M. N. Wan Kadir, Software Engineering Dept., Faculty of Comp. Sci. and Info. Systems, Univer-
siti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia (currently on research leave at UMIST). Pericles
Loucopoulos, Department of Computation, University of Manchester Institute of Science & Technology
(UMIST), P.O. Box 88, Manchester, M60 1QD, U.K.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 253

254 W. M. N. WAN KADIR AND P. LOUCOPOULOS

The objective of this paper is to report on the theory, techniques and tools developed by
our research work in addressing the business rules tracing problem. The paper demonstrates
the way in which changes to business rules can be automatically propagated to object-
oriented software design.

The paper is organized as follows. Section 2 reviews other works related to our re-
search. Section 3 provides a synoptic discussion to our meta-model. Section 4 gives a brief
description of the MediNET system, an industrial size system that is used as a case study in
applying and explaining the techniques. Section 5 gives examples of business rules spec-
ification and software design for the case study. Section 6 discusses the way in which
business rules propagation is automated. Finally, Section 7 concludes the paper with some
observations and future issues related to the work presented here.

2. RELATED WORKS

Most of the business rule approaches focus on specification issues such as the typol-
ogy and structure of business rules. For example, the Business Rules Group (BRG) clas-
sified business rules into three main types i.e. structural assertions, action assertions, and
derivations.6 Structural assertion is a statement about concept or relationship of something
of importance to the business. Action assertion is concerned with the dynamic aspect of
the business. It includes a conditional action, integrity constraints, and optional actions. Fi-
nally, a derivation is a derived fact or value that is created by an inference or a mathematical
calculation from terms, facts, other derivations, or action assertions.

Business Rule-Oriented Conceptual Modeling (BROCOM) introduced a metamodel
that formalizes business rules in conceptual modeling.7, 8 In BROCOM, a business rule is
composed of three components namely event that triggers business rules, condition that
should be satisfied before an action, and action that describes the task to be done. Morgan
suggested a formalization in terms of the pattern of business rule statements which is capa-
ble to be translated into formal logic.9 There are five rule statement patterns namely basic
constraint, list constraint, classification, computation, and enumeration. Morgan suggested
to link business rules to a fact model which contain business objects, their relationships, and
their attributes, and store the constraints of the fact model as business rules. Ross proposed
the functional categories of business rules i.e. rejectors, projectors, and producers.10 He
also provided a set of rule sentence templates for specifying and capturing business rules.

There are some efforts which are related to externalization of business rules in object-
oriented software development. Among the leading approaches is Adaptive Object Model
(AOM), which is defined as “a system that represents classes, attributes, and relationships
as metadata”.11, 12 It is a meta-architecture that allows users to manipulate the concrete
architectural components of the model such as business objects and business rules. These
components are stored in a database instead of code. Thus, a user only needs to change
the metadata instead of changing the code to reflect domain changes. Simple rules such
as defined types of entities, legal subtypes, relationships, and cardinality, are normally
controlled by object-oriented modeling semantics. Strategies13 and RuleObjects14 are used
to model complex rules.

Coordination Contract aims to separate core business entities which are relatively
stable and volatile business products which keep changing for the business to remain

LINKING AND PROPAGATING BUSINESS RULE CHANGES TO IS DESIGN 255

competitive.15 Volatile business products are implemented as contracts. Contract aims to
externalize the interactions between objects (core entities) by explicitly defining them in
the conceptual model.

Business Rule Beans (BRBeans), formerly known as Accessible Business Rules,16, 17

is a framework that provides guidelines and infrastructures for the externalization of busi-
ness rules in a distributed business application. Business rules are externally developed,
implemented and managed to minimize the impact of their changes on other components
such as core business, application, and user interface objects. They are implemented as
server objects, which are fired by embedded trigger points in application objects. The rule
management facility is provided to help users to understand the existing rules and to locate
the rules when changes are required.

Diaz et al. provide method to explicitly identify, design and implement business poli-
cies in object-oriented software system.18

In summary, whilst approaches in both areas provide many advantages in each indi-
vidual area the important question of “how do business rules changes affect the software
design?” remains unanswered. This question is addressed by the Link Model which is
part of an ongoing research project on business rules known as the MBRM (Manchester
Business Rules Management) approach.19, 20

3. THE LINK MODEL APPROACH

One aspect of MBRM deals with the linking of conceptual specifications of business
rules to software designs. The metamodel that has been developed to support the link of
business rules specification to software designs is based on the requirements that (i) it
should naturally define business rules from user’s perspectives and, (ii) at the same time,
be well structured enough to be implemented or linked to software design.

The three essential components that are required in order to propagate chages of busi-
ness rules from conceptual domain to software domain are discussed in this section. They
are: the business rule metamodel, the software design metamodel and the linking elements
between the two.

3.1. Business Rule Metamodel

The simplified version of the business rule metamodel is shown in Figure 1. As shown
in Figure 1, the metamodel classifies business rules into three main types i.e. Constraint,
Action Assertion, and Derivation.

Constraint rules specify the characteristics of a business entity. They are used to check
for the result of the execution of business events. Constraint rules are further divided into
Attribute and Relationship constraints. The former specifies the uniqueness, optionality
(null), and value check of an entity’s attribute, whilst the later asserts the types, cardinality,
and role of a relationship between two entities.

Action Assertion, which is also called Active or ECA rule, is a statement that concerns
a dynamic aspect of the business. It specifies the action that should be activated on the
occurrence of a certain event and/or on satisfaction of a certain condition. The number of

256 W. M. N. WAN KADIR AND P. LOUCOPOULOS

Figure 1. The metamodel.

Table 1. Business rule templates

tested events or conditions can be more than one, and they can be connected using logical
connectives AND, OR, or NOT.

Derivation is a rule that derives a new fact based on the existing terms and facts. It
can be divided into two types i.e. Computation, which uses a mathematical calculation to
derive a new arithmetic value, and Inference, which uses logical deduction or induction to
derive a new fact. Inference rule is also used to represent permission such as user policy
for data security.

As a guideline to capture and implement rules, each type of business rule is associated
with one or more templates. Table 1 lists the identified templates for each business rule
type.

3.2. Software Design Metamodel

The Unified Modeling Language (UML)21 metamodel is used to represent software
design since it is widely accepted in research and industry communities. In general, the
UML metamodel consists of three packages i.e. Foundation, Behavioral Elements and

LINKING AND PROPAGATING BUSINESS RULE CHANGES TO IS DESIGN 257

Model Management. These packages define various models developed using UML. Al-
though most of these models were used for MediNET design, for the purposes of the work
reported in this paper, we only describe two models namely class diagram and statechart
diagram.

Class diagram shows the kind of things that exist (such as classes), their internal struc-
ture, and their relationships to other things. It is often used to represent or to generate the
program structure of software applications. Class diagram is specified by the Core package,
which is a sub-package of Foundation package. The main model element in Core package,
i.e. Class, has zero or more features. Feature is an abstract super-class of Attribute and
Operation. An attribute is a named property of a class that describes a range of values
that the instances of the property may hold. An operation is the implementation of a ser-
vice that can be requested from any object of a class to affect behaviour. The semantic
relationship between classes is defined by an Association element. The instances of an as-
sociation are a set of tuples relating objects of the classes. Each association has at least
two AssociationEnds. An AssociationEnd is an endpoint of an association, which connects
the association to a class. The aggregation attribute of AssociationEnd defines the kind of
relationship none, aggregate, or composite. Apart from Association, there is also General-
ization relationship that connects a class to its super-class so that the class inherits all of
the features from its super-class.

Statechart diagram models the possible states of an object or system as well as the
transitions from one state to another. It specifies the sequence of states, the event that cause
the transition, the guard (condition) that should be satisfied, and the action triggered by the
transition. It is useful to show the lifecycle of the class with a complex behaviour.

The syntax and semantics of statechart diagram is described in the State Machines
package, which is a sub-package of Behavioral Elements package. In State Machines
package, State is a static situation such as waiting for event or dynamic condition such
as performing a process. It has one or more outgoing and incoming Transitions. Transi-
tion shows the change from the first state to the second state when the specified Event oc-
curred and the Condition satisfied. It also specifies the Action triggered by the state change.
In the UML metamodel, each model element is a subclass of the ModelElement abstract
class.

3.3. Linking Elements – the Rule Phrase

Rule phrases are considered as the building blocks for the rule statements. They can
be maintained independently, in other words, they are not deleted when the business rule is
deleted. However, the modification and deleting of a rule phrase is not recommended since
a careful effort is needed in reviewing its aggregated business rules. Each rule phrase is
associated with zero or more UML model elements.

Most of the rule phrases are directly connected to the class diagram model elements.
However, Event, Condition, and Action phrases are connected to statechart diagram and
consequently map to class diagram. In addition to operation specification, Algorithm can
also be linked to activity diagram. The last three rule phrase types i.e. List, Operator, and
Constant, are not connected to any UML model elements. They contain either a single
value or a set of enumerated values. The associations are listed in Table 2.

258 W. M. N. WAN KADIR AND P. LOUCOPOULOS

Table 2. The associations between rule phrases and design elements

4. THE MEDINET CASE STUDY

MediNET is an internet-based application that allows various components of the
healthcare industry to exchange business data instantaneously and automates their routine
administrative tasks. In general, MediNET users can be divided into three categories: pay-
masters, healthcare providers, and a supplier. Paymasters are those who pay for medical
services. They use MediNET to maintain the basic parts of the patient records. Healthcare
providers (HCPs) are the professionals who dispense medical treatment. HCPs perform
patient records management, patient billing and paymaster invoicing. The supplier is the
company that owns and maintains the MediNET applications. The supplier lets users to
access MediNET applications and charges them based on the number of performed trans-
actions.

In MediNET, there are three main business processes: patient registration, billing, and
invoicing. Patient registration can be done by the HCP or the paymaster. For each visit
to HCP, each patient must be registered for consultation. The consultation registration is
used to validate the patient eligibility and to prepare necessary information prior to the
consultation. Next, the verified patient is put in a queue. After consultation is completed,
a bill is issued to the patient based on the doctor’s prescriptions. Cash patients must pay
their bills whilst the bills for panel patients are sorted and verified before they are inserted
into an invoice as invoice items. Finally, the invoice is sent to the paymaster.

From the analysis of MediNET requirements, a number of business rules were identi-
fied. Business rule typology and templates are used as a guideline to identify and specify
the business rules. Some examples of the captured business rules are shown in Table 3.

5. DESIGNING MEDINET USING THE MBRM APPROACH

During analysis, the initial business rule statements were identified as given by the ex-
amples in the previous section. Each rule statement will be further refined to a more formal
or structured specification during the design phase. In this section, we present the deliv-
erables from the MediNET design phase i.e. class and statechart diagrams, and business
rules specification.

LINKING AND PROPAGATING BUSINESS RULE CHANGES TO IS DESIGN 259

Table 3. Examples of MediNET business rules

Figure 2. MediNET class diagrams for the core package.

5.1. Class and Statechart Diagrams

In Figure 2, we present the class diagrams of the core package i.e. a business objects
layer that is commonly used by all MediNET subsystems. The core package is divided into
three sub-packages: registration, billing, and invoicing. The attributes and operations of the
class diagrams are suppressed to reduce the presentation complexity.

The example of statechart diagram for an invoice object is shown in Figure 3. It shows
the states and transitions from the creation of an invoice object until the invoice is archived.
The diagram also detailed the events and conditions for dealing with overdue payments.

5.2. Business Rules Specification

The initially identified business rules are refined to derive the rule phrases and conse-
quently link to software design element. If necessary, the rules can be rewrite to match the

260 W. M. N. WAN KADIR AND P. LOUCOPOULOS

Figure 3. Statechart for invoice object.

Table 4. The examples of the derived rule phrases

available templates, to derive more suitable rule phrases, or to achieve completeness and
correctness of the business rules. However, this task must be carefully done to preserve
the original meaning of the rules. The examples of rule phrases derived from business rule
examples from Table 3 are shown in Table 4.

LINKING AND PROPAGATING BUSINESS RULE CHANGES TO IS DESIGN 261

Figure 4. BRP tools main window.

6. AUTOMATING RULE CHANGES

A key criterion for the success of propagating changes defined at the business rule
specification level to software design level is the availability of appropriate tool support
to automate these changes. Such a tool, known as the BRP (Business Rules Propagation)
has been developed specifically to support the Link Model. The BRP tool was developed
using the Generic Modeling Environment (GME). GME is a configurable toolset that sup-
ports the easy creation of domain specific modeling and program synthesis environments.22

The interface of the BRP modeling environment generated by GME based on our meta-
model is shown in Figure 4.

BRP allows users to create business rules or software design models by right-clicking
at a particular node in the Model Browser window. The models can be edited in Model Edit-
ing windows. To add any element into the model, users may simply drag the element from
Part Browser window and drop the element on the Model Editing window. The attributes
of a model element can be edited using a form-based interface in Attribute Browser win-
dow. Several interpreters that manipulate the model information and provide form-based
interfaces have been developed to simplify certain modeling tasks such as managing rule
phrase entries, browsing rules, adding new rules and modifying existing rules.

6.1. Linking Business Rules to Software Design

The first step in linking business rules to software design involves users populating the
rule phrase entries. Users must enter the phrase written in natural language as a rule phrase
entry and select its type. Based on the selected type and the mapping listed in Table 2, BRP
automatically lists the possible software design elements to be linked to the rule phrase.
For examples, ‘bill item’ is linked to Bill Item class, and ‘clinic item’ is linked
to the amount attribute of TransItem class. This process is repeated until the number of
entries is adequate for documenting business rules.

262 W. M. N. WAN KADIR AND P. LOUCOPOULOS

Figure 5. Adding new relationship constraint rule.

Figure 6. Modifying Relationship Constraint Rule.

After the initial set of rule phrase entries has been populated, users may start docu-
menting a more formal or structured business rules specification. First, a user must select
the type of the rule to be added. BRP will invoke an interface based on the selected type.
The interface to add Constraint rules is shown in Figure 5. Second, the name of the rule
must be entered, and the rule set and template are selected. Third, a user must select rule
phrases from the rule phrase types, which are listed based on the selected template. Finally,
the respective buttons can be clicked to generate and store the rule. The above steps can
be repeated to add a new rule and the rule phrases can be added as necessary. In the ex-
ample shown in Figure 6, a business rule named bill item type with the rule statement
‘zero or one clinic item is a/an item type of bill item’ is added to the
Billing rule set.

6.2. Changing Business Rules

The most frequent task in business rule management is to modify the existing rules,
which is often made by business users. Consider the previous bill item type rule as
an example. This rule implies that it is not mandatory for each bill item to be associated

LINKING AND PROPAGATING BUSINESS RULE CHANGES TO IS DESIGN 263

with a clinic item as the item type. In other words, users are allowed to manually enter bill
item details during a billing process. Assume that HCP management wish to change this
policy in order to impose stricter control over what can be inserted in the bill item. Thus,
the new rule statement would be ‘one and only one clinic item is a/an item

type of bill item’. Users may add, modify, and delete rules using BRP. However,
these tasks are limited to the existing rule phrases. If the users want to introduce a new
phrase, they need to have some software design knowledge.

6.3. Propagating Business Rule Changes

BRP automates the propagation of most rule changes to software design. In the previ-
ous example, the cardinality of the association relationship between Bill Item and Tran-
sItem classes will be automatically changed. The changes of different types of rules trigger
different types of software design changes.

Constraint rule changes are propagated to object relationships and attributes. BRP will
determine whether to change the attribute uniqueness, attribute optionality, relationship
type (association, aggregation, or inheritance), the role name, or the cardinality based on
the rule template and the changed rule phrase(s).

Action assertion rule changes are not directly propagated to a class diagram. Rather,
they are propagated to statechart diagram, which is consecutively propagated to class dia-
gram. The changes of event, condition, or action in an action assertion rule are respectively
propagated to event, guard, and action of a state transition in the statechart diagram. Based
on our case study, condition is the most common and frequently changed component of
action assertion rules.

Derivation rules describe the way to compute a certain value or to derive a new fact.
Thus, their changes should be propagated to a specific operation of a class. Currently, BRP
simply links the derivation rules to operation specification, which can be written in any
chosen specification language.

7. CONCLUSION AND FUTURE WORKS

We found that our approach is practical in facing the challenges of volatile business
environment since it deals with the source of changes, i.e. business rules, and links to the
widely accepted UML models. Moreover, the application of the approach in the MediNET
case study, and its implementation using the BRP toolset, indicate that this approach is
useful and practical in dealing with business rule changes. Using our approach, the changes
can be managed prior to the implementation of IS.

With regard to future works, we highlight two efforts that are currently under way with
the view to improving the current status of the theory and practice. First, the metamodel and
templates could be enhanced via the experiences from more case studies. Even though we
have extensively tested the proposed templates using the MediNET case study, we strongly
believed that more case studies may prove to be useful in improving the current templates
and rule phrases. Second, the supported tools could be made even more practicable by
including additional features such as code generation and reverse propagation. Although
it is hard to achieve the absolute code generation, it may improve the time to market,

264 W. M. N. WAN KADIR AND P. LOUCOPOULOS

consistencies, and provide code traceability. Reverse propagation is concerned with the
effect of changing software design to business rules and rule phrases.

REFERENCES

1. K. H. Bennett, M. Munro, N. Gold, et al., An Architectural Model for Service-Based Software with UItra-
Rapid Evolution, in: IEEE International Conference on Software Maintenance (Florence, Italy, 2001),
pp. 292–300.

2. P. J. Layzell and P. Loucopoulos, A Rule Based Approach to the Construction and Evolution of Business
Information Systems, in: IEEE Computer Society Conference on Software Maintenance (Phoenix, Ari-
zona, USA, 1988), pp. 258–264.

3. N. Chapin, J. E. Hale, K. M. Khan, et al., Types of software evolution and software maintenance, Journal of
Software Maintenance and Evolution: Research and Practice 13(1), 3–30 (2001).

4. L. Andrade and J. Fiadeiro, Coordination Technologies for Managing Information System Evolution, in:
13th Conference on Advanced Information Systems Engineering (Interlaken, Switzerland, 2001), pp.
374–387.

5. P. Loucopoulos, B. Theodoulidis, and D. Pantazis, Business Rules Modelling : Conceptual Modelling and
Object-Oriented Specifications, in: IFIP WG8.1 Working Conference on the Object-Oriented Approach
in Information Systems (Quebec City, Canada, 1991).

6. D. Hay and K. A. Healy, Defining Business Rules ∼ What Are They Really?, the Business Rules Group
Technical Report Rev 1.3, 2000 (unpublished).

7. H. Herbst, Business Rules in Systems Analysis: A Meta-model and Repository System, Information Systems
21(2), 147–166 (1996).

8. H. Herbst, Business Rule-Oriented Conceptual Modeling (Physica-Verlag, Germany, 1997).
9. T. Morgan, Business Rules and Information Systems: Aligning IT with Business Goals (Addison-Wesley,

Boston, MA, 2002).
10. R. G. Ross, Principles of the Business Rule Approach (Addison-Wesley, Boston, USA, 2003).
11. D. Riehle, M. Tilman, and R. Johnson, Dynamic Object Model, Dept. of Computer Science, Washington

University Technical Report WUCS-00-29, 2000 (unpublished).
12. J. W. Yoder, F. Balaguer, and R. Johnson, Adaptive Object Models for Implementing Business Rules, in:

Third Workshop on Best-Practices for Business Rules Design and Implementation, Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2001) (Tampa Bay,
Florida, USA, 2001).

13. E. Gamma, R. Helm, R. Johnson, et al., Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995).

14. A. Arsanjani, Rule Object: A Pattern Language for Adaptable and Scalable Business Rule Construction, in:
7th. Pattern Languages of Programs Conference (Monticello, Illinois, USA, 2000).

15. L. Andrade and J. Fiadeiro, Evolution by Contract, in: ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications 2000, Workshop on Best-practice in Business Rules Design and
Implementation (Minneapolis, Minnesota USA, 2000).

16. I. Rouvellou, L. Degenaro, K. Rasmus, et al., Extending Business Objects with Business Rules, in: 33rd
International Conference on Technology of Object-Oriented Languages and Systems (TOOLS Europe
2000) (Mont Saint-Michel/St-Malo, France, 2000), pp. 238–249.

17. I. Rouvellou, I. Degenaro, K. Rasmus, et al., Externalizing Business Rules from Enterprise Applications:
An Experience Report, in: Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Denver, Colorado, 1999).

18. O. Diaz, J. Iturrioz, and M. G. Piattini, Promoting business policies in object-oriented methods, Journal of
Systems and Software 41(2), 105–115 (1998).

19. P. Kardasis and P. Loucopoulos, Managing Business Rules during the Requirements Engineering Process
in Rule-Intensive IT Projects, in: 6th International Conference on Business Information Systems (BIS
2003) (Colorado Springs, Colorado, U.S.A., 2003), pp. 239–247.

20. W. M. N. Wan Kadir and P. Loucopoulos, Relating Evolving Business Rules to Software Design, in: Interna-
tional Conference on Software Engineering Research and Practice (SERP) (Las Vegas, Nevada, USA,
2003), pp. 129–134.

21. OMG, UML Specifications ver 1.5 (Object Management Group, 2003).
22. A. Ledeczi, M. Maroti, A. Bakay, et al., The Generic Modeling Environment, in: Workshop on Intelligent

Signal Processing, (Budapest, Hungary, 2001).

USING ENTERPRISE MODELING FOR
IDENTIFICATION AND RESOLUTION OF HOMONYM

CONFLICTS IN VIEW INTEGRATION

Peter Bellström∗

1. INTRODUCTION

Schema integration has been a research area since the late 1970s and many methods
have been proposed (e.g. Batini et al., 1984; Lee and Ling, 2003; Navathe and Gadgil,
1982; Shoval, 1990). A comprehensive survey of methods and related work is found in
Batini et al. (1986). During the years two main paths of schema integration has been de-
veloped: view integration and database integration. Kohler et al. (2000) divide database
integration into two additional paths: the data warehouse approach and the database fed-
eration approach. Batini et al. (1986) defines schema integration as “[. . .] the activity of
integrating the schemas of existing or proposed databases into a global, unified schema.”
(p. 323). A more precise and explaining definition is given by Boman et al. (1997): “In the
context of information systems development, the integration of a number of local schemas
into a global one is called view integration. A similar activity, called database integra-
tion, occurs in distributed database design, where a set of schemas for existing information
systems is merged into a single global schema.” (p. 150, italic in original).

The differences between the two paths are that view integration is a task in conceptual
database design and database integration is a task in distributed database design. View in-
tegration focus on integrating all the local schemas into one global conceptual schema and
database integration focus on providing a global view of all the existing databases. One
common task in all integration methods, independent of path and approach, is to identify
and resolve conflicts, like for instance homonyms, synonyms, type and dependency con-
flicts (e.g. Bhargava and Beyer, 1992; Embury et al., 1999; Lawrence and Barker, 2001;
Larson et al., 1989; Lee and Ling, 2003; Li and Clifton, 1993; Navathe and Gadgil, 1982;
Parent and Spaccapietra, 1998; Sheth and Kashyap, 1992). These conflicts arise because
end-users have different references and different vocabulary. Johannesson (1993) explains
the problem in the following way: “Fundamental to most problems with schema integration

∗ Division for Information Technology, Karlstad University, SE-651 88, Karlstad, Sweden,
Peter.Bellstrom@kau.se.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 265

266 P. BELLSTRÖM

is that a Universe of Discourse can be modelled in many different ways. The same phe-
nomenon may be seen from different levels of abstraction, or represented using different
properties. Different terms can denote the same concept, and different modelling structures
can represent the same reality.” (p. 10).

The aim and organization of this paper is:

• to investigate how to identify and resolve homonym conflicts in view integration
using enterprise modeling

• to discuss a subset of enterprise modeling and investigate how it can be used as a
tool for conceptual database design and view integration

• to discuss conflicts that appear in view integration with focus on homonym con-
flicts

• to discuss resolution techniques for homonym conflicts identified during view
integration

2. USING ENTERPRISE MODELING FOR CONCEPTUAL DATABASE DESIGN
AND VIEW INTEGRATION

Today there exist many methods, including drawing techniques, for conceptual data-
base design (e.g. Chen, 1976; Engels et al., 1992; Teorey et al., 1986). One of the first,
which also focused on semantic modeling, was the entity-relationship model with its entity-
relationship diagrams proposed by Chen (Chen, 1976) in the mid 1970s. The entity-relation-
ship model is one of the most popular conceptual database design tool existing today
(Fahrner and Vossen, 1995) and it has been extended and used in several database de-
sign methods (e.g. Engels et al., 1992; Teorey et al., 1986). Two reasons for its popularity
is its use for communicating different definitions of data and relationships with end-users
(Teorey et al., 1986) and its use of concepts, naturally occurring in database design and
information systems (Lee and Ling, 2003). Since view integration is part of conceptual
database design, and also the first path in the definition of schema integration, the success
and progress of it is close connected to the method used in this design step. Although the
entity-relationship model has been widely used and is easy to understand it has been crit-
icized like for instance for its generality of the relationship concept (Engels et al, 1992).
A more generic problem with many of the existing methods is that they tend to focus only
on the implementation level and the technical system part of the future information system
and database (Gustas and Gustiené, 2002). One method that takes a broader approach is
enterprise modeling. It deals with modeling and integration of business processes of the or-
ganization, with its technical parts, that is in focus (Vernadat, 1996). Enterprise modeling
use three levels (a pragmatic, a semantic and a syntactic) to model the future informa-
tion system and database. It can be viewed as a generalization and an extension of system
analysis and design. The main idea is to end up with a complete specification of the desired
information system and database. The specification should also be coherent and consistent
(Gustas and Gustiené, 2003). A more comprehensive discussion about the three levels and
how they can be used is found in Gustas and Gustiené (2003). Enterprise modeling has also
been used for extending other methodologies. One example of that is found in Gustas and
Gustiené (2002) and an example of research carried out today is found in Jacobsson and

USING ENTERPRISE MODELING FOR IDENTIFICATION AND RESOLUTION 267

Figure 1. Representation of static dependencies in enterprise modeling (Gustas and Gustiené, 2003, p. 82).

Gustas (2004). The second path of schema integration is database integration. In the rest
of this paper the definition given by Boman et al. (1997) is applied when talking about it.
Database integration takes place during the distributed database design and has the same
problems as view integration – conflicts.

How to use enterprise modeling for conceptual database design and view integration
is discussed and the representation of static dependencies used in enterprise modeling is
therefore illustrated in Figure 1. A reason to use enterprise modeling for this task is its
comprehensive way of representing the static dependencies. One dependency of special
interest is instance of which is often missing in the traditional conceptual database design
methods like for instance the traditional entity-relationship model.

In conceptual database design the organization in focus is defined and a conceptual
schema is the final result. Chen (1976) uses the synonym term diagram. One way to do
this is to involve the customer with its end-users and define smaller schemata, so called
views, for each end-user or user-group. These views are then integrated into one global
conceptual schema using some kind of method (e.g. Batini et al., 1984; Lee and Ling, 2003;
Navathe and Gadgil, 1982; Shoval, 1990). According to Batini et al. (1986) any integration
methodology is a mixture of the following four activities: preintegration, comparison of
the schemas, conforming the schemas and finally merging and restructuring.

Let us now assume that two end-users (E1 and E2) have defined their view of the
concepts: Item, Product and Type. The resulting view is illustrated in Figure 2. The inter-
pretation of Figure 1 is as follows. Each Product is dependent on one or more Items and
each Item is dependent on exactly one Product. Each Product is dependent on exactly one
Type and each Type is dependent on one or more Products.

Since E1 and E2 define the concepts exactly the same, at least on the surface, the
view integration is not a problem. There exists no conflict between them therefore it is
just to use it as the integrated and global schema. Let us now assume that E1 and E2 have

268 P. BELLSTRÖM

Figure 2. View one for end-user one (E1) and end-user two (E2).

Figure 3. View two for end-user one (E1).

Figure 4. View two for end-user two (E2).

extended their schema with a forth concept called TV. The resulting views are illustrated
in Figure 3 and Figure 4. Studying and comparing the two views it is clear that there exist
several homonym conflicts between them. One example is the usage of the concept TV. By
introducing it E1 and E2 define TV differently and two additional dependencies are also
used in both views: inherits and instance of.

The interpretation of the concepts Item, Product and Type in Figure 3 is the same as in
Figure 2. The differences appear when interpreting the concept TV and the dependencies
connected to it. Each TV inherits Item, TV is as subtype to Item, and at the same time TV
is an instance of Product.

The interpretation of the concepts Item, Product and Type in Figure 4 is also the same
as in Figure 2. The differences appear when interpreting the concept TV and the depen-
dencies connected to it. Each TV inherits Product, TV is as subtype to Product, and at the
same time TV is an instance of Type.

By studying and comparing Figure 3 and Figure 4 several conflicts is immediately
identified through the use of different dependencies. One example of this is the dependen-
cies used in Figure 3 and Figure 4 for the TV concept. In Figure 3 it is defined as a subtype
to Item and in Figure 4 it is defined as a subtype to Product. Conflicts must be resolved

USING ENTERPRISE MODELING FOR IDENTIFICATION AND RESOLUTION 269

Figure 5. View Integration Conflicts.

Figure 6. Homonym conflict before and after resolution.

before a merge of the local schemata can be done. The next step is therefore to study the
local schemata and identify conflicts between them.

3. CONFLICTS IN VIEW INTEGRATION

As already mentioned one of the tasks in schema integration is comparison of the
schemas (Batini et al., 1986). According to Johannesson (1993) this task is divided into
three activities: name comparison, structural comparison and identification of interschema
properties. The two first of these three activities match the conflict classification given by
Batini et al. (1986) and the third activity, identification of interschema properties, con-
cerns concepts that are not exactly the same but are related to each other by some con-
straints. Many conflict classifications have been proposed by researchers (e.g. Batini et
al., 1984; Dupont, 1994; Fang et al., 1991; Kim and Seo, 1991; Sheth and Kashyap, 1992;
Shoval, 1990; Spaccapietra and Parent, 1991). The largest difference between them is
which perspectives the conflicts are classified according to. In this paper the classifica-
tion given by Batini et al. (1986) is used. The reason for this is that it is well known and
gives an illustrating picture over the conflicts that can appear during view integration. Ba-
tini et al. (1986) divide the conflicts into naming and structural conflicts and each of these
are further refined into smaller conflicts. Figure 5 illustrates the conflict classification as an
inheritance hierarchy.

Homonyms are conflicts that appear if one name is used for two or more concepts. One
example of a homonym conflict is when end-user one (E1) use Size to define the Product
volume size and end-user two (E2) use Size to define the TV Size in inches (Figure 6 (a)).
Figure 6 (b) illustrates a schema where this conflict has been resolved by using prefixing.
In Subsection 3.1 a more comprehensive discussion about this conflict takes place.

270 P. BELLSTRÖM

Figure 7. Synonym conflict before and after resolution.

Figure 8. Dependency conflict before and after resolution.

The resolution technique used in the homonym conflict is called prefixing. In enter-
prise modeling prefixing is used for compound concepts to unambiguously identify a con-
cept in a schema. A definition for prefixing is: “The operation of prefixing B in the context
of A can be denoted by A.B if and only if concept B is dependent by any kind of the sim-
ple static dependency from A. The compound concept A.B defines the subset of concept B
instances which are associated with one instance of A.” (Gustas, 1997, p. 163).

Synonyms are conflicts that appear if two or more names are used for the same concept.
One example of a synonym conflict is when E1 use Item and E2 use Article to define the
same concept (Figure 7 (a)). Figure 7 (b) illustrates a schema where the conflict has been
resolved by using mutual inheritance.

The resolution technique used in the synonym conflict is mutual inheritance and a
definition is: A� �B if and only if A �B and B �A (Gustas, 1997).

Type conflicts appear when E1 and E2 use different modeling constructs for the same
concept. This type of conflict does not appear using enterprise modeling. The reason for
this is that every new concept is modeled as a box and nothing else. This is another reason
to use enterprise modeling instead of a traditional conceptual database design model like
for instance the entity-relationship model.

Dependency conflicts appear when E1 and E2 use different dependencies defining the
same concepts. An example of dependency conflict is when E1 define the dependency
between Item and Product as each Item is dependent on exactly one Product and each
Product is dependent on zero or more Items. E2 define the same dependency as each Item
is dependent on zero or one Product and each Product is dependent on one or more Items
(Figure 8 (a)). Figure 8 (b) illustrates a schema where the conflict has been resolved by
introducing semantic weaker dependencies between the concepts.

The resolution technique for the dependency conflict is to introduce semantic weaker
dependencies for both E1 and E2 (Parent and Spaccapietra, 1998). In this case this is the
only way to resolve the conflict since E1 uses a weaker dependence for Item and E2 a
weaker dependency for Product.

USING ENTERPRISE MODELING FOR IDENTIFICATION AND RESOLUTION 271

Figure 9. Key conflict before and after resolution.

Key conflicts appear when E1 and E2 use different keys for the same concept. An
example of key conflicts is when E1 use a company standardized Product key, Id, and E2
use an invented Product key, Code (Figure 9 (a)). Figure 9 (b) illustrates a schema where
the conflict has been resolved by including both Id and Code into the schema.

The resolution technique for the key conflict is to include both keys in the integrated
schema. This is the case because to choose which key that is to be used for implementation
is a task for logical database design which is out of the scope of this paper.

Behavioral conflicts appear when E1 and E2 use different policies for insertion and
deletion. This type of conflict only appears when the used model supports this kind of
behavioral properties. Behavioral conflicts are out of the scope of this paper since it does
not take dynamics and behavioral aspects into account.

3.1. Homonym Conflicts in View Integration

A homonym conflict is classified as a name conflict, which is also illustrated in Fig-
ure 5. This type of conflict appears when the same name is used for two or more concepts.
Several homonym conflicts are identified through the usage of different dependencies com-
paring Figure 3 and Figure 4. First, in Figure 3 the concept TV is defined as a subtype to
Item and as an instance of Product. In Figure 4 the concept TV is defined as a subtype to
Product and as an instance of Type. Second, in Figure 3 the concept Type is defined as a
Type in general containing all the Types that are to be stored. In Figure 4 the concept Type
is defined as a TV Type and nothing else. Third, in Figure 3 the concept Product is defined
to contain only TV. In Figure 4 Product is defined as a Product in general containing all
the Products that are to be stored. Finally, in Figure 3 the concept Item is defined as Item in
general containing all the Items that are to be stored. In Figure 4 the concept Item is defined
as Product Items.

The homonym conflict is well known and often mentioned by researchers and in the
literature (e.g. Batini et al., 1986; Boman et al., 1997; Johannesson, 1993). The type of
homonym conflicts that can appear depends on the chosen drawing technique (e.g. entity-
relationship model and enterprise model) and the level of abstraction that the view inte-
gration is going to be performed at (e.g. conceptual or logical level). For instance using
entity-relationship diagrams, on the conceptual level, homonym conflicts can arise for en-
tities, relationships and attributes. Using the enterprise model homonym conflicts can only
arise for concepts. One large difference between the entity-relationship model and the en-
terprise model is that the entity-relationship model uses a general relationship concept and
the enterprise model uses a more specific one which helps to minimize the ambiguity. In
enterprise modeling the relationship concept is classified into association, composition,

272 P. BELLSTRÖM

aggregation, specialization, generalization or instance of (Figure 1). Another large differ-
ence between the entity-relationship model and the enterprise model is that in enterprise
modeling type conflicts can not appear since every concept is modeled as a box. If it is the
logical level, with the relationship model in focus, homonym conflicts can arise for table
and attribute names (Kim and Seo, 1991).

Since the homonym conflict is well know, many methods to identify it has been pro-
posed. A general way to identify homonym conflicts is for instance found in Batini and
Lenzerini (1984) where “concept unlikeness” is used. A concept unlikeness is “[. . .] every
situation in which two concepts (entities, attributes, relationships) have the same name and
different related modeling features [. . .] in two schemata.” (ibid, p. 656). Similar ways to
identify homonym conflicts is suggested by Navathe and Gadgil (1982) where they com-
pare key and non-key attributes of two objects looking for incomplete match and in Batini
et al. (1992) where they focus on finding different properties and constraints.

Larson et al. (1989) suggests a more detailed way to identify homonym conflicts where
they search for attribute equivalence by comparing attribute values and domains. A similar
way is found in Li and Clifton (1993) where they compare field specifications to determine
attribute equivalence. Sheth and Kashyap (1992) use a dual perspective that takes both
semantic similarities and schematic differences into account searching for conflicts and
finally Bhargava and Beyer (1992) use semantic information about the concepts to identify
name conflicts.

One justification to the study in this paper is that the enterprise model has a com-
prehensive set of graphical symbols to model the static dependencies; the instance of de-
pendency is of special interest. Another is that every concept in the enterprise model is
modeled as a box which eliminates at least one conflict, the type conflict, compared with
the entity-relationship model and in enterprise modeling both static and dynamic depen-
dencies, behavioral aspects, can be modeled in one schema. Although it is important to
point out that dynamic dependencies and behavioral aspects is outside the scope of this
paper. Finally in enterprise modeling a concept can be interpreted differently depending
on dependencies in focus (Gustiené and Gustas, 2002). An example of that is found in
Figure 10 where the concept TV can be interpreted both as an object and as a class.

As discussed above there exist many methods for identification of naming conflicts in
view integration. Although the differences between them every method compares, one way
or another, two names from two different views trying to identify conflicts.

4. RESOLUTION OF HOMONYM CONFLICTS IN VIEW INTEGRATION

Homonym conflicts arise because the same name is used to define two or more con-
cepts. The risk for this conflict is higher when the vocabulary of terms is small (Batini
et al., 1992). One reason for homonym conflicts is the use of incomplete names for the
concepts (Kim & Seo, 1991) and therefore traditional resolution techniques focus on re-
naming. Although this type of conflict is often mentioned in the literature the methods
suggested to resolution is not always clear. The resolution technique is often renaming and
nothing further. Table 1 summarizes three traditional resolution techniques with reference
examples to each of them.

USING ENTERPRISE MODELING FOR IDENTIFICATION AND RESOLUTION 273

Table 1. Traditional resolution techniques for homonym conflicts

Figure 10. An integrated schema merged from the views in Figure 3 and Figure 4.

Figure 11. A clarifying example of Figure 10.

The resolution techniques found in Table 1 works for the homonym conflict discussed
in Figure 6. But how about the conflicts identified comparing Figure 3 and Figure 4 where
several homonym conflicts exist? Traditional resolution techniques change the names by
the usage of prefixing which is also illustrated in Figure 10. By integrating the two views
the system boundary move and dependencies change.

Since TV, in Figure 3, is defined as a specialization of Item it becomes TV.Item and TV,
in Figure 4, remains unchanged. The concept Type defined in Figure 3 remains unchanged
and Type defined in Figure 4 becomes TV.Type. At the same time it becomes a specialization
of Type. The reason for this is that TV.Type only contains TV and Type contains all the Types
of interest. The instance of dependency in Figure 3, between TV and product, is moved to
the specialization TV since Product in Figure 3 only define TV and Product in Figure 4
is more general and defines all Products of interest. The concept Item defined in Figure 3
remains unchanged and the concept Item defined in Figure 4 becomes Product.Item and at
the same time becomes a specialization of Item. The dependency, between Product.Item
and Product, is also changed to instance of. Figure 11 clarifies the integrated schema in
Figure 10 by using the TV example.

274 P. BELLSTRÖM

Figure 11 should be interpreted as follows. TV.Type is the TV Type in general. TV.Pro-
duct (TV in Figure 10) is an instance of TV.Type and includes all TV Products (e.g. Sony
TV 32’ and Sony TV 21’). TV.Item is an instance of TV.Product and includes all the TV
Items produced for sale e.g. Sony TV 32’ identified with STV32001 or two Sony TV 21’
identified with STV21001 and STV21002.

After integration of Figure 3 and Figure 4 all concepts have unique names and the
homonym conflicts have been resolved. One problem that still exists is the ambiguity re-
garding a few of the concept names used in the Figure 10. The usage of the concept TV
(TV.Item, TV, TV.Type) is an example of that. Since Figure 10 has concepts with names that
still are ambiguous an integration of Figure 3 and Figure 4 is not to be purposed without
consideration of the differences between them.

5. CONCLUSIONS

In conceptual database design and view integration some method including a drawing
technique has to be used. By using a traditional modeling technique without the instance
of and inherits dependencies the customer, with its end-users, and the developer would
probably agree on the definitions found for the concepts Item, Product and Type in Figure 2.
This indicates that the primitives used in these methods are not enough. One way to resolve,
at least improve, the problem is to introduce a method that use these like for instance
enterprise modeling. The end-users can then better discuss, explain and define the meaning
of each used concept using both natural language and a view or a schema.

Several reasons to use enterprise modeling for conceptual database design and view
integration has been identified and discussed. First of al, enterprise modeling has a com-
prehensive set of graphical primitives to use in the design process. This is illustrated in
Figure 3 and Figure 4 where the dependencies instance of and inherit is of great impor-
tance. Without these two dependencies the final and integrated schema would probably
contain a lot of ambiguities. Secondly, in enterprise modeling every concept is modeled as
a box and nothing else. This reduces the types of conflicts that can appear in view integra-
tion. An example of that is the type conflict that can appear using a traditional database
modeling technique. Third, in enterprise modeling both static and dynamic dependencies,
behavioral aspects, can be modeled in one and same schema. This is important if it in the
future is to be used for more than conceptual database design. Finally, in enterprise mod-
eling a concept can be interpreted differently depending on the dependencies in focus. An
example of this is found in Figure 10 where the concept TV is interpreted as an object when
focusing on the dependency between TV.Type and TV and as a class when focusing on the
dependency between TV and TV.Item.

The homonym conflict that is studied a bit deeper in this paper is identified through
the usage of different dependencies between two views using the same name for differ-
ent concepts. The traditional conflict resolution technique, renaming, suggested by most
methods is not always clear and needs to be more investigated and clarified. This is impor-
tant because the developer, together with the end-users, have to identify situations where
integration is not even suitable because the views are too different. One example of that
schema situation is found in Figure 10 where the concept TV is used in several concept
names and is therefore ambiguous.

USING ENTERPRISE MODELING FOR IDENTIFICATION AND RESOLUTION 275

The study in this paper indicates that it is important to first develop local views for
each end-user (user group) and then integrate them into one global conceptual schema. By
neglecting this, the global conceptual schema could contain errors and ambiguity. Similar
conclusions is found in a case study performed by Parsons (2002) where he writes “[. . .]
local schemas preserve and highlight differences among views, whereas a global schema
can mask them.” (p. 162) and “[. . .] database designers should not build a global concep-
tual schema without first building and verifying local schemas that directly reflect user
views.” (p. 173). These quotations illustrates even better that developers should first in-
volve end-users and define views for each of them and thereafter integrate them into one
global conceptual schemata instead of just develop one global conceptual schema.

REFERENCES

Batini, C., Ceri, S., and Navathe, S., 1992, Conceptual Database Design An Entity-Relationship Approach, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, California.

Batini, C., and Lenzerini, M., 1984, A methodology for data schema integration in the entity relationship model,
IEEE Transactions on Software Engineering 10:650–664.

Batini, C., Lenzerini, M., and Navathe, B. L., 1986, A comparative analysis of methodologies for database schema
integration, ACM Computing Surveys 18:323–363.

Bhargava, H. K., and Beyer, R. M., 1992, Automatic detection of naming conflicts in schema integration: ex-
periments with quiddities, in: Proceedings of the Twenty-Fifth Hawaii International Conference on System
Sciences, B. D. Shriver, ed., pp. 300–310, Vol. 2.

Boman, B., Bubenko Jr, J. A., Johannesson, P., and Wangler, B., 1997, Conceptual Modelling, Prentice Hall,
Great Britain.

Chen, P., 1976, The entity-relationship model – toward a unified view of data, ACM Transactions on Database
Systems 1:9–36.

Dupont, Y., 1994, Resolving fragmentation conflicts in schema integration, in: Proceedings of the 13th In-
ternational Conference on the Entity-Relationship Approach Business Modelling and Re-Engineering,
P. Loucopoulos, ed., Springer-Verlag, pp. 513–532.

Embury, S. M., Jones, C. J., Sutherland, I., Gray, W. A., White, R. J., Robinson, J. S., Bisby, F. A., and Brandt,
S. M., 1999, Conflict detection for integration of taxonomic data sources, in: 11th International Conference
on Scientific and Statistical Database Mangement, D. C. Martin, ed., pp. 204–213.

Engles, G., Gogolla, M., Hohenstein, U., Hulsmann, K., Lohr-Richter, P., Saake, G., and Ehrich, H. D., 1992,
Concepual modelling of database applications using an extended ER model, Data & Knowledge Engineer-
ing 9:157–204.

Fahrner, C., and Vossen, G., 1995, A survey of database design transformations based on the entity-relationship
model, Data & Knowledge Engineering 15:213–250.

Fang, D., Hammer, J., and McLeod, D., 1991, The identification and resolution of semantic heterogeneity in mul-
tidatabase systems, in First International Workshop on Interoperability in Multidatabase Systems, Y. Kam-
bayashi, M. Rusinkiewicz, and A. Sheth, eds., pp. 136–143.

Gustas, R., 1997, Semantic and Pragmatic Dependencies of Information Systems, Monograph, Technologija,
Kaunas.

Gustas, R., and Gustiené, P., 2002, Extending Lyee methodology using the enterprise modelling approach, in:
Frontiers in Artificial Inteligence and Applications New Trends In Software Methodologies, Tools and Tech-
niques, Hamido Fujita and Paul Johannesson, eds., IOS Press, Amsterdam, pp. 273–288.

Gustas, R., and Gustiené, P., 2003, Towards the enterprise engineering approach for information system modelling
across organisational and technical boundaries, in: Proceedings of the Fifth International Conference on
Enterprise Information Systems, O. Camp, J. Filipe, S. Hammoudi, and M. Piattini, eds., pp. 77–88, Vol. 3.

Gustiené, P., and Gustas, R., 2002, On a problem of ambiguity and semantic role relativity in conceptual mod-
elling, International conference on Advances in Infrastructure for e-Business, e-Education, e-Science, and
e-Medicine on the Internet, L’Aquila, Italy.

Jacobsson, L., and Gustas, R., 2004, Towards a systematic modeling of component based software architectures,
International SSCCII-2004, Amalfi, Italy.

276 P. BELLSTRÖM

Johannesson, P., 1993, Schema Integration, Schema Translation and Interoperability in Federated Information
Systems, PhD thesis, Department of Computer & System Science, Stockholm University, Royal Institute of
Technology, No 93-010-DSV, Edsbruk.

Kim, W., and Seo, J., 1991, Classifying schematic and data heterogeneity in multidatabase systems, IEEE Com-
puter 24:12–18.

Kohler, J., Lange, M., Hofestadt, R., and Schulze-Kremer, S., 2000, Logical and semantic database integration,
in: IEEE International Symposium on Bio-Informatics and Biomedical Engineering, D. C. Young, ed., pp.
77–80.

Larson, J. A., Navathe, S. B., and Elmasri, R., 1989, A Theory of attribute equivalence in databases with applica-
tion to schema integration, IEEE Transactions On Software Engineering, 15:449–463.

Lawrence, R., and Barker, K., 2001, Integrating relational database schemas using standardized dictionaries, in:
16th ACM Symposium on Applied Computing, ACM Press, pp. 225–230.

Lee, M. L., and Ling, T. W., 2003, A methodology for structural conflict resolution in the integration of entity-
relationship schemas, Knowledge and Information System 5:225–247.

Li, W-S., and Clifton, C., 1993, Using field specifications to determine attribute equivalence in heterogeneous
databases, in: Third International Workshop on Research Issues in Data Engineering: Interoperability in
Multidatabase Systems, H.-J. Schek, A. P. Sheth, and B. D. Czejdo, eds., pp. 174–177.

Navathe, S. B., and Gadgil, S. U., 1982, A methodology for view integration in logical database design, Proceed-
ings of the Eighth International Conference on Very Large Data Bases, Morgan Kaufmann, pp. 142–164.

Parent, C., and Spaccapietra, S., 1998, Issues and approaches of database integration, Communications of the
ACM, 41(5es):166–178.

Parsons, J., 2002, Effects on local versus global schema diagrams on verification and communication in concep-
tual data modeling, Journal of Management Information Systems 19:155–183.

Sheth, A., and Kashyap, V., 1992, So far (schematically) yet so near (semantically), in: Proceedings of the IFIP
WG2.6 Database Semantics Conference on Interoperable Database Systems (DS-5), D. K. Hsiao, E. J.
Neuhold, and R. Sacks-Davis, eds., pp. 283–312.

Shoval, P., 1990, A methodology for integration of binary-relationship conceptual schemas, in: International
Conference on Databases, Parallel Architectures and Their Applications, N. Rishe, S. Navathe, and D. Tal,
eds., pp. 435–437.

Spaccapietra, S., and Parent, C., 1991, Conflicts and correspondence assertions in interoperable databases, ACM
SIGMOD 20:49–54.

Teorey, T. J., Yang, D., and Fry, J. P., 1986, A Logical design methodology for relational databases using the
extended entity-relationship model, Computing Surveys 18:197–222.

Vernadat, F. B., 1996, Enterprise Modeling and Integration Principles and Applications, Chapman & Hall, Lon-
don.

A CRITICAL REVIEW OF CHALLENGES IN
HYPERMEDIA SYSTEMS DEVELOPMENT

Michael Lang∗

1. INTRODUCTION

Over the past few years there has been considerable academic interest in the develop-
ment of “Web-based” systems, much of it surrounding the contention that it is somehow
different from “traditional” or “conventional” systems development. However, the debate
is clouded because of confusion over the meaning of the phrase “Web-based system”.1 In-
deed, it may be argued that “Web-based” is just an adjective which does not essentially alter
the meaning of the term “information system” when prefixed to it.2 This view is upheld
by an examination of definitions from the literature, which clearly make no fundamental
distinction:

“Web-based information systems (WIS) are information systems (IS) that are based on
Web technology and they are likely to be tightly integrated with conventional IS such as
databases and transaction processing systems”3

“Web Information Systems are Systems, not Pages. WISs are information systems first, and
Web systems second”4

As Lockwood and Constantine put it, “current development tools make it easy to
‘browserize’ almost anything”,5 so little if any redesign may be required to effect ba-
sic migration of a system to the Web. For example, some intranet projects have been as
straightforward as Web-enabling existing back-end applications such as Lotus Notes data-
bases. It is therefore obvious that although a system may be said to be “Web-based”, this
doesn’t necessarily imply it is any different from a non-Web-based system as regards soft-
ware design considerations.

Some clarity can be introduced by thinking of the Web as a “global hypermedia
system”.6 Hypermedia technologies support much richer user interfaces, more complex
navigation mechanisms and more varied forms of information than conventional systems.
As Web-based systems assume hypermedia functionality, they become distinct from con-

∗ Department of Accountancy & Finance NUI Galway, University Road, Galway, Ireland. Telephone: +353 91
750301 Fax: +353 91 750565, Michael.Lang@nuigalway.ie.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 277

278 M. LANG

ventional systems. Although the Web is not an ideal hypermedia environment, it is never-
theless the most common platform for hypermedia systems at the present time. In recogni-
tion of this point, the ACM Special Interest Group on Hypertext and Hypermedia (formerly
SIGLINK) now goes by the acronym SIGWEB. This paper therefore considers interactive
Web-based systems within the broader classification of hypermedia systems. This interpre-
tation is also guided by Lee’s point that IS researchers should aspire to produce timeless
contributions.7 “Hypermedia systems” is a better term than “Web-based systems” not just
because it is less ambiguous, but also because it is a more enduring concept and embraces
technologies that pre-date the Web (e.g. on-line help, encyclopaedia CD-ROMs) as well
as those that follow the Web (e.g. WAP and interactive TV applications). Indeed, the term
“Web-based information system” may soon become a redundant anachronism. The scope
of the Web is expanding with the range of delivery devices, – witness “e-commerce” giv-
ing birth to offshoot terms such as “m-commerce” and “t-commerce”, – what Botterweck
and Swatman call “Web-like applications”.8 It is likely that over time most systems will be
ported to the Web and that Web-based interfaces will become the norm, as testified by Mi-
crosoft’s zeal to win the “browsers war”. If most systems were to become “Web-based”, the
adjective would probably be dropped, as has happened with “multimedia PC”, a popular
term from the early 1990s that is now defunct.

Before proceeding, a number of other terms warrant clarification. Where used in this
paper, traditional systems development refers to popular practices in the period from the
1970s to the late 1980s, until displaced by new approaches upon the arrival of visual pro-
gramming, RAD tools, GUIs, object-orientation, and open systems architectures. The sub-
sequent period from the early 1990s to present shall be referred to as the modern age.
Conventional systems refer to systems and applications of the standard types encountered
within organisations, such as transaction processing systems and management informa-
tion systems. Lastly, traditional hypermedia development refers to applications from the
pre-Web era, such as interactive CD-ROMs, online help systems, and Apple Hypercard
applications.

The objectives of this paper are to critically review a number of issues encountered
within hypermedia systems development that are often argued with little if any justifi-
cation to be radically different, and to assess if these issues are indeed new (that is, not
experienced in traditional systems development or in other disciplines) or unique (that is,
not experienced in the development of conventional systems in the modern age, or in other
disciplines). In brief, these issues are: cognitive challenges of designing non-linear navi-
gation mechanisms, pressures of accelerated development in a “Web-time” environment,
problems arising out of the external “virtual” nature of the end-user population, the appro-
priateness of traditional design methods and techniques, and difficulties attributable to the
multidisciplinary composition of hypermedia design teams.

2. ISSUES AND CHALLENGES IN HYPERMEDIA DEVELOPMENT

There has been much speculation that the development of “Web-based” information
systems poses new or unique challenges.9–11 However, the assumption of “newness” is
a common weakness in both systems development research and practice.12–14 Of late, there
is a growing posse of dissenters who argue that there is nothing substantially different about

CHALLENGES IN HYPERMEDIA SYSTEMS DEVELOPMENT 279

Web-based systems development.1, 2, 15, 16 Given the problems earlier alluded to concern-
ing the definition of “Web-based systems”, this ought not be surprising. In the following
sub-sections, each of the purported new/unique challenges shall be considered within the
broader umbrella of hypermedia systems development. Just as it is appropriate to situate
a discussion of Web-based systems within the context of hypermedia, we should also con-
sider hypermedia within the traditions of its contributory root disciplines, which include
graphic design, information science, technical writing, literary theory, media production,
and database systems.

2.1. Complexity of Navigation Mechanisms

Some definitions of hypermedia emphasise non-linearity as its essential differentiating
characteristic. Because of this non-linearity, navigation mechanisms within hypermedia
systems can become quite complex. Arbitrary hyperlinking results in chaotic structures,
leading to problems such as “getting lost in cyberspace”, locating information, visualis-
ing system organisation, and managing content. This is where diagrammatic modelling
techniques become useful for system developers, as they help to overcome the cognitive
difficulties of understanding complex, abstract structures. However, it has been argued that
diagramming techniques from traditional systems development are inadequate for mod-
elling hypermedia systems.9, 17

Structural complexity arising from interconnectedness is not a new problem in soft-
ware design. In the early days, there was the 1960s practice of ‘go-to’ programming, which
Dijkstra criticised as being “an invitation to make a mess”.18 In the 1970s, complex nav-
igation and relationship structures were a feature of network databases. Out of those ex-
periences arose a number of principles and techniques, such as modularity and normalisa-
tion, which are readily applicable to the design of information nodes within hypermedia
systems.19 More recently, the flow of control in visual event-driven and object-oriented
programming languages is such that traditional techniques such as structured flowcharts
are of limited use. As a consequence, modern age software diagramming techniques such
as UML are being applied, as well as techniques drawn from traditional dynamic media
(e.g. storyboarding). Storyboarding is borrowed from the film industry, where non-linear
narrative has long been used for dramatic effect. Both storyboarding and UML can also
be applied to hypermedia systems modelling, – indeed, a number of UML extensions have
been proposed specifically for hypermedia design.20, 21

Looking to traditional literature, many authors have experimented with non-sequen-
tial interactive fiction (e.g. Borges22), and there are numerous examples stretching back
to antiquity of branching stories and interlocking commentaries. The discipline of library
information science also has long experience of non-linear systems that require the inves-
tigation of side links, and librarians’ skills are relevant to the design and evaluation of
Web sites.23, 24 Likewise, techniques from technical writing and electronic documentation
can be applied to hypermedia design.25, 26 Even within traditional printed media, there are
certain types of material that are specifically designed to be used in a random-access non-
linear manner, such as encyclopaediae, thesauruses and reference works. Physically these
are linear sequences of content units, but logically they are more complex because the units
may be indexed and cross-referenced. According to Whitley, hypermedia systems are dif-
ferent from other types of software applications because their design involves “a process

280 M. LANG

of structuring ideas, describing the order of presentation, and conceptual exploration. . .

the developers have to set up a number of alternatives for readers to explore rather than
a single stream of text”.27 However, technical writers have long had to set up navigable
paths in designing online help systems, and likewise have authors of non-linear printed
materials.

2.2. Accelerated Development Cycles

A much-cited “new” challenge is the pressure of accelerated development cycles, often
referred to as “Web time” or “Internet speed”.28, 29 Certainly, looking at trends in IS de-
velopment over the past 20 years, delivery times have dramatically shortened. In the early
1980s, Jenkins et al reported that the average project then lasted 10.5 months.30 By the
mid-1990s, the duration of typical projects had fallen to less than 6 months,31 and average
delivery times for Web-based systems are now less than 3 months.9, 32–34 Such compressed
timeframes are unprecedented in traditional systems development or traditional hyperme-
dia development, and are made possible by the combined effect of two factors. Firstly,
the Web is an immediate delivery medium which, unlike traditional IS and off-the-shelf
software applications, is not impeded by production, distribution and installation delays.
The second enabling factor is modern age rapid application devlopment tools. Arguably,
this second factor is the more important, and the jargon term “Web time” is misleading be-
cause it tends to suggest that the coming of the Web alone brought about these accelerated
timescales.

Ever-shortening product cycles has always been an observable fact of life within the IT
industry, even before the advent of the Web.35 Back in the 1960s “space age”, NASA were
rushing to produce software in the race to the moon. Short deadlines and limited resources
have long been the bane of IS project managers.36, 37 As such, “Web time” may be said to
be just a continuation of this general tendency. Moreover, it is a phenomenon that is not
specific to Web or hypermedia development, but applies also to conventional systems.38

This is reflected by the growing interest in high-speed approaches such as agile methods,
RAD, timeboxing, and COTS configuration amongst the general community of software
developers.

Indeed, one could say that this trend is reflective of a greater urgency in business in
general, brought about not just by the Web but also by other advances in telecommuni-
cations, transportation, and computing technologies, as well as practices such as JIT and
BPR. Business in the modern age is characterised by a faster metabolism, time-based com-
petition, shorter windows of opportunity, rapidly changing and uncertain environments,
and a need for greater flexibility and adaptability.39, 40 Considered thus, the phenomenon
of “Web time” is not unique to Web, hypermedia, or conventional systems development,
although it must be acknowledged that product life cycles are much shorter in the IT in-
dustry than in many other industries.35 However, for many “new media” companies, “Web
time” is not at all new, because they have always faced strict, pressing deadlines and have
accordingly adapted their processes to the pressures of Web delivery.41, 42

2.3. Virtual End-User Population

Russo and Graham make the point that “Web applications differ from traditional in-
formation systems [because] the users of Web applications are likely to be outside of the

CHALLENGES IN HYPERMEDIA SYSTEMS DEVELOPMENT 281

organization, and typically cannot be identified or included in the development process”.9

This, like the previous issue, is not hypermedia-specific and arises out of the nature of the
Web. However, because most modern hypermedia applications are delivered via the Web
or “Web-like” platforms (such as PDAs and interactive TV), it shall be considered under
the banner of hypermedia development.

It is plainly true that for most Web-based information systems, with the obvious ex-
ception of intranets, end-users are external to the organisation. This is indeed new territory
for IS development, because information systems traditionally served internal functions.43

Collecting requirements from a virtual population is difficult, and traditional ISD tech-
niques cannot be easily applied if at all.44 As a consequence, requirements are often vague.
Baskerville and Pries-Heye state that “an inability to pre-define system requirements is the
central, defining constraint of Internet time development . . . often a project starts without
a requirement specification”.29

Let us examine both these aspects more closely. Firstly, the notion of a virtual popula-
tion, although new to IS developers, is quite typical for mass-market off-the-shelf software
production and new product development.43 In such situations, the marketing department
fulfils a vital role as the voice of the customer.44 Established marketing research techniques
can be used in conjunction with traditional requirements elicitation techniques and Web
usage analysis techniques to define requirements for a virtual population.45 For example,
Tognazzini describes how a team of designers, engineers, and human factors specialists
used scenarios to define requirements based on an understanding of the profiles of target
users as communicated by marketing staff.46

Secondly, the phenomenon of vague requirements is by no means new. Glass remarks
that “back in the earliest days of software development . . . [specifications] often didn’t
exist, or when they did, they were written on the back of an envelope”,47 Walz et al observe
that users often “don’t know what they want” and fuzzy requirements are common,48 and
of course there is the classic problem of “I’ll know it when I see it” requirements that are
not pre-specifiable.49

Another aspect of a virtual user population, which is different from traditional IS de-
velopment, is that end users often cannot be personally trained how to use the system.
Constantine and Lockwood assert that “much more so than standard software, Web ap-
plications must focus on the user experience”.50 Certainly, issues such as usability and
interaction design are paramount for Web/hypermedia systems, but they are arguably no
less a consideration for off-the-shelf software applications. Indeed, the importance of ease-
of-use for mass-produced goods has long been emphasised by industrial designers. There
is however a further element of Web-based user experience design which traditionally has
not been considered by software designers, – branding and corporate image. Unlike off-
the-shelf applications and conventional systems development, Web systems have a “pub-
lic relations” aspect.51 This new aspect of IS development is best handled by those with
specialist skills, – marketing personnel, graphic designers and communications consul-
tants.

2.4. Need for Specialised Development Methods and Approaches

It is often argued that approaches and methods from traditional systems development
are inappropriate for Web/hypermedia development.3, 9, 17, 42 Murugesan et al speak of

282 M. LANG

“a pressing need for disciplined approaches and new methods and tools”,52 taking into ac-
count “the unique features of the new medium”. As demonstrated in this paper, it is arguable
if many of the features of hypermedia are indeed unique, for many parallels may be drawn
with traditional/conventional software design and other root disciplines. Merely because
an application is based on new technologies, its design should not necessarily require an
altogether new or different approach.4, 13 It may well be true that traditional systems devel-
opment methodologies are ill-suited to hypermedia development. However, for the same
reasons, those methodologies can be argued to be inappropriate for conventional systems
development in the modern age.53 Modern approaches, methods and techniques, – such
as rapid prototyping, incremental development, agile methods, use case modelling, class
diagrams, GUI schematics, model-view-controller framework, and heuristic evaluations, –
may be said to be as applicable to hypermedia development as to conventional systems
development.

However, traditional methodologies ought not be entirely discarded for hypermedia
development. Some authors maintain that an adapted form of the classical SDLC remains
the most appropriate process model,54, 55 an assertion that is further supported by em-
pirical evidence that the SDLC and variants thereof remain in popular use.56–58 Further-
more, Barry and Lang reveal that traditional approaches from other root disciplines, such
as graphic design and media production, are also being used in hypermedia systems deve-
lopment.34 It would therefore seem that new, specialised hypermedia-specific approaches
are not required. Although many such approaches have been proposed in the literature, –
such as RMM, OOHDM, VHDM, EORM, WSDM, WebML, and OntoWebber, – a recent
study of hypermedia development practice reveals that these are not being used, but that
methods from traditional and conventional systems development are being used.58

2.5. Multidisciplinary Design Teams

A notable aspect of hypermedia systems development is that design teams typically
involve members from a diversity of professional backgrounds.32, 34, 59 Of course, skills
diversity is not unique to hypermedia systems development, – many conventional projects,
particularly large ones, necessitate the integration of various knowledge domains.48 How-
ever, in conventional systems development, designers tend to be primarily “computer pro-
fessionals”, which is typically not the case with hypermedia systems development. This
is especially true of Web-based hypermedia systems, where many developers do not have
a background in traditional software design or programming.9, 33, 51 The challenge of man-
aging communication and collaboration within multidisciplinary design teams is by no
means trivial, and if mismanaged is potentially disastrous. Experiences from Web and in-
teractive multimedia development projects reveal that discrepancies in the backgrounds of
team members can give rise to significant communication and collaboration problems.51, 60

Kim makes the point that:

“disciplines are like cultures: for disciplines to work well together they must learn to
appreciate one another’s language, traditions, and values . . . Different disciplines have
different priorities, different thinking styles, different values. When people from different
disciplines get together, their values collide.”61

CHALLENGES IN HYPERMEDIA SYSTEMS DEVELOPMENT 283

This is analogous to Kuhn’s notion of “paradigms”.62 It has been noted that separate
paradigms can co-exist within the same field yet be mutually ignorant of each other, either
deliberately or inadvertently.63 Although “paradigms” and “disciplines” are not strictly
equivalent, they are closely related. Within hypermedia systems development, two such
disciplines are software engineering and graphic design. Despite being the two foremost
disciplines in hypermedia development,58 it has been observed that they appear to oper-
ate in distinctly different worlds and have quite different value systems.64, 65 For example,
software engineering and graphic design have markedly different interpretations of con-
cepts such as “quality”, “elegance” and “structure”.

On the face of it, this appears to be a new challenge, although one could argue that
communication problems are not new for they have traditionally plagued systems devel-
opment projects.66 The need to address the balance between functionality and aesthetics
has previously arisen in other disciplines, such as civil engineering versus decorative archi-
tecture, automobile design, and computer game design. Within the realm of conventional
systems development, user interface design has also long been a multidisciplinary, collab-
orative activity.67, 68 Kautz and Nørbjerg argue that the move towards multidisciplinary
teams is a continuation of an observable trend across systems development in general.16

This position is supported by the contention of Fafchamps and Garg that flexible teams,
characterised by composite membership and roles and diverse disciplines and skills, are “a
new type of organizational entity that will become more prevalent in the future”.69 Whereas
hypermedia systems development seems to call for a greater level of multi-/cross-skilling
than traditional systems development,42, 56, 70 this may likewise be argued to be an in-
creasingly common phenomenon in the digital networked economy (i.e. “reprogrammable
labour”).

3. SUMMARY AND CONCLUSIONS

Jakob Nielsen has commented that “software design is a complex craft and we some-
times arrogantly think that all its problems are new and unique”.71 As presented in Table 1,
many of the challenges of hypermedia systems development are neither unique nor entirely
new. IS researchers have often been guilty of jumping onto the bandwagon of the lastest
fad, leading Keen to remark that many “issues seen as ‘new’ turn out to have long roots”.12

With the advent of so-called “new media”, much of the discourse amongst communications
scholars has likewise been at fault of lacking a “historical consciousness”.72

It is clear that hypermedia development is a multidisciplinary domain which can po-
tentially draw from lessons and experiences across a variety of disciplines – traditional
IS development, software engineering, HCI, graphic design, visual communications, mar-
keting, technical writing, library information science, media production, architecture, and
industrial design. For now, this is what most distinguishes hypermedia development from
traditional/conventional systems development, although this distinction is likely to disap-
pear in the future as software development in general is headed in this direction.

The multidisciplinary nature of design teams must be acknowledged in devising mech-
anisms to resolve challenges of hypermedia development. Design approaches, integrated
working procedures, diagramming techniques, toolset selection, and methods for specify-
ing and managing requirements must all take this central aspect into consideration.

284 M. LANG

Table 1. Summary of key points

CHALLENGES IN HYPERMEDIA SYSTEMS DEVELOPMENT 285

The software engineering and ISD literature is filled with a multitude of methods and
techniques aimed towards Web/hypermedia design, very few of which are used in practice.
This might be explained in a variety of ways: lack of awareness, lack of tool-based support,
lack of guidance on how to use them, or inertia being obvious possibilities. However, there
is a much more fundamental matter which has received very little attention, – that of the
narrow world-view of the method developers. Morgan makes the point that researchers in
all branches of science “often approach their subject from a frame of reference based upon
assumptions that are taken-for-granted”.73 For methods and techniques to be of value, the
assumptions upon which they are founded should be in congruence with the context within
which they are intended to be used. Methods and techniques for hypermedia systems de-
velopment should therefore recognise its multidisciplinary nature and take a cosmopolitan
world-view, integrating and adapting approaches from the various root disciplines. To para-
phrase a well-known quotation, those who choose not to draw from the well of cumulative
knowledge are bound to foolishly repeat past mistakes. This paper therefore concludes with
a call to hypermedia design researchers to reach out and explore the historical experiences
of other related disciplines.

4. FURTHER RESEARCH

This literature review paper is the product of an ongoing doctoral research project and
draws upon insights gained from exploratory empirical work.58, 74 The next stage of this
project involves the definition of a conceptual framework to analytically compare the vari-
ous disciplines that contribute to hypermedia systems development. This comparison shall
analyse data captured from literature trawls and interviews with developers. Researchers
with similar or related interests are welcome to contact the author.

REFERENCES

1. J. Holck, 4 perspectives on Web information systems, in: Proceedings of 36th Annual Hawaii International
Conference on System Sciences (HICSS) (IEEE Computer Society Press, Hawaii, USA, January 2003).

2. C. Barry, Web-based information systems – time for the revisionists, in: Proceedings of Collaborative Elec-
tronic Commerce Technology and Research (CollECTeR) Conference, edited by T. Acton and P. Swat-
man (CISC, National University of Ireland, Galway, June 24, 2003), pp. 37–50.

3. S. Wang, Toward a general model for web-based information systems, International Journal of Information
Management 21(5), 385–396 (2001).

4. A. R. Dennis, Lessons from three years of Web development, Communications of the ACM 41(7), 112–113
(1998).

5. L. Lockwood and L. Constantine, Taming Web development, Software Development Magazine (April 1999);
http://www.sdmagazine.com/documents/sdm9904h/.

6. M. Andreessen and E. Bina, NCSA Mosaic: a global hypermedia system, Internet Research 4(1), 7–17
(1994).

7. A. S. Lee, The Timeliness of Publications in MIS Quarterly (ISWorld Mailing List, June 5, 1999).
8. G. Botterweck and P. A. Swatman, Towards a contingency based approach to Web engineering, in: Proceed-

ings of 7th Australian Workshop on Requirements Engineering (AWRE’2002), edited by J. L. Cybulski
et al. (Melbourne, Australia, December 2–3, 2002), pp. 47–64.

9. N. L. Russo and B. R. Graham, A first step in developing a Web application design methodology: understand-
ing the environment, in: Methodologies for Developing and Managing Emerging Technology Based
Information Systems: Proceedings of 6th International BCS Information Systems Methodologies Con-
ference, edited by A. T. Wood-Harper et al. (Springer, London, 1999), pp. 24–33.

286 M. LANG

10. T. Isakowitz, M. Bieber and F. Vitali, Web information systems, Communications of the ACM 41(7), 78–80
(1998).

11. D. B. Lowe and J. Eklund, Client needs and the design process in Web projects, Journal of Web Engineering
1(1), 23–36 (2002).

12. P. G. W. Keen, Relevance and rigor in information systems research: Improving Quality, Confidence, Cohe-
sion and Impact, in: Information Systems Research: Contemporary Approaches and Emergent Tradi-
tions, edited by H.-E. Nisson et al. (Elsevier Science Publishers, 1991), pp. 27–49.

13. E. Yourdon, Developing Applications for the Internet: advice for the Java generation, American Programmer,
36–41 (December 1996).

14. R. S. Pressman, What a tangled web we weave, IEEE Software 17(1), 18–21 (2000).
15. T. Butler, An institutional perspective on developing and implementing intranet- and internet-based informa-

tion systems, Information Systems Journal 13(3), 209–231 (2003).
16. K. Kautz and J. Nørbjerg, Persistent problems in information systems development: the case of the World

Wide Web, in: Proceedings of 11th European Conference on Information Systems (ECIS), edited by
C. Ciborra et al. (Naples, Italy, June 16–21, 2003).

17. K. Siau and M. Rossi, Information modeling in the Internet age – challenges, issues and research direc-
tions, in: Information Modeling in the New Millennium, edited by M. Rossi and K. Siau (Idea Group
Publishing, Hershey, PA, 2001), pp. 1–8.

18. E. W. Dijkstra, Go to statement considered harmful, Communications of the ACM 11(3), 147–148 (1968).
19. M. J. Taylor, S. Wade and D. England, Informing IT system Web site design through normalisation, Internet

Research: Electronic Networking Applications and Policy 13(5), 342–355 (2003).
20. H. Baumeister, N. Koch and L. Mandel, Towards a UML extension for hypermedia design, in: UML’99: The

Unified Modeling Language – Beyond the Standard, Second International Conference, Fort Collins,
CO, USA, October 28–30, 1999, Proceedings. Lecture Notes in Computer Science 1723, edited by
R. B. France and B. Rumpe (Springer, 1999), pp. 614–629.

21. J. Conallen, Building Web Applications with UML (Addison Wesley, Reading, MA, 2000).
22. J. L. Borges, The garden of the forking paths, in: Labyrinths: Selected Stories and other Writings, edited by

D. A. Yates and J. E. Irby (Penguin Books, Harmondsworth, 1981), pp. 44–54.
23. J. Conklin, Hypertext: an introduction and survey, IEEE Computer 20(9), 17–20;32–41 (1987).
24. S. Shropshire, Beyond the design and evaluation of library web sites: an analysis and four case studies, The

Journal of Academic Librarianship 29(2), 95–101 (2003).
25. B. B. Zimmerman, Applying Tufte’s principles of information design to creating effective Web sites, in:

Proceedings of 15th ACM Conference on Systems Documentation (ACM Press, Snowbird, Utah, USA,
October 19–22, 1997), pp. 309–317.

26. L. B. Eriksen, Limitations and opportunities for system development methods in Web information system
design, in: Organizational and Social Perspectives on Information Technology, IFIP TC8 WG8.2 In-
ternational Working Conference on the Social and Organizational Perspective on Research and Prac-
tice in Information Technology, June 9–11, 2000, Aalborg, Denmark, edited by R. Baskerville et al.
(Kluwer, Boston, MA, 2000), pp. 473–486.

27. E. A. Whitley, Method-ism in practice: investigating the relationship between method and understanding
in Web page design, in: Proceedings of 19th International Conference on Information Systems (ICIS)
(Helsinki, Finland, December 13–16, 1998), pp. 68–75.

28. D. Thomas, Web time software development, Software Development Magazine, 78–80 (October 1998).
29. R. Baskerville and J. Pries-Heye, Racing the e-bomb: how the Internet is redefining information systems

development methodology, in: Realigning Research and Practice in Information Systems Development:
The Social and Organizational Perspective. Proceedings of International Federation for Information
Processing (IFIP) Working Group 8.2 Conference, Boise, Idaho, USA, 27–29 July 2001, edited by N. L.
Russo et al. (Kluwer Academic Publishers, Boston, MA, 2001), pp. 49–68.

30. M. A. Jenkins, J. D. Naumann and J. C. Wetherbe, Empirical investigation of systems development practices
and results, Information & Management 7(2), 73–82 (1984).

31. B. Fitzgerald, The use of systems development methodologies in practice: a field study, Information Systems
Journal 7(3), 201–212 (1997).

32. P. R. Vora, Designing for the Web: a survey, ACM interactions 5(3), 13–30 (1998).
33. S. McClure, Web Application Development Developer Perspectives: An IDC White Paper (International Data

Corporation, Framingham, MA, 1998).
34. C. Barry and M. Lang, A comparison of “traditional” and multimedia information systems development

practices, Information and Software Technology 45(4), 217–227 (2003).

CHALLENGES IN HYPERMEDIA SYSTEMS DEVELOPMENT 287

35. H. Mendelson and R. R. Pillai, Clockspeed and informational response: evidence from the information tech-
nology industry, Information Systems Research 9(4), 415–433 (1998).

36. T. Gilb, Deadline pressure: how to cope with short deadlines, low budgets and insufficient staffing levels, in:
Information Processing, edited by H. J. Kugler (Elsevier Science Publishers B. V., 1986), pp. 293–299.

37. E. Yourdon, Death March: The Complete Software Developer’s Guide to Surviving “Mission Impossible”
Projects (Prentice Hall, Upper Saddle River, NJ, 1997).

38. D. Kurata, Do OO in “Web time”, Visual Basic Programmer’s Journal 11(1), 70 (2001).
39. J. C. Wetherbe and M. N. Frolick, Cycle time reduction: concepts and case studies, Communications of the

AIS 3(13), 1–42 (2000).
40. G. Scott, Internet/Web systems development: what can be learned from hi-tech new product strategic plan-

ning, in: Proceedings of 36th Annual Hawaii International Conference on System Sciences (HICSS)
(IEEE Computer Society Press, Hawaii, USA, January 2003).

41. V. Bellotti and Y. Rogers, From Web press to Web pressure: multimedia representations and multimedia
publishing, in: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems
(ACM Press, Atlanta, Georgia, USA, March 22–27 1997), pp. 279–286.

42. J. Greenbaum and D. Stuedahl, Deadlines and work practices in new media development: its about time, in:
PDC 2000 Proceedings of Participatory Design Conference, edited by T. Cherkasky et al. (New York,
USA, November 28 – December 1, 2000), pp. 70–77.

43. J. Grudin, Interactive systems: bridging the gaps between developers and users, IEEE Computer 24(4), 59–69
(1991).

44. J. Lazar, E. Hanst, J. Buchwalter and J. Preece, Collecting user requirements in a virtual population: a case
study, WebNet Journal 2(4), 20–27 (2000).

45. M. S. Lane and A. Koronois, A balanced approach to capturing user requirements in business-to-consumer
Web information systems, Australian Journal of Information Systems 9(1), 61–69 (2001).

46. B. Tognazzini, Tog on Software Design (Addison Wesley, Reading, MA, 1995).
47. R. L. Glass, Who’s right in the Web development debate?, Cutter IT Journal 14(7), 6–10 (2001).
48. D. B. Walz, J. J. Elam and B. Curtis, Inside a software design team: knowledge acquisition, sharing, and

integration, Communications of the ACM 36(10), 63–77 (1993).
49. B. Boehm, Requirements that handle IKIWISI, COTS, and rapid change, IEEE Computer 33(7), 99–102

(2000).
50. L. L. Constantine and L. A. D. Lockwood, Usage-centered engineering for Web applications, IEEE Software

19(2), 42–50 (2002).
51. P. H. Carstensen and L. Vogelsang, Design of Web-based information Systems – new challenges for systems

development?, in: Proceedings of 9th European Conference on Information Systems (ECIS) (Bled,
Slovenia, June 27–29 2001), pp. 536–547.

52. S. Murugesan, Y. Deshpande, S. Hansen and A. Ginige, Web engineering: a new discipline for development
of Web-based systems, in: Proceedings of 1st ICSE Workshop on Web Engineering (ACM Press, Los
Angeles, California, USA, May 16–17 1999), pp. 1–9.

53. B. Fitzgerald, Systems development methodologies: the problem of tenses, Information Technology & People
13(3), 174–185 (2000).

54. T. A. Powell, D. L. Jones and D. C. Cutts, Web Site Engineering: Beyond Web Page Design (Prentice Hall,
Upper Saddle River, NJ, 1998).

55. C. Urquhart, Exploring methodologies for Web based design: a case study of a design business, in: Pro-
ceedings of 1st AIS SIGeBiz Workshop on e-Business (WeB 2002) (Barcelona, Spain, December 14–15
2002), pp. 1–9.

56. C. Britton, S. Jones, M. Myers and M. Sharif, A survey of current practice in the development of multimedia
systems, Information and Software Technology 39(10), 695–705 (1997).

57. J. Paynter and M. Pearson, A Case Study Of The Web-Based Information Systems Development (Department
of Management Science and Information Systems, University of Auckland, New Zealand, 1998).

58. M. Lang, Hypermedia systems development: a comparative study of software engineers and graphic design-
ers, Communications of the AIS 12(16), 242–257 (2003).

59. L. L. Scarlatos, R. P. Darken, K. Harada, C. Heeter, R. Muller and B. Shneiderman, Designing interactive
multimedia (Panel), in: Proceedings of 5th ACM International Conference on Multimedia (ACM Press,
Seattle, Washington, USA, November 9–13 1997), pp. 215–218.

60. O. Koechlin, Methods and Tools to Improve Software Quality for Multimedia Productions. Final Report ESSI
Project No. 21545 (European System and Software Initiative, December 1997).

288 M. LANG

61. S. Kim, Interdisciplinary cooperation, in: The Art of Human-Computer Interface Design, edited by B. Laurel
(Addison Wesley, Reading, MA, 1990), pp. 31–44.

62. T. S. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, IL, 1970).
63. M. Dogan, Paradigms in the social sciences, in: International Encyclopedia of the Social & Behavioral

Sciences, edited by N. J. Smelser and P. B. Baltes (Elsevier Science, Oxford, 2001), pp. 11023–11027.
64. L. Vertelney, M. Arent and H. Lieberman, Two disciplines in search of an interface: reflections on a design

problem, in: The Art of Human-Computer Interface Design, edited by B. Laurel (Addison Wesley,
Reading, MA, 1990), pp. 45–55.

65. S. Gallagher and B. Webb, Competing paradigms in multimedia systems development: who shall be the
aristocracy?, in: Proceedings of 5th European Conference on Information Systems (ECIS), edited by
R. D. Galliers et al. (Cork Publishing Ltd., Cork, Ireland, June 19–21, 1997), pp. 1113–1119.

66. B. Curtis, H. Krasner and N. Iscoe, A field study of the software design process for large systems, Commu-
nications of the ACM 31(11), 1268–1287 (1988).

67. J. Grudin and S. E. Poltrock, User interface design in large corporations: coordination and communication
across disciplines, in: Proceedings of ACM SIGCHI Conference on Human Factors in Computing Sys-
tems (ACM Press, Austin, Texas, USA, April 30 – May 4, 1989), pp. 197–203.

68. J. Preece, Interaction Design (Wiley, New York, 2002).
69. D. Fafchamps and P. Garg, Computing environments for flexible teams, in: Software Engineering and

Human-Computer Interaction. ICSE ’94 Workshop on SE-HCI: Joint Research Issues, Sorrento, Italy,
May 16–17, 1994, Proceedings (LNCS 896), edited by R. N. Taylor and J. Coutaz (Springer-Verlag,
Berlin, 1995), pp. 174–184.

70. N. P. Kotamraju, Keeping up: Web design skill and the reinvented worker, Information, Communication &
Society 5(1), 1–26 (2002).

71. J. Nielsen, Learning from the real world, IEEE Software 14(4), 98–99 (1997).
72. E. Huhtamo, From cybernation to interaction: a contribution to an archaeology of interactivity, in: The Digital

Dialectic: New Essays on New Media, edited by P. Lunenfeld (MIT Press, Cambridge, MA, 1999),
pp. 96–110.

73. G. Morgan, Paradigms, metaphors, and puzzle solving in organization theory, Administrative Science Quar-
terly 25(4), 605–622 (1980).

74. M. Lang, Reconsidering the “software crisis”: a study of hypermedia systems development, in: Proceedings
of IADIS International WWW/Internet 2003 Conference, edited by P. Isaías and N. Karmakar (IADIS
Press, Algarve, Portugal, November 5–8 2003), pp. 307–313.

TRANSFORMATIONS OF UML DIAGRAMS FOR
RECONCILIATION OF REQUIREMENTS

Lina Ceponiene and Lina Nemuraite∗

1. INTRODUCTION

In OMG Model Driven Architecture (MDA) (Frankel, 2003; Siegel, 2001) models are
primary artifacts in software development process, which differs significantly from earlier
processes where the purpose of models was an aid to understanding and communication
between participants of development project. In MDA models constitute the definition of
the system under development. This definition must be precise and comprehensive in order
to generate meaningful code. Development is prosecuted as a stepwise process where four
types of UML models are created:

Business Model → Platform Independent Model (PIM) → Platform Specific Model
(PSM) → Program Code.

MDA activities are concentrated on going from PIM to PSM and from PSM to code.
The very important role there is played by the quality of PIM, i.e. its capability to ad-
equately represent system under development. By our view, for ensuring the quality of
PIM it is purposeful to ensure the quality of definition of requirements. Elaborated require-
ments model (based on (Reggio et al., 2001; Astesiano and Reggio, 2002)) named as De-
sign Independent Model (DIM), was described in (Ceponiene et al., 2003; Ceponiene and
Nemuraite, 2004). For automation of development process, the design model may be de-
rived from requirements definition, integrating it with chosen software architecture model
(transformation DIM → PIM). During development of DIM, while analysis of interactions
in requirements phase remains under responsibility of analyst, computer supported gener-
ation of state charts from interactions may help to harmonize multiple sequence diagrams
to comprehensive model of desired behaviour of the system.

UML class, sequence and state diagrams, representing system under development,
really are partially overlapping views (e.g. Breu et al., 1998) over the common model of
that system. The deficiency of the current UML CASE tools is that different diagrams are
only partially related and developer often creates UML metamodel instances with non-
overlapping element sets.

∗ Kaunas University of Technology, Studentu 50–308, LT-51368 Kaunas, Lithuania, kavalina@soften.ktu.lt,
nemur@soften.ktu.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 289

290 L. CEPONIENE AND L. NEMURAITE

In this work, derivation of state diagrams from sequence diagrams and vice versa
is considered. DIM is applicable to systems oriented to services, that is, systems un-
der consideration are capable to perform services responding to received requests, pos-
sibly collaborating with other systems. The shape of state machines representing service-
oriented behavior is different from state machines used in Action Semantics Language
(Mellor and Balcer, 2002) or UML 2.0 protocol state machines (Unified Modeling Lan-
guage Superstructure. . . , 2003). Some principles are similar to (UML Profile. . . , 2002),
where states of entities and behavioral classifiers are integrated; also information about
senders of events, sent to other systems, is captured (that is missing in UML 2.0 protocol
state machines and in state machines in general).

The paper is composed of 7 sections. In Section 2, the proposed principles of In-
formation System modeling at elaborated requirement level are presented. In Section 3
DIM-corresponding canonical forms of sequence diagrams and state chart diagrams are
introduced. Sections 4 and 5 are devoted for definition of transformations from sequence
diagrams to state charts and vice versa. Section 6 discusses related approaches. Finally,
Section 7 concludes the paper and discusses possible future work.

2. INTEGRATION OF SEQUENCE DIAGRAMS AND STATE CHARTS

Design Independent Model for service oriented Information System presents subset of
UML 2.0 metamodel with additional constraints. More detail, DIM enables specification of
information systems constituted of entities and interfaces to behavior. Functional require-
ments are defined as conceptual operations of interfaces (Cheesman and Daniels, 2000;
D’Souza and Wills, 1999; Sendall and Strohmeir, 2000). Reconciliation of requirements is
achieved by binding model elements. In Figure 1, DIM elements used in transformations
between interactions and state charts are represented.

Figure 1. Transformation between elements of Sequence Diagrams and Interface State Machines metamodels.

TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION OF REQUIREMENTS 291

Figure 2. Event types.

In DIM, persistent state of the system is defined by states of entities; transient states
correspond to execution of operations, specified by interfaces. Signatures of operations are
expressed in terms of entities; pre and post conditions are defined using states of entities
that are changed by operations. DIM contains no design decisions, that is, there are no
control classes or components; these elements arise in design phase.

The main elements of sequence diagram are Lifelines (used in UML 2.0 instead of
classifier roles from previous versions of UML) and Messages. For clear modeling of be-
havior, two types of Messages were distinguished: Requests and Responses. Events were
differentiated to Send Events corresponding to one message end and Receive Events corre-
sponding to the other one (Figure 2).

As events are present in sequence diagrams and in state charts, the main problem
is to map messages, sent between different actors and interfaces from various sequence
diagrams, to states and state transitions happening during life cycles of interfaces and rep-
resented in state machines of these interfaces.

3. TRANSFORMATION OF DIAGRAMS INTO CANONICAL FORM

Analyzing correspondences between interactions and states, the following rules were
deduced: Request event, received on lifeline, is always associated with transition to new
Interface State in state machine of lifeline owner; Sent Response always is associated with
transition from Interface State to Wait State (for service oriented systems it is supposed
that interface to service always has default state named Wait State); Sent Request is associ-
ated with event sent during transition; Received Response is associated with activation of
transition to state dependent from succeeding event (to Wait State, if the succeeding event
is Sent Response, and to the current state, if it is Sent Request).

3.1. Canonical Sequence Diagrams

For mapping, the sequence diagram initially is transformed to canonical form (Fig-
ure 3), where all Request messages are supplemented with Response messages if latter
do not persist. Response message is inserted before the first Received Request succeeding
considered Request having no Response (or at the end of sequence of events). If there are
asynchronous messages in input sequence diagram, the apparent response messages are
added that denote successful sending of asynchronous requests.

This transformation may be defined by DIM metamodel interface operation trans-
formSD2CSD(), using OCL 2.0 (Unified Modeling Language: OCL. . . , 2003):

292 L. CEPONIENE AND L. NEMURAITE

Figure 3. Transformation to canonical sequence diagram.

Figure 4. UML state chart and canonical state chart with information about senders of events.

Context DIM :: transformSD2CSD(sd:SequenceDiagram):SequenceDiagram
post : result = sd.addResponses2SD(sd.orderSD(sd))

Operations addResponses2SD() and orderSD() (described in Appendix) represent in-
termediate transformations: addResponses2SD() adds missing responses; orderSD() orders
events in sequence diagram. Using orderSD() operation events are ordered and converted
to sequence of events, using information from metamodel class General Ordering. It is
necessary because during creation of sequence diagrams messages are created and deleted
and they may appear in General Ordering instance set in any order, not corresponding to
their sequence during interaction.

3.2. Canonical State Chart Diagrams

For bi-directional transformation between sequence diagrams and state charts, infor-
mation about senders and receivers of events must exist in state chart diagram. Relation-
ships for providing this information are present in UML metamodel, but senders are not
captured in usual state diagrams. Notation used for describing the send event and its re-
ceiver in UML is ∧Receiver.SendEvent. The notation for describing sender of received
event in canonical state chart may be similar: Sender.Event (Figure 4). If designer has not
provided this kind of information, default sender may be added to Received Requests (e.g.,
‘Xrequestor’, where X denotes the name of interface); senders of Received Responses cor-
respond to receivers of Sent Requests.

As long as events on transitions in state machine correspond to some Events of Request
or Response messages from sequence diagram, transitions can be dependent on preceding
transitions. Event e1 depends on event e2 if it is Received Response to Sent Request e2:
e1.receiveMessageEnd.responseTo = e2.sendMessageEnd. These constraints are clearly
tangible in sequence diagrams, but in state chart diagram they are badly expressed. State
charts would be more informative if the order of transitions would be explicitly represented
(compare Figure 5(a) and (b)).

TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION OF REQUIREMENTS 293

Figure 5. Usual (a) and rich (b) state chart representation; improved state chart (c).

Reasoning about correctness of state machine gives the possibility to improve be-
havior model described by sequence diagrams. To ensure completeness some additional
constraints may be added to representation of behavior. E.g. for every synchronous Sent
Request message at least two responsive transitions must be provided: one for the case,
when response is received, and the other one, when response is not received, i.e., e1 and
not(e1) (such condition may express timeout for waiting of event occurrence) etc. In Fig-
ure 5 (c) the improved state chart is represented.

4. TRANSFORMATION FROM SEQUENCE DIAGRAMS TO STATE CHARTS

Canonical sequence diagrams may be transformed to state chart diagrams, mapping
events of every lifeline to sequences of pairs (tuples). In each pair the first element repre-
sents event corresponding to state and the second element represents at most two events
corresponding to state transition (received event that activates the transition and event sent
during this transition). Pairs may be represented as instances of an auxiliary class Pair
(Figure 6).

Route corresponds to sequence of pairs obtained from one sequence diagram. Inter-
face State Machine may represent several Routes. The order of pairs in the sequence is
significant as source state of the transition corresponds to the first element of one pair and
target state corresponds to the first element of the succeeding pair. Class Pair actually is a
view representing complex relation between events; the instances of this relationship may
be described as Tuple in OCL 2.0:

Pair: Tuple(first:Event,second:Tuple(received:Event,sent:Event))

294 L. CEPONIENE AND L. NEMURAITE

Figure 6. Auxiliary classes, representing views under original classes of DIM metamodel.

Figure 7. Example of sequences of events obtained from sequence diagram.

Operation for transformation of events of one lifeline to state machine may be rep-
resented by sequence of intermediate transformations: obtaining the sequence of pairs for
the Lifeline and transforming this sequence to Interface State Machine:

Context DIM:: transformCSD2CSM(sd:SequenceDiagram,l:Lifeline):InterfaceStateMachine
let r:Route = sd.transformCSD2P(sd, l) in
result = DIM.transformP2CSM(r,l)

Operation transformCSD2P() is described in Section 4.1 and operation trans-
formP2CSM() is described in Section 4.2.

4.1. Obtaining Sequence of Pairs

Operation transformCSDL2P() (OCL definition presented in Appendix) is a query ob-
taining a sequence of pairs of the certain lifeline from sequence diagram. The sequences
of pairs obtained from the sequence diagram are presented on Figure 7.

4.2. Transforming Sequence of Pairs to State Machine

Operation transformP2CSM() (OCL definition can be found in Appendix) adds one
route (sequence of pairs) of one lifeline to canonical state machine of the interface. The
results of applying the operation to lifelines of sequence diagram (Figure 7) are illustrated
on Figure 8.

TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION OF REQUIREMENTS 295

Figure 8. Resulting state machines for I1, I2.

5. TRANSFORMING CANONICAL STATE MACHINES TO SEQUENCE
DIAGRAMS

The algorithm for generation of sequence diagrams from state charts should produce
a set of sequence diagrams where every sequence diagram corresponds to one sequence of
events from state chart.

Operation for transforming the sequences of events from the state machine to sequence
diagrams may be represented by two intermediate transformations: obtaining sequences of
pairs and transforming these sequences to the set of Sequence Diagrams:

Context DIM :: transformCSM2CSD(ism:InterfaceStateMachine):Set(SequenceDiagram)
result = ism.transformCSM2P(ism) → iterate(r; acc: Set(SequenceDiagram)={ } |
acc → append(ism.transformP2CSD(r)))

Operation transformCSM2P() (Section 5.1) is used for obtaining the sequences of pairs
from statechart and operation transformP2CSD() (Section 5.2.) transforms these sequences
into sequence diagrams. OCL definition of both operations can be found in Appendix.

5.1. Obtaining Sequence of Pairs

Sequence of pairs from state machine is created by walking through the state chart
from Wait State to Wait State by all possible ways and remembering the path. In one se-
quence each transition can be taken not more than once (this helps to avoid endless traces).
The sequences obtained from a state chart are described in the same manner as for gen-
eration of state charts from sequence diagrams. Operation transformCSM2P() transforms
canonical Interface State Machine to sequences of pairs:

Context InterfaceStateMachine :: transformCSM2P(ism:InterfaceStateMachine):Sequence(Route)

let ws:InterfaceState = ism.InterfaceState → select(is|is.name = ‘WaitState’) in

result = ism.iroute(ws) → iterate(tu;acc:Sequence(Route)={ } |
acc → union(ism.AllRoutes(tu.second.received.receivedOn.target, tu)))

Here recursive operation allRoutes() (described in Appendix) is used for obtaining all
routes starting from the given state. Two traces obtained from the state chart diagram from
Figure 5 (b) are represented on Figure 9.

296 L. CEPONIENE AND L. NEMURAITE

Figure 9. Example state chart and sequences obtained from this state chart.

Figure 10. Sequence diagrams derived from state machine on Figure 9.

5.2. Transforming Sequence of Pairs to Canonical Sequence Diagram

Operation transformP2CSD() transforms sequence of pairs to sequence diagram (Fig-
ure 10) (operation is similar to transformLP2CSM() and it was not presented here because of
limits of the paper). Again pairs are analyzed according to their sequence:

• If Lifeline of the state machine owner, sender or receiver does not exist in the
sequence diagram, it is added;

• If the first member of a pair is OclVoid, the second member is mapped to Request
message, received by state machine owner; Sent Event of this second member is
mapped to Request message, sent by the state machine owner;

• If the first member of a pair is not OclVoid, but the first member of subsequent pair
is OclVoid, the second member is mapped to Response Message and Sent Event,
if any, is mapped to Response Message, sent by state machine owner;

• If the first member of a pair and the first member of subsequent pair is not OclVoid,
the second member is mapped to Response Message, sent to state machine owner
from Received Event sender; Sent Event, if any, is mapped to Request Message.

The main transformations of described above were experimentally implemented using
Argo UML tool (Nemuraite et al., 2002). For solid implementation of DIM component full
collection of operations should be created extending current framework (Figure 11) with

TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION OF REQUIREMENTS 297

Figure 11. Current version of DIM component.

operations enabling developer to transform, match, insert diagrams and their elements,
keeping model of IS consistent or querying about inconsistencies.

6. RELATED WORK

Currently, transformations between UML models are intensively investigated. Sev-
eral proposals (Gardner et al.; 2003; MOF, 2004) are made in response to OMG request
for proposal to MOF Query/View/Transformation (MOF, 2002). Principles of simple lan-
guage for transformations are presented in (Kleppe, 2003). In (Braun, 2003), a highly for-
mal language is proposed for transformation of object-oriented models. In (Varro et al.,
2002) transformations are based on graph transformation techniques. All of these propos-
als use a declarative approach to transformations rather than an imperative one. In our
work, transformations are described by the set of “forward” and “backward” rules that
is deficiency from declarative bijective mappings perspective. But currently capabilities
of existing transformation languages are demonstrated just for relatively simple transfor-
mations (e.g. object to relational mapping) that are remarkably different from mappings
between interactions and state charts. Transformations in this work are described in OCL
2.0 that provides significantly more possibilities to manipulate with UML models than the
earlier versions (Warmer, 2000; Balsters, 2003).

In current work the major attention is devoted to integration of behavior pursuing
(Bock, 1999; Bock, 2000). There were works on theme of generation of state charts from
sequence diagrams (Bordeleau, 2000; Makinen and Systa, 2000; Whittle and Schumann,
2000) but bi-directional transformations (without loss of information) were not possible.

7. CONCLUSION

Perfection of modeling approaches remains a challenge in the information systems
field. The idea of this work is in consequent derivation of model fully representing design
independent state and behavior of intended information system. Use cases are formalized
as interfaces; elaborated requirements may be presented in visual form and in OCL. Dia-
grams supported with OCL constraints are integrated and derivable from the other ones.
Direct and reverse mappings between sequence diagrams and state charts may be fulfilled,
and analysis of state charts may reveal incomplete and inconsistent pieces. Transformations
between diagrams proposed in this work are described as operations of DIM metamodel
component interface.

298 L. CEPONIENE AND L. NEMURAITE

In the future work, two targets are endeavored:

• To develop the complete collection of operations enabling developer to manipu-
late sequence, state and class diagrams and their elements;

• To map requirements model (DIM) to design model, integrating DIM with soft-
ware architecture model using rules of chosen design method. The development
of methodologies of conceptual modeling allows substantial progress to be ex-
pected in this area. Some experimental mappings have been made, but currently
they are at instance level.

REFERENCES

Astesiano, E., and Reggio, G., 2002, Knowledge Structuring and Representation in Requirement Specification,
in: Proceedings of SEKE 2002, G. Tortora and S. K. Chang, eds., ACM Press, New York, pp. 143–150.

Balsters, H., 2003, Modelling Database Views with Derived Classes in the UML/OCL-framework, in: “UML”
2003 – The Unified Modeling Language: Modeling Languages and Applications, P. Stevens, J. Whittle, and
G. Booch, eds., Springer-Verlag, Heidelberg, LNSC 2863, pp. 295–309.

Bock, C., 2000, Goal-Driven Modeling, Journal of Object-Oriented Programming 13(5):48.
Bock, C., 1999, Three kinds of Behavior Model, Journal of Object-Oriented Programming 12(4).
Bordeleau, F., and Corriveau, J. P., 2000, From Scenarios to Hierarchical State Machines: A Pattern-Based Ap-

proach, in: Proc. of OOPSLA 2000 Workshop: Scenario-based round-trip engineering, T. Systa, ed., Tam-
pere University of Technology, Software Systems Laboratory Report No. 20, pp. 13–18.

Braun, P., and Marschall, F., 2003, BOTL. The Bidirectional Object Oriented Transformation Language, Institut
für Informatik Technische Universität München Report (unpublished), p. 170.

Breu, R., Grosu, R., Huber, F., Rumpe, B., and Schwerin, W., 1998, Systems, Views and Models of UML, in:
The Unified Modeling Language, Technical Aspects and Applications, M. Schader and A. Korthaus, eds.,
Physica Verlag, Heidelberg, pp. 93–108.

Ceponiene, L., and Nemuraite, L., 2004, Design independent modeling of information systems using UML and
OCL, in: Databases and Information Systems, Sixth International Baltic Conference BalticDB&IS 2004,
J. Barzdins et al., eds., Riga, Latvia, June 6–9, 672, pp. 357–372.

Ceponiene, L., Nemuraite, L., and Paradauskas, B., 2003, Design of schemas of state and behaviour for emerging
information systems, in: Computer Science Reports, Branderburg University of Technology at Cottbus,
B. Thalheim and G. Fiedler, eds., 14, pp. 27–31.

Cheesman, J., and Daniels, J., 2000, UML Components, Adison Wesley, Boston, p. 208.
D’Souza, D. F., and Wills, A. C., 1999, Objects, Components, and Frameworks with UML. The Catalysis Ap-

proach, Addison Wesley, Boston, p. 816.
Frankel, D., 2003, Model Driven Architecture: Applying MDA to Enterprise Computing, Wiley Publishing, Inc.,

Indianapolis, Indiana, p. 352.
Gardner, T., and Griffin, C., 2003, A Review of OMG MOF 2.0 Query/Views/Transformations Submis-

sions and Recommendations Towards the Final Standard, OMG document ad/03-08-02 (May 3, 2004);
http://www.omg.org.

Kleppe, A., Warmer, J., and Bast, W., 2003, MDA Explained. The Model Driven Architecture: Practice and
Promise, Addison-Wesley, Boston, p. 192.

Makinen, E., and Systa, T., 2000, An interactive approach for synthesizing UML statechart diagrams from se-
quence diagrams, in: Proc. of OOPSLA 2000 Workshop: Scenario-Based Round-Trip Engineering, T. Systa,
ed., Tampere University of Technology, Software Systems Laboratory Report No. 20, October, 7–12, Tam-
pere, pp. 7–12.

Mellor, S. J., and Balcer, M. J., 2002, Executable UML. A Foundation for Model-Driven Architecture, Addison-
Wesley, Boston, p. 368.

MOF 2.0 Query/Views/Transformations RFP, 2002, OMG document ad/2002-04-10 (May 3, 2004); http://
www.omg.org.

MOF 2.0 Query/Views/Transformations Submission. Second Revised submission, 2004, submited by DSTC, IBM,
CBOP, OMG document ad/2004-01-06 (May 3, 2004); http://www.omg.org.

TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION OF REQUIREMENTS 299

Nemuraite, L., Kavaliauskaite L., and Ambrazevicius, E., 2002, Towards ensuring consistency to UML models,
Informacijos Mokslai 24:85–97.

Reggio, G., Cerioli, M., and Astesiano, E., 2001, Towards rigorous semantics of UML supporting its multiview
approach, in: Fundamental Approaches to Software Engineering FASE’01, H. Hussmann, ed., Springer-
Verlag, Berlin, LNSC 2029, pp. 171–186.

Sendall, S., and Strohmeir, A., 2000, From use cases to system operation specifications, in: The Third Interna-
tional Conference on the Unified Modeling Language-UML’2000, A. Evans, S. Kent, and B. Selic, eds.,
Springer-Verlag, Heidelberg, LNCS 1939, pp. 1–15.

Siegel, J., 2001, Developing in OMG’s Model-Driven Architecture, OMG document omg/01-12-01 (May 3,
2004); http://www.omg.org.

UML Profile for Enterprise Distributed Object Computing Specification, 2002, OMG document ptc/o2-02-05
(May 3, 2004); http://www.omg.org.

Unified Modeling Language Superstructure Specification Version 2.0, 2003, OMG document ptc/03-08-02 (May
3, 2004); http://www.omg.org.

Unified Modeling Language: OCL Version 2.0, 2003, OMG document ptc/03-08-08 (May 3, 2004); http://
www.omg.org

Varro, D., Varro, G., and Pataricza, A., 2002, Designing the automatic transformation of visual languages, Science
of Computer Programming 44:205–227.

Warmer, J. B., and Kleppe, A. G., 2000, The Object Constraint Language: Precise Modeling with UML, Addison
Wesley, Boston, p. 112.

Whittle, J., and Schumann, J., 2000, Generating statechart designs from scenarios, in: International Conference
on Software Engineering, C. Ghezzi, M. Jazayeri, and A. L. Wolf, eds., ACM Press, New York, pp. 314–323.

APPENDIX

Operation addResponses2SD():

Context SequenceDiagram:: addResponses2SD(sd:SequenceDiagram):SequenceDiagram

post:result.Lifeline = sd.Lifeline and result.Message = sd.Message →
iterate(m:Message;acc:Set(Message)=sd.Message |
if m.oclIsKindOf(Request) and m.response→ isEmpty() then

let m1:Message = m

let prev:Event = if (m.MessageSort = asynchCall or m.MessageSort = asynchSignal) then

m1.receiveEvent else m.receiveEvent.Lifeline.Event→ select(e |
m.receiveEvent.toAfter→ includes(e) and e.receiveMessageEnd.oclIsKindOf(Request))→
asSequence()→ first().toBefore.Before endif in

if prev→ isEmpty() then prev= m.receiveEvent.Lifeline.Event→
select(e | m.receiveEvent.toAfter→ includes(e))→ asSequence()→ last() endif

let ma=Response{name=‘resp’.concat(m1.name)} in

ma.responseTo=m1 and ma.sendEvent.Lifeline = m1.receiveEvent.Lifeline and

ma.receivedEvent.Lifeline = m1.sendEvent.Lifeline and

ma.sendEvent.toBefore.before=prev and ma.sendEvent.toAfter.after=prev.toAfter.after

and ma.receivedEvent.toBefore.before = ml.sendEvent and

ma.receivedEvent.toAfter.after= ml.sendEvent.toAfter.after and acc→ including(ma) endIf)

Operation orderSD():

Context SequenceDiagram::orderSD(sd:SequenceDiagram):SequenceDiagram
post: result.Lifeline = sd.Lifeline and
result.Lifeline→ forAll(l | l.Event = sd.orderEvent(sd.Lifeline→ select(l1=l).Event))

300 L. CEPONIENE AND L. NEMURAITE

The utility operation orderEvent() used in operation orderSD():

Context SequenceDiagram::orderEvent(s:Set(Event)):Sequence(Event)

post:

result = s→ iterate(e;acc:Sequence(Event)={s→ select(e | e.toBefore.before→ isEmpty()}) |
acc.append(e1 | e1=acc.last().toAfter.after))

Operation transformCSD2P():

Context SequenceDiagram::transformCSD2P(sd:SequenceDiagram,l:Lifeline):Route

Let rseq:Sequence(Event)=sd.l.Event→
select(e | e.receiveMessageEnd.oclIsKindOf(Request))→ asSequence()

result = rseq → iterate(er; acc: Route = { } |
if er.toAfter.after.sendMessageEnd.oclIsKindOf(Request) then

acc→ append(Tuple{first=oclVoid, second=Tuple{received=er,sent=er.toAfter.after}})

else acc→ append(Tuple{first=oclVoid, second=Tuple{received= er, sent=oclVoid}}) endif

let es:Sequence(Event)=sd.l.Event→ select(e | e.receiveMessageEnd.oclIsKindOf(Response)

and er.toAfter→ includes(e) and if er<>rseq→ last() then

rseq→ at(rseq.indexOf(er)+1).toAfter→ excludes(e) endif)→ asSequence() in

if es→ notEmpty() then es→ iterate(e | if e.toAfter.after.sendMessageEnd→ notEmpty()

then acc→ append(Tuple{first=er,second=Tuple{received=e,sent=e.toAfter.after}})

else acc→ append(Tuple{first=er,second=Tuple{received=e,sent=oclVoid}}) endif)

else if er.toAfter.after.sendMessageEnd.oclIsKindOf(Response) then

acc→ append(Tuple{first=er,second=Tuple{received=oclVoid,sent=er.toAfter.after}})

endif endif

if er= rseq→ last() then acc→ append(Tuple{first =oclVoid, second = Tuple{received= oclVoid,

sent=oclVoid}}) endif)

Operation transformP2CSM():

Context SequenceDiagram:: transformP2CSM(r:Route,l:Lifeline):InterfaceStateMachine

post:

result.InterfaceState=r.Pair→
iterate(p;acc:Set(InterfaceState)=l.Interface.InterfaceState) |
let st:InterfaceState = {st.name = if p.first = OclVoid then

‘WaitState’ else p.first.name.concat(‘State’)} in

if acc.InterfaceState→ excludes(st1 = st) then acc→ including(st) endIf)

and result.InterfaceStateTransition = r.Pair→
iterate(p;acc:Set(InterfaceStateTransition)=

InterfaceStateMachine.InterfaceStateTransition →
select(st | st.source.Interface = l.Interface and st.target.Interface = l.Interface) |
let t:InterfaceStateTransition = {t.name= if p.second.received→ notEmpty()

then p.second.received.Lifeline.name.concat(‘.’).concat(p.second.received.name) else ‘’ endif

if p.second.sent→ notEmpty() then .concat(‘)́

.concat(p.second.sent.sendMessageEnd.receiveEvent.Lifeline.name)

.concat(‘.’).concat(p.second.sent.name) endif} in

t.source.name = if p.first = OclVoid then ‘WaitState’

else p.first.name.concat(‘State’) endIf and

TRANSFORMATIONS OF UML DIAGRAMS FOR RECONCILIATION OF REQUIREMENTS 301

t.target.name = if r.Pair → at(r.Pair → indexOf(p)+1).first()= OclVoid then

‘WaitState’ else r.Pair → at(r.Pair→ indexOf(p)+1).first().name.concat(‘State’) endIf

and t.received = p.second.received and t.send = p.second.sent and

t.received.EventConstraint = p.second.received.EventConstraint and

t.sent.EventConstraint = p.second.received.EventConstraint and

if acc → excludes(tr = t) then acc → including(t) else

let t1 = acc → select(tr | tr.received=t.received and tr.send=t.send and

(tr.received.EventConstraint<> t.received.EventConstraint

or tr.send.EventConstraint<> t.send.EventConstraint))

if t1→ notEmpty() then

t1.received.EventConstraint.body.concat(t.received.EventConstraint) and

t1.send.EventConstraint.body.concat(t.send.EventConstraint) endif endIf)

Recursive operation allRoutes() (here sr is a variable used for saving the sequence of ob-
tained routes during recursion):

Context InterfaceStateMachine def: sr : Sequence(Route)={ }
Context InterfaceStateMachine::allRoutes(st:InterfaceState,r:Route):Sequence(Route)
if st.name<>‘WaitState’ then ism.iroute(st)→ iterate(tu;acc:Route=r | acc→ append(tu)

ism.allRoutes(tu.second.received.receivedOn.target,acc))
else r→ append(Tuple{first=oclVoid, second=Tuple{received=oclVoid,sent=oclVoid}})

if sr→ excludes(r) then sr→ append(r) endif endif result=sr

The utility operation iroute() used for obtaining all possible pairs from one state and its
outgoing transitions:

Context InterfaceStateMachine :: iroute(is:InterfaceState): Sequence(pair)
Post:result = is.outgoing → iterate(t; acc:(Sequence(pair))= { } |

acc → append(Tuple{first.name=
if is.name=‘WaitState’ then OclVoid else is.name.substring(1,is.name.size()-5),

second=Tuple{received =t.received,sent=t.sent}})

FROM USE CASES TO WELL STRUCTURED
CONCEPTUAL SCHEMAS

Lina Nemuraite and Bronius Paradauskas∗

1. INTRODUCTION

Today, the growing interest on design of schemas of information systems is noticed.
Traditional schema design is focused on data storage, i.e. enterprise database development.
In modern systems, virtual schemas and explicit behavioural schemas of business processes
or services also are needed. Apart relational, object relational or object databases, these
schemas may be implemented in XML (Ullman and Widom, 2002; Elmasri et al., 2002) or
in languages based on XML (e.g. WSDL, WSCI, BPEL4WS (Arkin et al., 2002; Andrews
et al., 2003)).

It is difficult to overestimate the importance of schemas and their intended evolution.
Manipulation with schemas enable automation of development of software in CASE tools,
supported by Model Driven Architecture (MDA) (Frankel, 2003; Kleppe et al., 2003; Mel-
lor and Balcer, 2002); management of e-business processes; they are cardinal in Semantic
Web and Data Grids. Resources of data and services on the Web should be supplied with
instrumentality for understanding not only structural, but also behavioural features, e.g.
business processes exposed as Web services. Specifications of DAML-S (DAML-S, 2003),
the language for computer interpretable description of behavioural semantics of Web ser-
vices, also should be generated from behavioural schemas.

Traditionally, there are 3 schema levels: conceptual, logical, and physical (Ullman and
Widom, 2002). The most of novel technologies still are based on low-level (i.e. imple-
mentation) schema design issues. It contrasts with ideas of raising level of abstraction in
software development, “programming” with models, fostered by OMG (Object Manage-
ment Group, 2004) that supports set of standards (UML, OCL, MOF, CWM, XMI etc.)
enabling the paradigm shift from the focus on programs toward models. The newest ver-
sion UML 2.0 is intended to give a very precise definition of the semantics of its models
enabling direct translation of UML models into programs. In conjunction with other stan-
dards, it gives promise to serve as universal language enabling high level of abstraction and
interoperability between peoples, systems, tools, etc.

∗ Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania, nemur@soften.ktu.lt,
parad@soften.ktu.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 303

304 L. NEMURAITE AND B. PARADAUSKAS

The goal of this paper is to propose principles for development of well-structured
conceptual schemas describing state and behaviour of today service oriented information
systems, firstly at the requirements level. Design Independent Model introduced in (Ce-
poniene et al., 2003) means elaborated model of requirements where entities of problem
domain and conceptual operations following from user goals are precisely specified at
relevant level of abstraction. Independence from design means that in these models no
decisions are made with regards to software architecture – these decisions are postponed
to design stage (Platform Independent Model (PIM) (Siegel, 2001). Such strict separation
of concerns serves for clarification of development phases and potential formalization of
design process.

Well-structured schema is meant normalized analogously to the relational schemas on
the base of project/join dependencies (Ullman and Widom, 2002; Paradauskas and Nemu-
raite, 2002). Such conceptual schema must be successfully mapped to relational, object-
relational, object or XML logical model and implemented with corresponding implemen-
tation level schema. Step-wise development procedure is based on ordering dependencies
between entities of problem domain. This proposal is tied to fact, that the definitive corol-
laries in UML, OCL, and related studies are nearing to valuable features founded in Ex-
tended Entity–Relationship EER and Relational models. Historically, many authors (e.g.
Thalheim, 1996; Paradauskas, 1994; Paradauskas and Nemuraite, 2002; Balsters, 2003)
have studied integration of EER and relational modeling with object–oriented aspects.

The rest of the paper is organised as follows. In Section 2, the framework for interface-
based representation of use cases having semantics of business transactions is proposed.
In Section 3, principles of development of conceptual schema of information system from
analysis of use cases are presented. Section 4 is devoted to definition of conceptual join
operations and re-using of the main database development criterion to development of
well-formed schema of service-oriented information system. Finally, Section 5 concludes
the paper and discusses possible future work.

2. INTERFACE-BASED REPRESENTATION OF USE CASES HAVING
SEMANTICS OF BUSINESS TRANSACTIONS

For definition of software requirements, use cases are widely acknowledged. In (Ce-
poniene and Nemuraite, 2004) it was proposed to represent use cases as interfaces of sys-
tem under development. This conception fits well with UML 2.0 (Unified Modeling Lan-
guage Superstructure Specification, 2003) definition:

“A Use Case is a kind of behavioural classifier that represents a declaration of an of-
fered behaviour”. It may be associated with subject – classifier, representing system under
development. “Each use case specifies some behaviour, possibly including variants that the
subject can perform in collaboration with one or more actors”. Alone use cases have a lit-
tle meaning; they must be provided with specifications, describing scenarios of interactions
between actors and the system. Specification of use cases in natural language is well suited
for statement of initial requirements and communicating with stakeholders. But there are
no means for detail specification of elaborated use cases representing consistent require-
ments and their association with the rest of system. The definition of interface is nicely
suitable for this purpose:

FROM USE CASES TO WELL STRUCTURED CONCEPTUAL SCHEMAS 305

Figure 1. Metamodel of use case specification conceptualised as extended communicative action loop.

“An interface declares a set of public features and obligations that constitute a co-
herent service offered by a classifier. Interfaces provide a way to partition and characterize
groups of properties that realizing classifier instances must possess”. Shortly, interface is “a
named set of operations that characterize the behaviour of an element” (Unified Modeling
Language Infrastructure Specification, 2003).

Use cases also may represent business transactions, from atomic to complex, including
B2B (Business-to-Business) transactions executed by multiple participants (UN/CEFACT,
2002). At some abstraction level, they may be thought as specifications of joint actions or
operations performed by several agents. Business use cases also may be specified as inter-
faces to behaviour (business process). So use cases are powerful instrument for abstraction
and may be applied at many levels.

In this paper, use cases are used for definition of conceptual schema of a system un-
der development at requirement level. Resulting conceptual schema, visualised as UML
class diagram, contains entities of problem domain and interfaces; it defines desirable state
and behaviour along with integrity constraints and derivation rules, as primarily stated in
(ISO/TR 9007, 1987).

In (Nemuraite et al., 2002) the extended communicative action loop was proposed as
canonical unit for modeling of use cases, representing business transactions. Communica-
tive action loop is model introduced by Winograd, elaborated in Language Action Per-
spective (later Communicative Action Perspective). It is widely reused and sophisticated
in various forms, in large variety of methods and tools (e.g. (Gustas, 1997; Jayaweera,
2002; UN/CEFACT, 2002). In our case the communicative action loop is supplemented
with appropriate information model and serves as canonical pattern leading the develop-
ment of a conceptual schema. Metamodel of contents of use case specification is presented
on Figure 1, where taxonomy of schema elements (subset of generic UML Types) and their
roles in business transaction are given. Entities (often used as stereotypes in UML profiles)
represent object types describing state of the system.

306 L. NEMURAITE AND B. PARADAUSKAS

The metamodel includes service Requestor (initiating actor role, client), Responsive
(reacting actor role, delivering service or transferring request to collaborating actor roles),
and set of Interfaces to services. Every Interface has a set of Interface Operations, defined
by their Signature, Precondition and Post Condition. Existence Dependencies relate sub-
types (roles) of entities (every entity may play different roles with regards of different Use
Cases or even in Precondition/Post Condition of the same operation).

Entity in role of Requestor/Responsive represents information about request sender/
receiver (identity and location that are important sending request through the net, user
login, password etc). Object of this type is created every once when new Requestor appears
in the system or response is created by Responsive (the system, permanent or transient, is
bounded by its context). Entity in role of Goal represents information about requested
service. Object of this type is analysed every once then new request is got. Entity in role of
State represents system state relevant for request and response. Instances of these entities
are created/modified every once then system changes its state (only entities, associated with
Interface Operation Preconditions/Post Conditions, are treated). Entity in role of Result
represents response (indicating successful achievement of the Requestor goal, unsuccessful
execution or fault). Instance of this entity is created every once when response is sent to
Requestor from the system.

Interface Usage Dependency represents dependency of current interface from other
interfaces, i.e. possibility to transfer Request to other collaborating actor roles offering ser-
vices that are required for delivering service by Responsive for fulfilling request. Interface-
Entity Usage Dependencies represent dependencies between interface and entities, corre-
sponding to arguments of interface operations.

So this metamodel determines what kinds of information objects (entities) Analyst
must define in requirement specification, and what dependencies relate these entities with
other entities and interfaces. Three kinds of dependencies may be revealed between ele-
ments of conceptual schema: Subset dependency P ≺ Q; Existence dependency P

exist←− Q;
Usage dependency P

use←− Q; here P,Q are object types.
Object type P is in Subset dependency of object type Q, if for every object p ∈ P

also p ∈ Q. The above dependency implies generalization hierarchy on classes.
Object type P is in Existence dependency on object type Q, if the life of each oc-

currence of object p of type P is embedded in the life of single and always the same
occurrence q of type Q (Snoeck et al., 1999; Paradauskas and Nemuraite, 2002).

Object type P is in Usage dependency on object type Q, if every object of type p ∈ P

requires object q ∈ Q for its full implementation or operation (Unified Modeling Language
Superstructure Specification, 2003). In UML metamodel, Usage is a dependency in which
the client requires the presence of the supplier. All these dependencies are reflective, anti-
symmetric, transitive and acyclic; they define partial order on schema elements.

It is possible to establish generic partial-ordering relationship P ≤ Q between schema
elements as generalization of above dependencies, following the rules: Existence depen-
dency is proper dependency between entities; Usage dependency is inherent dependency
between interfaces and between interfaces and entities; Subset dependency is common
for both types of schema elements; if schema elements are not specialized as entities and
interfaces (i.e. all elements are treated as classes), Existence dependencies and Usage de-
pendencies may overlap.

FROM USE CASES TO WELL STRUCTURED CONCEPTUAL SCHEMAS 307

Figure 2. Use cases of schedule information system.

3. DEVELOPMENT OF SCHEMA OF INFORMATION SYSTEM

The principles of schema development are demonstrated by example. Use cases of
Schedule Information System are presented on Figure 2.

The Schedule Information System may be ordinary information system on a local net
as well as global e-Learning system. Despite use cases do not exhibit order of execution
of business process, they are arranged according to sequence of business process steps.
Thinking by scheme on Figure 1, collaborating entities and interfaces corresponding to
each use case are analysed.

In Figure 3, interfaces IMakestudyPlan, ICreateModuleGroups and ICreate Schedule-
Detail are created for use cases Make study plan, Create module groups and Create sched-
ule details. Every interface may be defined by set of operations. At this abstraction level,
one use case is represented as conceptual operation (one operation is devoted for every in-
terface) and entities are grouped according to their participation in Preconditions (Pre) and
Post conditions (Post). Operations, representing business transactions, may be decomposed
till atomic operations, corresponding to use case steps.

In Figure 3, Existence dependencies are incident between entities, associated with Pre-
conditions, and entities, associated with Post conditions; operation arguments reference to

308 L. NEMURAITE AND B. PARADAUSKAS

Figure 3. Objects collaborating in use cases.

entities, incorporated in Preconditions. Starting from the first step of process, new entities
and interfaces are gradually introduced; some of them are independent (for example, Au-
ditorium is invented analysing IcreateScheduleDetail (Figure 4)). Every time, when new
entity is introduced and relationship between two entities must be established, proportion
between life cycles of these entities is considered.

If entities are existence-independent, but must be related, the new entity is added to
represent this relationship (for example, ModuleSpecialization is introduced to relate Mod-
ule and Specialization). In class diagram (Figure 4), association ends having multiplicity
with lower bound “1” are expressing existence dependencies, and dashed arrows (depen-
dencies in UML) are expressing usage dependencies (stereotype «use» is omitted because
of overloaded visibility).

Functional features at requirement level are represented as interfaces corresponding to
initial use cases. «include» relationship between use cases is mapped to generalization rela-
tionship between interface, corresponding included use case, and interface, corresponding
base use case. It follows from definition, that behavior of included use case is obligatory in
performance of base use case.

FROM USE CASES TO WELL STRUCTURED CONCEPTUAL SCHEMAS 309

Figure 4. Class diagram representing entities of problem domain and interfaces.

Generalization relationship between use cases is mapped to generalization, «extend»
relationship is mapped to generalization between interface, corresponding to extension use
case, and interface, corresponding to base use case. It follows from definition that extended
use case renders additional behavior that may be incorporated if some condition is satisfied.

For implementation, generalization between interfaces may be changed to usage rela-
tionship; it does not influence the generic ordering in conceptual model. Usage dependency
is established between interface and entities that are used by operations of interface; also
this kind of dependency is incident between interfaces belonging to different actors or sys-
tems.

Besides analytic and visual clarity, resulted conceptual schema has advantage in that
fact that no cyclic or reflexive relationships occur. Ordering of schema at conceptual level
has great value for derivation of schemas of logical and implementation levels, evenly for
schemas, representing system state or behavior. Acyclic models are desirable for database

310 L. NEMURAITE AND B. PARADAUSKAS

schemas, XML schemas (Cagle et al., 2001; Elmasri et al., 2002), software components
(D’Souza and Wills, 1999; Cheesman and Daniels, 2000; Martin, 2003), and schemas of
business processes (Andrews et al., 2003; Neiman et al., 2002).

4. DEVELOPMENT CRITERION FOR WELL FORMED CONCEPTUAL
SCHEMAS

Well-formed object-oriented conceptual schema may be defined similarly to Rela-
tional Data model that is based on powerful theory of dependencies and integrity con-
straints (Thalheim, 1996). The benefits of the relational model are to provide simple and
easily used data structures. Object-oriented models have more rich type system where part
of constraints is implied in model structure. The essential object-oriented concepts are
abstraction, generalization, aggregation, composition, and polymorphism. It has disadvan-
tages in that some concepts are ambiguously understood by different subjects and have
different implementations in different programming languages and databases, or are not
supported at all.

For precise modeling, ambiguous concepts may be replaced by set of well-defined
simple concepts. For example, authors of precise modeling (Starr, 2002; Mellor and Balcer,
2002) propose to use only associations and complete, disjoint generalizations; multiple
generalizations if properly stated fit as well. In (Gogolla and Richters, 2002) it is shown,
how all kinds of relationships may be converted to associations and constraints. OCL 2.0
(Cook et al., 2002; Unified Modeling Language: OCL, 2003; Warmer and Kleppe, 2003),
MOF (Meta Object Facility (MOF) Specification, 2004) object models include only core
concepts (object types, attributes, associations, roles, multiplicities, and generalizations).
In general, conceptual schema completely may be defined by its elements and constraints.
In our case, the main constraints of conceptual schema are Subset, Existence, and Usage
dependencies; Coexistence dependencies relate schema elements that both have the same
existence or usage dependent type. Objects related by Coexistence dependency must exist
together during some time interval coincided with objects that are existence-dependent
from them. Coexistence dependency may be derived from Existence dependencies.

Interfaces are related by Usage dependencies with entities, representing states, and
other interfaces. Interfaces and entities together represent the subschema (view) of business
transaction that may be performed using interface of service offered by information system,
supporting business system. Views are usual in database design, but it is purposeful to de-
fine concept of views at conceptual model level. As in database design, view is relationship
(set of tuples) between object types obtained by join of these object type instance sets.

Creating the view of conceptual model means creation of auxiliary class (root), having
associations with classes that comprise the view. Such approach is presented in (Balsters,
2003), where join operation is appreciated at attribute level. In current work, the conceptual
join operation relates objects. It has sense considering views as views play the main role in
integration of databases or interactions between different systems, queries requesting Web
services or manipulation with UML models for generation of implementation code under
MDA. View under conceptual model may be defined by join operation analogous to join
operation of relational algebra.

FROM USE CASES TO WELL STRUCTURED CONCEPTUAL SCHEMAS 311

As in relational model, conceptual normalization should take place. Normalization
concept is rarely analysed in object-oriented literature. In (Ambler, 1998) three normal
forms are presented. Shortly, object schema is in third normal form when all of its classes
encapsulate only one set of cohesive behaviour that is specific to class itself. Using above
process of development of conceptual model, the fourth and fifth normal form, may be
obtained. Then criterion of well-formed schema may be expressed analogously to main
development criterion of relational database systems:

If relationship between schema types conforms to projection/join dependency
Schema(Set(Class)), it is possible to project it to class schemas and reproduce original
schema by performing natural join operation on these class schemas. The result of join
may be obtained from Cartesian product of class instance sets satisfying object-linking con-
straints from UML model. The development criterion of well-formed conceptual schema
may be expressed as invariant in OCL:

Context Schema
def:sch:TupleType = self.allConnections → ordered() → make()
inv: {1,..self.sch.allAttributes → size()} → iterate (i:Integer; acc:Set(sch.AsType()) = { }|
acc = acc → union (self → collect (c:Class |at(i).name = c.name))) → join() = self

Here ordered() denotes operation that aligns schema elements according to partial or-
dering relationship that generalizes subset, existence and usage dependencies. Join op-
eration join() can be derived from operation of Cartesian product; objects of conceptual
schema may be linked on the base of values of their structural features (association ends),
that may be accessed by operation from UML 2.0 metamodel allConnections,∗ which re-
sults in set of all association ends of class including association ends of all its parents.

Natural join operation:†

Context Schema::join(s:Set(Class)):Schema
pre:

s → forAll (t | self.allConnections → exists (ae |ae = t)
post:
result = s → ordered() → nproduct() → let T:sch.asType = s.ordered() → make() in
iterate(tu:T; acc:Set(T) = { } |acc = acc → union (tu.allAttributes →
iterate (a:Class; acc1:T = tu.allAttributes → first() | let k = tu.allAttributes → size() - 1 in

if tu.indexOf(a) < k then acc1.at (indexOf (a) + 1) =
if a.allConnections → includes((tu.allAttributes - acc1.allAttributes) →

at (indexOf (a) + 1))
then tu.allAttributes → at (indexOf (a) + 1) else k = 0 and acc1 = { }

endIf endIf)))

Here nproduct(set(Class)) is OCL operation for n-ary Cartesian product generalized
from operation of binary product(). Operation nullJoin() (allowing undefined values) may
be described:

∗ There may be some discrepancies between names of operations in different versions of OCL and UML meta-
models, e.a, allConnections in UML 2.0 specification correspond to allAssociationends in OCL 2.0 specifica-
tion.

† The definition of join will be slightly different, taking the existing class as a root.

312 L. NEMURAITE AND B. PARADAUSKAS

Context Schema::join(s:Set(Class)):JoinSchema
pre:

s → forAll (t | self.allConnections → exists (ae |ae = t)
post:
result = s → ordered() → nproduct() →
let T:sch.asType = s → ordered() → make() in

iterate (tu:T; acc:Set(T) = { } |acc = acc → union (tu.allAttributes →
iterate (a:Class;acc1:T = tu.allAttributes → first() |
if tu.indexOf(a) < tu.allAttributes → size () - 1
then acc1.at (indexOf (a) + 1) =

if a.allConnections → includes ((tu.allAttributes - acc1.allAttributes) →
at (indexOf(a) + 1))
then tu.allAttributes → at (indexOf (a) + 1)

else OclVoid endIf endIf)))

Other kinds of conceptual joins corresponding to LEFT, RIGHT, and others, defined
in SQL standard (Melton, 2003) and used in Database Management Systems, may be de-
scribed in similar manner.

Definition of θ-join in OCL:

Context Schema:: θ-join (s:Tuple (classes (Set(Class)),θ :Set (OclExpression)) :JoinSchema
pre:

s → forAll (t | self.allConnections → exists (ae |ae = t)
post:
result = s → ordered() → nproduct() →
let T:TupleType = s → ordered() → make() in

iterate(tu:T; acc:Set(T) ={ } |acc = acc → union (let r:T =
tu.allAttributes → iterate(a:Class; acc1:T = tu.allAttributes → first() |

let k = tu.allAttributes → size() - 1 in
if tu.indexOf (a) < k then acc1.at (indexOf (a) + 1) =

if a.allConnections → includes ((tu.allAttributes - acc1.allAttributes) →
at (indexOf (a) + 1))

then tu.allAttributes at (indexOf (a) + 1)
else k = 0 and acc1 = { }

endIf endIf))) → iterate (r:T; acc2:Set(T)={ } |acc2 → including
if θ → forAll (θi |θi.evalθ(r) = true) then r endIf)

Here by evalθ(r) is denoted operation that evaluates constraints, described in θ-join(),
against tuple r that is element of set of results of θ-join.

5. CONCLUSION

In this paper, the attempt is made to present principles of development of schemas of
Information Systems at conceptual level based on concepts similar to Relational Model.
In contrast to relational schemas, UML models schemas of service oriented Information
Systems should include specifications of operations and constraints, described in declara-
tive manner. As elements of such schemas interfaces and entities are proposed. Constraints

FROM USE CASES TO WELL STRUCTURED CONCEPTUAL SCHEMAS 313

that are not implied by model structure may be specified in OCL and related to schema
elements.

The way to develop well-formed schemas is proposed on the base of subset, existence
and usage dependencies among schema elements. These dependencies are plain expressed
by associations and multiplicities, but model must be structured in specific way, based on
analysis of life cycles of entities used in business transactions.

For manipulation with elements of schema, conceptual join operation is useful. Join
operation is not included in OCL 2.0, but it may be derived using other OCL operations
corresponding operations of relational algebra. Namely, Cartesian product was used to
define join operation manipulating with objects.

Linking objects in tuples comprising the result of conceptual join means possibility to
integrate features of these objects. If entities are linked, their attributes may be associated
in result of query. If interface is linked with entity, it means, that this entity is used as
argument in operation of this interface. Sub-schema of business transaction is comprised
of interface; entities linked with this interface by usage dependency, and possible other
interfaces that are required by interface under consideration.

Conceptual join operation may be extended to feature level that has no principal dif-
ference as attributes may be complex types and conceptual operations may be composed of
other operations. Linking of operations means that preceding operation op1() may call suc-
ceeding operation op2(), i.e., sending message expression ∧op2 is presented in post con-
dition of op1(). It means that precisely specified schema can carry all information about
structure and behaviour of system under development, and interactions as well as state
transitions may be generated from conceptual schema for verification of consistency.

These ideas will be employed in further work. Schema conception may be functionally
used in practical applications for generation of software code and multiple standard spec-
ifications required in development of today service-oriented systems (database and XML
schemas, WSDL, compositions of web services etc.), various problems of integration and
querying on the web.

Considering conceptual schema consisting of entities and interfaces limits models to
requirements specification level. For definition of design level schema, requirements model
must be integrated with software architecture, and control or component classes represent-
ing design decisions should appear. It is believed, that this process may be automated in
future.

REFERENCES
Ambler, S. C., 1998, Building Object Applications That Work, Cambridge University Press, Cambridge, p. 506.
Andrews, T., et al., 2003, Business Process Execution Language for Web Services, BEA Systems, Interna-

tional Business Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems (May 3, 2004);
http://www-128.ibm.com/developerworks/library/ws-bpel.

Arkin, A., et al., 2002, Web Service Choreography Interface, BEA Systems, Intalio, SAP, Sun Systems (May 3,
2004); http://www.w3.org/TR/wsci.

Balsters, H., 2003, Modelling Database Views with Derived Classes in the UML/OCL-framework, in: “UML”
2003 – The Unified Modeling Language: Modeling Languages and Applications, P. Stevens, J. Whittle, and
G. Booch, eds., Springer-Verlag, Heidelberg, LNSC 2863, pp. 295–309.

Cagle, K., et al., 2001, Professional XML schemas, Wrox Press, Birmingham, p. 691.
Ceponiene, L., Nemuraite, L., and Paradauskas, B., 2003, Design of schemas of state and behaviour for emerg-

ing information systems, in: Computer Science Reports, Branderburg University of Technology, Cottbus,
B. Thalheim and G. Fiedler, eds., 14, pp. 27–31.

314 L. NEMURAITE AND B. PARADAUSKAS

Ceponiene, L., and Nemuraite, L., 2004, Design independent modeling of information systems using UML and
OCL, in: Databases and Information Systems, Sixth International Baltic Conference BalticDB&IS 2004,
Riga, Latvia, June 6–9, J. Barzdins et al., eds., Riga, Latvia, June 6–9, 672, pp. 357–372.

Cheesman, J., and Daniels, J., 2000, UML Components, Addison-Wesley, Boston, p. 208.
Cook, S., et al., 2002, The Amsterdam Manifesto on OCL, in: Object Modeling with the OCL, The Rationale

behind the Object Constraint Language, A. Clark and J. Warmer, eds., Springer-Verlag, London, LNSC
2263, pp. 115–149.

D’Souza, D. F., and Wills, A. C., 1999, Objects, Components, and Frameworks with UML: The Catalysis Ap-
proach, Addison-Wesley, Boston, p. 816.

DAML-S, 2003, DAML-S: Semantic Markup for Web Services (May 3, 2004); http://www.daml.org/services.
Elmasri, R., et al., 2002, Conceptual modeling for customized XML schemas, in: Conceptual Modeling – ER

2002: 21st International Conference on Conceptual Modeling Tampere, Finland, October 7–11, 2002,
S. Spaccapietra, S. T. March, and Y. Kambayashi, eds., Springer-Verlag, Heidelberg, LNCS 2503, pp. 429–
443.

Frankel, D., 2003, Model Driven Architecture: Applying MDA to Enterprise Computing, Wiley Publishing, Inc.,
Indianapolis, Indiana, p. 352.

Gogolla, M., and Richters, M., 2002, Expressing UML class diagrams properties with OCL, in: Object Model-
ing with the OCL, The Rationale behind the Object Constraint Language, A. Clark and J. Warmer, eds.,
Springer-Verlag, London, LNSC 2263, pp. 85–114.

Gustas, R., 1997, Semantic and pragmatic dependencies of information systems, Monograph, Technologija, Kau-
nas, p. 274.

ISO/TR 9007, 1987, Concepts and Terminology for the Conceptual Schema and Information Base, ANSI, New
York, p. 120.

Jayaweera, P. M., 2002, A Methodology to Generate e-Commerce Systems: A Process Pattern Perspective (P3),
Philosophy Thesis, Stoholm University and Royal Insititute of Technology, Stockholm, p. 97.

Kleppe, A., Warmer, J., and Bast, W., 2003, MDA Explained. The Model Driven Architecture: Practice and
Promise, Addison-Wesley, Boston, p. 192.

Martin, R. C., 2003, Agile Software Development, Principles, Patterns, and Practices, Prentice Hall, Upper Sad-
dle River, p. 529.

Mellor, S. J., and Balcer, M. J., 2002, Executable UML. A foundation for model-driven architecture, Addison-
Wesley, Boston, p. 368.

Melton, J., 2003, (ISO-ANSI Working Draft) Foundation (SQL/Foundation), WG3:HBA-003 H2-2003-305, Au-
gust, p. 1121.

Meta Object Facility (MOF) Specification, 2004, Version 1.4, ISO/IEC 19502::2004(E), p. 122.
Neiman, S., Kraunelis, L., and Schmelzer, R., 2002, Ebxml, Addison-Wesley, Boston, p. 400.
Nemuraite, L., Paradauskas, B., and Salelionis, L., 2002, Extended communicative action loop for integration of

new functional requirements, Information Technology and Control 2(23):18–26.
Object Management Group, 2004 (June 1, 2004); http://www.omg.org.
Paradauskas, B., 1994, Denotational semantics of objects relationship, in: Proc. of the Baltic Workshop on Na-

tional Infrastructure Databases: Problems, Methods, Experiences, Trakai, Lithuania, 1, pp. 230–241.
Paradauskas, B., and Nemuraite, L., 2002, Data Bases and Semantic Models, Monograph, Technologija, Kaunas

(in Lithuanian), p. 303.
Snoeck, M., et al., 1999, Object-Oriented Enterprise Modeling with MERODE, University Press, Leuven, p. 227.
Starr, L., 2002, Executable UML. How to build class models, Prentice Hall, Upper Saddle River, p. 418.
Thalheim, B., 1996, An overview on semantical constraints for database models, in: 6th International Conference

“Intellectual systems and Computer science”, Moscow, December 1–10.
Ullman, J., and Widom, J., 2002, A First Course in Database Systems, 2nd ed., Prentice-Hall, Upper Saddle River,

p. 511.
UN/CEFACT Modeling Methodology, 2002, UNCEFACT/TMG (May 3, 2004); http://www.unece.org/cefact.
Unified Modeling Language Infrastructure Specification Version 2.0, 2003, OMG document ptc/03-09-15 (May

3, 2004); http://www.omg.org.
Unified Modeling Language Superstructure Specification Version 2.0, 2003, OMG document ptc/03-08-02 May

3, 2004); http://www.omg.org.
Unified Modeling Language: OCL Version 2.0, 2003, OMG document ptc/03-08-08 (May 3, 2004); http://

www.omg.org.
Warmer, J. B., and Kleppe, A. G., 2003, The Object Constraint Language: Precise Modeling with UML, Addison-

Wesley, Boston, p. 112.

A MODEL OF INFORMATION SYSTEMS
DEVELOPMENT FOR LEARNING

VIRTUAL ORGANIZATIONS

Mart Roost, Rein Kuusik, Karin Rava, and Tarmo Veskioja∗

1. INTRODUCTION

The information society generates virtual subjects and their organizations. These orga-
nizations form, function, and develop as a result of system work that cooperative subjects
perform on the level of information systems. The success of such organizations depends
on their ability to adapt to the environment and learn.

The Virtual Organization (VO) forms on the basis of uniting (and/or separating) re-
sources of independent work units called subjects or actors, where such a subject dynam-
ically creates needed roles into multiple environments of different VO-s over the world,
continuing at the same time its independent existence. Development of such organizations
is related to the problem of decentralized or subject-centred development of information
systems that is based on synchronization of the business model of the subject with business
models of the environment (that means the related subjects).

The Information System (IS) is the main organizational interface of a contemporary
and/or future organization (as a subject of information society) with embracing world,
one’s immediate functioning and learning environment. Development of this environment
(in other words, analysis, design and building of IS) has to be a central role of the Learning
Virtual Organization (LVO). To perform this role, the organization needs a methodology
that enables the members – subjects/actors of the organization to develop (analyze, design,
build etc.) the IS immediately in their natural work environment, which is the IS under
development. This concept, the self-advancing information system, contains the subject as
well as the environment of development (Roost, 1996). We call the development process
of such an information system IS self-development. How can it be accomplished? The key
problem here is building adequate space for development (Roost et al., 1998), based on
decentralized models of system work and development (Lyytinen et al., 1998), service-

∗ Tallinn University of Technology, Raja tn. 15, 12618 Tallinn, Estonia, mart@cc.ttu.ee, kuusik@cc.ttu.ee,
rava@cc.ttu.ee, tarmov@staff.ttu.ee.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 315

316 M. ROOST ET AL.

oriented architectures (Apshankar, 2002), and virtual communities of Information Systems
Development (ISD) practice (Powazek, 2002; Preece, 2000; Wenger et al., 2002).

In the next section of the paper, the problem space and the key concepts are defined
and analyzed. In the third section, the core solutions are developed.

2. PROBLEM ANALYSIS

In this section, at first the general problem space is defined, then the key concepts in
this space are defined and analyzed, and the motivation and outline for the (rest of the)
paper is given.

2.1. Problem Statement

The business environment is quickly changing. A learning (intelligent) organization
is an organization that is able to adapt to its environment by changing its business model
(Marshall, 1999). The key for such organizations success is a continuous process of their
business model innovation. The organization and the IS must evolve dynamically (and
partially automatically) with business according to changes in the business model and in
the business environment (Russo, 2000). A new development situation has emerged, where
traditional ISD models and paradigms do not work (da Cunha et al., 2001).

How do we develop an IS for LVO-s that evolve dynamically and automatically with
business?

• What are the main requirements to IS and ISD in the context of LVO?
• What is the ISD approach/model applicable in this context?
• What is IS self-development?
• What is the meta-model behind this concept?
• How can it work in the practice?
• What is the role of the ISD community in this approach/model?

To answer these questions, some of the core concepts of this problem space are defined
and analyzed next.

2.2. Virtual Organization

VO is defined as “a temporary network of independent institutions, enterprises or spe-
cialized individuals that through the use of Information and Communication Technology
spontaneously unite to utilize an apparent competitive advantage. They integrate vertically,
bring their core competencies and act as a single organizational unit”. Another definition
states that “a VO is an identifiable group of people or organizations that make substantially
more use of Information and Communication Technologies than physical presence to inter-
act, conduct business and operate together, in order to achieve their objectives.” (Strausak,
1998)

To be exact, we can mention that a VO must not be always a temporal organization,
but VO-s can be developed also in order to generate some strategic, sustainable advantages
for enterprises. This is so in the case of an extended enterprise (Wenger et al., 2002) that is
a VO, too. In the information society, each organization serves also as a VO.

A MODEL OF ISD FOR LEARNING VIRTUAL ORGANIZATIONS 317

VO forms on the basis of uniting (and/or separating) core competencies and resources
of independent work units called subjects or actors, where such a subject creates dynam-
ically needed roles into multiple environments of different VO-s over the world, continu-
ing at the same time its independent existence (Bultje et al., 1998; Reithofer et al., 1997;
Strausak, 1998). Each subject, participating in a VO, should be handled also as a VO, if it
integrates and organizes, in the same way, other subjects, their resources and services on
the level of its IS to achieve some common goals.

VO is an organization of virtual subjects in an IS, where a virtual subject is a repre-
sentation of some “real” subject in the IS. The IS “belongs” to one of these subjects who
represents this VO as a whole. This IS serves as a common work and development space
for the related subjects. The architecture of this space should be based on the role concept
in VO.

2.3. Learning Organization

A VO, as each organization in the information society, is normally a learning organiza-
tion. This is an organization able to adapt to its environment (Marshall, 1999). As the basis
of success for an organization in fast changing environment, more and more the process of
the business model innovation becomes (da Cunha et al., 2001). IS and VO must evolve dy-
namically and partially automatically with business, according to changes in the business
environment and in the business model.

The development of a LVO can be handled in the framework of decentralized or
subject-centred development of information systems (Roost, 1996; Roost et al., 1998). For
each subject in LVO, this is based on synchronization the business model of the subject
with the business model of the environment, where the environment here is the subject,
who represents the LVO as a whole. The two different approaches applicable here are
Business Reengineering (Kirikova, 1998; Scheer, 2000) and Bottom-Up Planning of Vir-
tual Enterprises (Reithofer et al., 1997). Both of them can be considered as System Work
(Mikli et al., 1998) in Work Systems (Alter, 2002).

2.4. Work System

A Work System or Soft System (Checkland et al., 1990) is a view of work as occurring
through a purposeful system (Alter, 2002). This system has an active, “social” component
or view called Subject (work unit, actor). The Subject, usually a human/organization, has
requirement and capability to develop (analyze, design, etc.) its environment, that is an
organization of multiple work systems coordinated to accomplish goals that these work
systems cannot accomplish individually. See the Figure 1 below for clarifying some con-
cepts.

Similarly with VO-s and Subjects (see in the subsection 2.2 before), each organization
is also a work system and a work system can be handled as an organization that consists
of several work systems that participate in it. The participation is possible only through
particular roles in the organization.

In the behavioural or Role view (see also in 3.2 below), a Work System (as a Subject)
performs System Work. This is usually a collective work of related Subjects playing roles
in the Work System’s organization. This work is directed to ensuring normal/desired func-

318 M. ROOST ET AL.

Figure 1. Relationships between Work Systems and Organizations (UML Class diagram).

tioning and progress of the system/organization. Usually with the term “System Work” de-
velopment processes (like System Analysis and Design) are automatically included. Mod-
elling, management, quality control and training are the main activities of System Work.
LVO is a Work System that forms, functions and develops as a result of system work that
cooperative Subjects perform on the level of IS.

2.5. Information System

According to Davis (Davis, 2000), an IS is “a part of an organization that provides
information and communication services required by the organization”. Another definition
states that IS is a view of organization’s information work as occurring through a purpose-
ful system (Mikli, 1997), so an IS can be handled as a specialized Work System.

In the context of LVO, the IS provides and mediates not only the information and com-
munication services but also the development services of the organization and its IS. This
makes it possible to handle ISD processes in the context of the organizational roles in the
business organization. Specialized development organizations can then focus on services
for ISD.

According to our interpretation, the IS is an active information level of a subject in
an information society, defined by and generated from models of the subject. An IS is a
virtual model-system that generates the actual/virtual environment (development space)
of the subject. This concept, the self-advancing IS, contains the subject as well as the
environment of development. We call the development process of such an information
system IS self-development (Roost et al., 1999 and 2001).

2.6. Self-Development

In the new development situation, related to LVO, responsibility for decisions on IS
and applications is divided between all business functions of the organization (da Cunha et
al., 2001) and internal or external parties performing these functions (IS function [Davis,
2000] is one of them). In such context, each party or subject is responsible for developing
its own capability areas and the respective view of IS as a whole (see 3.1, Figure 2). Such
approach we call IS self-development that is subject to the decentralized model of ISD.

A MODEL OF ISD FOR LEARNING VIRTUAL ORGANIZATIONS 319

Here the whole system is not directly developed, but autonomous parts/subjects of the sys-
tem are designing itself (auto-design) in mutual cooperation and in a common space of de-
velopment. In the context of LVO, this space is formed in the IS under development. Conse-
quently, each IS must contain a development subsystem as its core, that provides high-level
services for supporting IS self-development by the subjects of the LVO. In the role of the
service provider potentially the whole global community of ISD practice (Wenger et al.,
2000) is seen. The development subsystem should operate as two-directional interface be-
tween the subjects of the LVO (local ISD communities) and the global ISD community.
To accomplish this vision, the first step is to design a role-based meta-model to build an
adequate space of ISD (see in 3.2).

2.7. Motivation for the Paper

The research questions, stated and analyzed before, are concentrated on modelling of
the framework for the IS self-development, made to tailor a LVO.

This framework can’t be based on the classical ISD approaches and paradigms because
these were created for entirely different development situations (da Cunha et al., 2001) not
proper to LVO. A classical development situation is subject to the centralized model of ISD.
Here ISD is treated predominantly as a “one-time effort” with fixed final results. The whole
process is managed from one centre, which is, depending on the development strategy, the
IS/IT department of the customer organization, or a specialized IT organization. In both
case, the whole ISD tends to become developer-centric, because the business functions
(excluding the IS function) in the customer organization do not have enough autonomy in
the framework of the hierarchical development/project organization and the total top-down
development approach.

An examination of well established systems development methods and schools reveals
that they are targeted to support the centralized development models (Structured Analysis
and Design methods, like the Oracle CASE Method in [Barker, 1991]), or the decentralized
form of development is not outlined (in Object-Oriented Analysis and Design with Unified
Process [Jacobson et al., 1999], Soft Methods [Checkland et al., 1990], and Agile Methods
[Larman, 2001]).

The aim of the rest of the paper is to introduce a role-based meta-model as a basis
for a decentralized ISD framework needed in the context of LVO-s. This model can be ac-
complished on the technical basis of the service-oriented architectures (Apshankar, 2002),
and the social basis of virtual communities of ISD practice (Powazek, 2002; Preece, 2000;
Wenger et al., 2002).

3. DESIGNING A SOLUTION

From the previous section we know, what is IS self-development and how it works, in
general, in the context of LVO-s. In this section we explain, how the self-development can
be accomplished. A short answer is: by building an adequate space of development.

320 M. ROOST ET AL.

Figure 2. The general role-based architecture for the ISD Space.

3.1. ISD Space

System Work and ISD take place in some space, determined by strategic dependen-
cies (Kirikova, 1998) between a customer organization, that is the subject of development,
and the developer organization(s), that represent the environment for development. In the
role of the developer organization, potentially the whole global community of ISD prac-
tice (service providers) may be seen. An ISD Space can be defined as a multidimensional
logical space for organizing ISD-related artefacts and patterns. Analyzing and designing
the ISD space in the context of a particular organization is the main task of the IS strategic
development (strategic analysis, strategic design).

In the self-development approach, analysis and design of the ISD space is based on
the Role-Model (Roost, 1996; Roost et al., 1999). The central dimension here is the one of
roles as main modelling patterns for LVO and its IS. ISD is handled in the framework of
organizational roles of the customer organization, which form the basic (self-advancing)
structure (architecture) for the ISD space (see Figure 2).

On the upper level of the figure, we see a LVO including its subjects and their roles
in this organization (subjects of IS/ISD). Developer organizations and roles (ISD service
providers) also will be handled as subjects of this virtual organization (extended enter-

A MODEL OF ISD FOR LEARNING VIRTUAL ORGANIZATIONS 321

prise). In the context of IS self-development, the LVO operates as a distributed community
of ISD practice (Wenger et al., 2002).

The lower level represents the state of the ISD Space as the object of system work and
ISD. This state is structured by business objects, which form business areas (the circles).
An area belongs to a role responsible for the managing and development of this business
area. In the organizational context, we refer to a business area as an area of competence.
In the ISD context, the business objects are also objects/artefacts of system work and ISD.
Around these objects local communities of ISD practice will form.

The intermediate level represents IS/ISD practices: processes, services, models and
patterns that make it possible to manage and develop the objects and to perform IS self-
development by changing the state of the ISD Space.

3.2. The Role-Model

In this section, we present a general structure view of the meta-model behind our
methodology. The model is called a Role-Model.

The central architectural unit of the development space is called subject’s role – a
work system modelled by sentence “Subject develops his environment”, or “Environment
develops the subject”, in the dual view. This is a profile of development activities oriented
to identification and development of some static requirement on the level of the whole
organization. The global space of development divides into open local development spaces
according to named profiles/roles.

On the basis of the Role-Model, a Work System has three main views (see Figure 3):

• Subject as the “closed” view of the system, embracing its environment. Subject
is an active intelligent component or a view of the system having requirements
and capabilities to develop the environment. For our ISD framework (see 3.1,
Figure 2), this is a view of a Subject who represents the LVO and its IS as a
whole, including its Customer and Developer Communities, both modelled here
as “black boxes”. As a member of the Developer communities, the Subject pro-
vides/mediates high-level IS/ISD services/capabilities for the Customer commu-

Figure 3. The general structure of the Role-Model (UML class diagram).

322 M. ROOST ET AL.

nities self-development. As a member of the Customer communities, the Subject
mediates/publishes their common IS/ISD requirements for the Developer commu-
nities. The Subject manages the IS self-development on the basis of its business
model, the requirements and the services.

• Environment as the “open” view of the system for the members of both the Cus-
tomer and Developer Communities. In our framework, this view is modelled as
a federated ISD portal that is a basis for forming the both communities as the
internal and external environments, respectively, in the context of the IS self-
development. Each member of any community is a Subject with its own space
of development that recursively follows the Role Model.

• Role as the central, integrating, development view of the system, a dynamic in-
terface between the Subject and the Environment synchronizing their (business)
models. In our framework, this view is modelled as the Development Subsystem
that finally implements the high-level ISD services and processes needed to ac-
complish the IS self-development. The main keywords are change management,
system work, analysis and design.

A more formalized description of the meta-model and each of its main views are pre-
sented in (Roost, 2004). Here we give only a summary of this using the format of patterns
(Larman, 2001).

Summary (pattern) for the Environment view:
Pattern (Candidate) name: Environment
Problem: How do we organize the System (LVO IS)?
Solution: Organize the System as an open network of Subjects’ Information Systems (SIS).
Each SIS can be (recursively) handled by the same model as the System.

Summary (pattern) for the Subject view:
Pattern (Candidate) name: Subject
Problem: How do we manage wholeness of the System (LVO IS)?
Solution: Specialize one of the Subjects to model, manage and develop the Environment.
This is the Subject that represents the System as a whole.

Summary (pattern) for the Role view:
Pattern (Candidate) name: Role
Problem: How do we manage and support the self-development of the System (LVO IS) by
its Subjects?
Solution: Assign to each Subject the (generic) Role to manage IS Self-Development in its
Environment. Adjust/specialize the generic Role for the context of each particular Sub-
ject/Environment relationship (the Subject’s Role). The generic Role is a Subject that rep-
resents the development view of the System, manages the model of IS self-development, and
synchronizes the (business) model of the Subject with (business) models of the Environment.
Supporting software, that we call the Development Subsystem, is needed here.

Summary (pattern) for the Role-Model
Pattern (Candidate) name: Role-Model

A MODEL OF ISD FOR LEARNING VIRTUAL ORGANIZATIONS 323

Figure 4. The Role-Model as a composite pattern (UML class diagram).

Problem: How do we architect IS (System) in the context of LVO? What are the main
characteristics of this System?
Solution: Define the Subject, Environment, and Role views of the System. The System (LVO
IS) must be closed (in the Subject view), open (in the Environment view) and self-advancing
(in the Role view).
This concluding pattern is illustrated by the Figure 4 that integrates ideas previously illus-
trated separately in Figures 1 and 3.

This meta-model can be useful as a possible basis for building a common architecture
for the community of ISD practice that serves as the social framework for achieving IS
self-development in the context of LVO-s. If this idea is acceptable and will be supported
on the level of the “global” community, the next development phase (elaboration in terms
of the RUP [Jacobson et al., 1999]) of the proposed model should be good to plan and
perform as “community based”. Currently we are elaborating and prototyping the model
in the context of some particular (extended) enterprises in our country.

4. CONCLUSIONS

An introduction to and an overview of a model of ISD for LVO were presented. The
key concepts of the problem space were analyzed, an overview of a role-based framework
for IS self-development in LVO-s, and the general structure of the meta-model for the
framework were described.

The behavioural part of the meta-model was initially developed, but could not be pre-
sented in the framework of this paper. Also a case study, that explains and elaborates the
meta-model on a more concrete level, was planned, but could not be included in this paper.
We hope to include both of the missing aspects into our next paper.

We are elaborating the vision using UML and patterns, and developing prototypes for
the core of the solution. One of our work directions is to develop a UML Profile for the

324 M. ROOST ET AL.

development subsystem architecture on the basis of the proposed model and following the
MDA concept (Frankel, 2003).

REFERENCES

Alter, S., 2002, Work System Method for Understanding Information Systems and Information Systems Research,
Communications of the Assotiation for Information Systems 9(6).

Apshankar, K., Sadhwani, D., Samtani, G., Siddiqui, B., Clark, M., Fletcher, P., Hanson, J. J., Irani, R. M.,
Waterhouse, M., and Zhang, L. J., 2002, Web Services Business Strategies and Architectures, Expert Press.

Barker, R., 1991, Oracle CASE Method: Tasks and Deliverables.
Bultje, R., van Wijk, J., 1998, Taxonomy of Virtual Organisations, based on definitions, characteristics and typol-

ogy, in: VoNet: The Newsletter 2(3):9–12; (March 1, 2001), http://www.virtual-organization.net.
Checkland, P., and Scholes, J., 1990, Soft Systems Methodology in Action, Wiley, London.
da Cunha, P. R., and de Figueiredo, A. D., 2001, Information Systems Development as Flowing Wholeness, in:

Proceedings of the IFIP TC8/WG8.2 Working Conference on Realining Research and Practice in Informa-
tion Systems Development, Boise, USA, pp. 29–48.

Davis, G. B., 2000, Information systems conceptual foundations: looking backward and forward, in: Organiza-
tional and social perspectives on information technology: Proceedings of the IFIP TC8 WG8.2 International
Working Conference, Aalborg, Denmark, pp. 61–82.

Frankel, D. S., 2003, Model Driven Architecture: Applying MDA to Enterprise Computing, Wiley Publishing,
Indianapolis, USA.

Jacobson, I., Booch, G., and Rumbaugh, J., 1999, The Unified Software Development Process.
Kirikova, M., 1998, Completeness and Levels of Business Models, Proceedings of the Third International Baltic

Workshop of Databases and Information Systems, Riga, Latvija, pp. 39–51.
Larman, C., 2001, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the

Unified Process, Prentice Hall PTR, New Jersey.
Lyytinen, K., Rose, G., and Welke, R., 1998, The Brave New World of development in the internetwork com-

puting architecture (InterNCA): or how distributed computing platforms will change systems development,
Information Systems Journal 8(4):241–253.

Marshall, C., 1999, Enterprise Modelling with UML – Designing Successful Software through Business Analysis.
Mikli, T., 1997, Introduction to Information Systems, Tallinn, Estonia.
Mikli, T., and Rava, K., 1998, System Work in System Development, in: Organisation Structures, Management,

Simulation of Business Sectors and Systems: Proceedings of the IFORS Special Conference (SPC8), Kaunas,
Lithuania, pp. 213–217.

Powazek D. M., 2002, Design for Community: The Art of Connecting Real People in Virtual Places, New Riders
Publishing, Indianapolis, USA.

Preece, J., 2000, Online Communities: Designing Usability, Supporting Sociability, John Wiley & Sons, Chich-
ester, England.

Reithofer, W., and Naeger, G., 1997, Bottom-up planning approaches in enterprise modelling – the need and state
of the art, Computers in Industry (33):223–235.

Roost, M., 1996, Information Systems Development on the basis of the Role-Model, in: Databases and Informa-
tion Systems: Proceedings of the Second International Baltic Workshop, Tallinn, pp. 37–47.

Roost M., Kuusik, R., and Elmik, L., 1998, A Subject-Centred Framework for Information System and Organ-
isation Development: Analysis and (Re)Design, in: Organisation Structures, Management, Simulation of
Business Sectors and Systems: Proceedings of the IFORS Special Conference (SPC8), Kaunas, Lithuania,
pp. 222–228.

Roost M., Kuusik, R., Elmik, L., Veskioja, T., and Rava, K., 1999, The Role-Model: An OO Framework for
Information Systems Self-Development, Poster Abstracts of Conf. UML’99, Fort Collins, USA, pp. 7–8.

Roost, M., Kuusik, R., Veskioja, T., 2001, A Role-Based Framework for Information System Self-Development,
in: Proceedings of the IFIP TC8/WG8.2 Working Conference on Realining Research and Practice in Infor-
mation Systems Development, Boise, USA, pp. 95–105.

Roost, M., 2004, A Model of Self-Development of Information Systems, in: The Proceedings of the 8th World
Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2004), Volume I, Information Systems,
Technologies and Applications, Orlando, USA, July 18–21, pp. 126–131.

A MODEL OF ISD FOR LEARNING VIRTUAL ORGANIZATIONS 325

Russo, N. L., 2000, Expanding the horizons of information systems development, in: Organizational and so-
cial perspectives on information technology: Proceedings of the IFIP TC8 WG8.2 International Working
Conference, Aalborg, Denmark, pp. 103–112.

Scheer, A. W., 2000, ARIS – Business Process Frameworks, Springer Verlag.
Strausak, N., 1998, Resumee of VoTalk, Organizational Virtualness, P. Sieber and J. Griese, Pro-

ceedings of the VoNet–Workshop, April 27–28. Simowa Verlag Bern, 1998; (11.05.2001), http://
virtual-organization.net/news/proc-98.pdf.

Wenger, E., McDermott, R., and Snyder, W. M., 2002, A Guide to Manage Knowledge: Cultivating Communities
of Practice, Harvard Business School Press, Boston, USA.

SURVEY OF REQUIREMENTS ENGINEERING
PRACTICE IN LITHUANIAN SOFTWARE

DEVELOPMENT COMPANIES

Raimundas Matulevičius∗

1. INTRODUCTION

The requirements engineering (RE) process is described as a sequence of actions, dur-
ing which the list of requirements for a new software system is elicited, analyzed, validated
and documented into a formal, complete and agreed requirements specification.1 There are
various RE approaches and methods, but the RE process still remains immature.2 Introduc-
tion of new RE methods leads to the RE process improvements. However, the gap between
academic and industrial practice exists, and academic suggestions seldom find applicability
in the software development organizations. An empirical research is the first step to find out
how the industry actually works, and to gather the knowledge about the improvement pos-
sibilities for the RE process. This paper explores the state of the RE practice in Lithuanian
software development companies. The research addresses the following questions:

1) What is the perceived importance of different activities, executed during the RE
process?

2) How much of the total project development time does the RE take?

3) What software development methods, techniques and tools are used for the RE?

The paper is structured as follows. Section 2 analyzes the related work. Section 3 de-
scribes the research method. Section 4 analyzes the findings and provides the discussion
over the results. The survey results indicate the important trends to describe the RE process
in Lithuanian software development organizations. Section 5 discusses the potential valid-
ity threats. Finally, Section 6 provides conclusions and future work.

∗ Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology, Sem Sælands vei
7-9, NO-7491 Trondheim, Norway, raimunda@idi.ntnu.no.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 327

328 R. MATULEVIČIUS

2. RELATED WORK

Empirical surveys of the RE practice could be divided into several groups: analysis,
which concern only RE issues,3–6 works which analyze RE for the particular application
domain,7 and studies, which include geographical coverage.8–10

The field study of the software design process for large system development4 con-
cludes that knowledge integration, change facilitation, and broad communication are the
key issues impacting the project success. Elsewhere,6 the best practice of RE is identi-
fied as involving customers and users throughout RE, assigning skilled project managers
and team members, providing specification template, developing complementary models
together with prototypes, maintaining traceability, and using peer reviews, and scenarios
to validate requirements. Further, the analysis of RE processes5 suggests seven factors for
RE process improvement. They are package consideration, managing the level of detail of
functional process models, examining the current system, user participation, managing un-
certainty, benefits of CASE tools, and project management capabilities. The survey results3

show that the requirements capture and analysis are iterative. Allocation of the resources
(time, efforts, cost, and people) depends on the project type, the team members’ and users’
attitude, and the management.

An RE for commercial off-the-shelf software packages is analysed in Swedish organi-
zations.7 The authors suggest to improve the RE process by solving the communication
gaps between marketing and development, and the problems of balancing the influence
between marketing and requirements development on requirements decisions.

Ten organizations in the United Stated are interviewed in order to find out how they
define, interpret, analyze, and use requirements.9 The results conclude that organizational
solutions are preferred over technological ones and general-purpose tools are more com-
mon than RE tools. A survey10 of small and medium-size enterprises in Finland indicates
that the key software development needs are the development of RE process adaptation,
RE process improvement and automation of RE practices.

The recent study8 in 22 Norwegian software development companies, reports that RE
is usually performed using office and CASE tools. The main reasons of not using targeted
RE tools basically include the economical factors, like high costs, low returns on invest-
ment and non-awareness of the existing RE tools.

This work is an empirical investigation of the RE processes in Lithuanian software de-
velopment companies. Lithuania is a country rapidly increasing the use of the information
technology,11 which in turn generates interesting RE trends. This analysis concludes with
the challenging issues to improve the RE process in the software developing companies.

3. RESEARCH METHOD

The main steps of the research method are shown in Figure 1. The exploratory research
formulates research questions, constructs, and validates the questionnaire. The research
questions are formulated after the analytical study of the related work. Results of a focus
group discussion help to construct the questionnaire, which is validated during in depth
interviews.

SURVEY OF RE PRACTICE IN LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 329

Figure 1. Research method.

The descriptive research collects the data about the RE from different sources, ana-
lyzes the collected information and provides the results. Environment and participant de-
scription are gathered from the secondary data sources (e.g. previous survey11). The web-
based questionnaire helps to perform the survey of the RE process in the software devel-
opment companies and the results are considered using data tabulation and statistical tests.

3.1. Research Questions

The RE process is characterized as a network of activities, like elicitation, documen-
tation, analysis, validation and negotiation.12–15 The activities are customized by choosing
the appropriate techniques to specific applications. This leads to the following research
question:

Question 1. What is the perceived importance of different activities, executed during RE
process?

In order to answer the question the structuring evaluation framework16 is adapted. The
framework describes the RE process along the three orthogonal dimensions1 – represen-
tation, agreement and specification. Framework features correspond to the requirements
categories, which are followed with the lists of activities.17–18 While this framework was
originally developed to evaluate RE tools, it mainly decomposes RE into various activities,
and can thus be used also to evaluate the RE process even if it is not supported by the RE
tools. The framework is adapted to the questionnaire (Figure 2).

Depending on the software development approach,15 the RE phase takes a certain
amount of time. The following research question is:

Question 2. How much of the total project development time does the RE take?

330 R. MATULEVIČIUS

Figure 2. A fragment of the questionnaire.

The automated support for the software development processes is recognized in the
literature.2, 19–20 RE tools support elicitation (brainstorming and interviewing tools, tools
for highlighting and extracting requirements), analysis and documentation (tools for clas-
sifying requirements and keeping requirements traceability), and validation (tools for sim-
ulating requirements models). The third research question is:

Question 3. Which software tools are used to support the RE process?

3.2. Questionnaire Construction

An initial questionnaire was design after the analytical study of the related work and
focus group discussion. The questionnaire was validated during the in-depth interviewing
(face-to-face meetings and e-mail correspondences) of the experts, who have experience in
software development. Finally, the questionnaire was sent out to three test respondents to
software companies. The questionnaire validation discovered the undefined and not clear
questions, and it helped to remove choice-answer ambiguities.

The information about the respondent and his organization is asked, first. The informa-
tion includes the organizational profile, the product role, employee number in organization,
and respondent’s position. The most difficult problem during questioning is to motive the
respondents to answer an unsolicited survey.21–23 People are motivated if they can see that
the study results are likely to be useful to them. The questionnaire is accompanied with
several key pieces of information: what the study purpose is, why each individual’s partic-
ipation is important, how confidentiality will be preserved.

SURVEY OF RE PRACTICE IN LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 331

The RE definition24 keeps the unified understanding. The evaluation scheme from ‘0’
to ‘5’ is introduced (‘0’ – not important, ‘5’ – very important RE activities). The respon-
dents have to evaluate the importance of stakeholders, requirements discovery, traceability,
representation languages, grouping and attributing, negotiation and collaboration facilities,
reuse of requirements, and documentation. Next, the survey questions consider the average
time of RE phase, and the automated RE support. Due to the space limits Figure 2 displays
only the sample of the questions.

3.3. Environment Description

In 2000 Lithuanian information technology (IT) market was identified as 67% hard-
ware, 16% software and 17% IT services.11 But lately an increasing demand for the more
sophisticated software has speeded up the growth rates of software sales (20% growth dur-
ing 2000–2001) and IT service market are forecast to become the most rapidly growing
segment in the next few years.

According to Lithuanian Statistics Department and Infobalt Association the number
of IT companies is assessed to be around 250 in 2001. The majority of them are small,
employing up to 10–20 people. But the market is dominated by a number of medium and
large companies. The most frequent business activities include customer specific tailored-
made software, local area networks, and information systems. The service lines consist of
data warehousing, accounting, financial, and business process management.

3.4. Data Collection

A self-administered data collection method22 was used. First, the respondents were
contacted by phone. The purpose of the study was explained to an individual participant.
To motive participants, we have promised to send the study results. If the participant agreed
to take part in the study, the questionnaire URL was sent to him or her by e-mail.

3.5. Participants

28 (out of 75, response rate 37%) companies agreed to participate in the survey. This
included 12 (42,9%) small (up to 20 employees), 8 (28,6%) average (21–100 employees),
5 (17,9%) large (more than 100 employees) companies, and 3 (10,7%) non-software de-
velopment companies, which have their own software development departments.

The responses came from companies representing a variety of domains: data ware-
housing (15,6%), accounting (33,3%), content (13,3%), and business process management
(15,6%), specific domain applications (22,2%). At the organization profile level 50% of
respondents indicated themselves as consulting companies, 75% – software development
companies, 32,14% – software users (employing software). At the project development
level 67,86% of companies are producing off-the-shelf software, 82,14% develop products
for external customers, and 35,71% are developing software for internal organizational use.

Finally, there are responds from 9 project leaders, 5 marketing executives, 6 system
developers, 4 managing directors, 2 communication experts and 2 user support stuff.

332 R. MATULEVIČIUS

3.6. Data Analysis

Three techniques to analyze the collected data are used: data tabulation,21 data visuali-
zation25 and chi-square goodness-of-fit test.21 Data tabulation entails counting the number
of cases that fall into separate categories. Data visualization helps to identify the leading
results of the empirical data. Chi-square goodness-of-fit test determines whether a set of
observed frequencies departs significantly from a set of expected frequencies. Concretely,
the chi-square test helps to examine the importance of the RE methods and techniques. The
calculations are provided in the appendix.

4. RESULTS AND DISCUSSION

The section discusses the survey results, which are provided in the appendix. The
importance of the RE process activities is analyzed along three dimensions.1 Next, the RE
share in the software development and the automated RE support are considered.

4.1. Representation Activities

The requirements representation deals with representation forms and relationships be-
tween them. The results (Table 1) show a strong importance of informal and semi-formal
specification languages. The most important representation language is natural language
(Table 2). There is an interesting difference between semi-formal and formal languages:
semi-formal languages are used for requirements representation, but there is no agreed
commonly used language. Formal languages are used quite rarely.

Table 1. Importance of requirements representation

Table 2. Importance of requirements representation languages and techniques

SURVEY OF RE PRACTICE IN LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 333

Table 3. Importance of requirements traceability techniques

Table 4. Importance of requirements discovery methods

The use of natural language is supported in7–8, 10, 19. Semi-formal techniques are ER
diagrams,6, 8–9, 26 state charts,6–7 data flow diagrams,8–9, 26 UML,7 and Use Case templa-
tes.8 Furthermore,6,9 the requirements are described using knowledge and quality func-
tion deployment matrices. Formal languages are not used for RE,9 but Lithuanian practice
shows a weak support for formal languages, but none of them were identified.

The results (Table 3) suggest strong importance of relationships between requirements
definitions, the requirements source, and through continues requirements development.
Several companies6, 9 maintain a traceability matrix to track a requirement from its ori-
gin through its specification to its implementation.

4.2. Agreement Activities

The requirements agreement deals with the agreement about requirements model.
The common practice to reach agreement about requirements model is face-to-face ne-
gotiation and discussions (Table 10). The communication makes sure that requirements
are interpreted properly.5, 6 However, the communication gaps among stakeholders are
indicated.4, 7 The knowledge sharing and change facilitation is argued.3, 4 The rationale
in customer-specific projects is not worth the effort,9 but in market-driven projects the ra-
tionale for decisions and assumptions should be recorded. In Lithuanian companies the
rationale is kept and it helps to solve the emerging conflicts about the requirements.

The most important elicitation activities are meetings, surveys, and analysis of similar
systems (Table 4). The same activities are considered in3, 5, 6, 9. Elsewhere,6, 7 the require-
ments databases and document analysis as the requirements source are argued.

Sorting and viewpoint definitions (Table 6) involve different stakeholders: project
managers, software developers, domain experts, marketing personnel and end users (Ta-
ble 5). Experienced project manager should be able to use the RE tools, and have knowl-
edge of the system development process.3, 5 Software developers play an important role7

334 R. MATULEVIČIUS

Table 5. Importance of importance of stakeholders

Table 6. Importance of requirements attributes

Table 7. Importance of requirements groups

during requirements analysis and validation. Users should participate in the project from
the very beginning.3, 5, 6, 9 Domain experts are the most regarded participants.3, 4–6, 9 They
understand a domain as well as the users, and domain experts can often correct the users.

Most of Lithuanian software development companies are departments of some inter-
national organizations. The central offices consider software marketing and support re-
quirements. In the survey respondents indicated (Table 7), that they deal with functional
and architectural requirements and do not analyze non-functional ones.

4.3. Specification Activities

The requirements specification is written according to standards and guidelines used.
The results (Table 9) indicate that companies prefer organizational standards to standards
agreed by international communities.8 To support the final specification, a big amount of
documentations is needed (Table 11). However, the creation of requirements documents is
not self-evident.9, 10 Projects that are developing products for a potential market tend not to
document requirements in as much detail, if at all, and seldom follow any standards other
than internal corporate or division-wide guidelines.

SURVEY OF RE PRACTICE IN LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 335

Table 8. Importance of requirements reuse techniques

Table 9. Importance of requirements specification standards

Table 10. Importance of negotiation and collaboration facilities

Table 11. Importance of requirements documentation

Only selection and extraction of domain specific requirements from other project is
indicated with weak importance (Table 8). The reuse activities are performed manually,9

in the best case using “copy-paste” typing operations.

4.4. RE Share

The analysis shows that the time spent for RE is 25–50% of the whole development
(Figure 3). The RE is a new and not mature activity.2, 13 The survey respondents could con-
sider and include not only the process of new software development, but also the software
support, which takes part after software release. The result corresponds to other findings,
where the average amount of RE time equals to 38.6 % of total project duration,6 and
which argues, that companies invest heavily in terms of time.3

336 R. MATULEVIČIUS

Figure 3. RE share among all software development.

Figure 4. Automated support for RE process in Lithuanian companies.

4.5. Automated Support for RE

Automated support for RE process is not adequate. The mainstream of RE practice
relies on word processors (43%), modelling tools (43%) (Figure 4) rather than the RE
tools (4%). Other surveys6–10 also reports the lack of the automated support. The most
commonly used tools are text editors and spreadsheets3, 8–10 (e.g. Norwegian practice in
Figure 5), web sites, accessible to all stakeholders,6 and Visio.26 Some projects combine
text editors and database management systems for traceability, but such integrations can
only be used if configuration management policies are enforced.9

Reasons for not using the RE tools include financial causes, like high RE tool price
(31%), low return on investment (21%), companies do not consider the possibilities to
adapt RE tools to their organizational needs (38%). The Norwegian practice8 reports non-
awareness of the existing RE tools and the large tool costs as the main reasons for not
using them. A lack of well defined RE process and a lack of team training in the selected
tools caused the non-sufficient support for the RE activities.6 In order to adopt the tool,
an infrastructure must be set to support a tool and a company must be willing to invest in
putting such an infrastructure in the environment.5 This includes personnel training,7 tool
support groups,26 funding for the tool implementation.5 However, the management of such
companies usually expects the unrealistic expectations, as for example immediate pay-off.

SURVEY OF RE PRACTICE IN LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 337

Figure 5. Automated support for RE process in Norwegian companies.

5. THREATS TO VALIDITY

The following possible threats to the validity of this study have been identified:

• The research target is the geographical area, but not the domain. The study pro-
vides the general understanding of RE in software development companies.

• Impact of the company size and the software development life cycle model ap-
plied in the companies is not taken into account for the study results.

• The sample size of respondents is relatively low. But the threat is compensated by
a relatively high response rate.

• Difficulty to find the right person. As RE could not be executed by one person, it
is important to find the respondent who is able to fill in the questionnaire.

• Respondents had different educational experience, which influences the organi-
zational knowledge and work style, and affects the survey results, because each
individual interprets the RE activities according to his own experience.

• The usual threat with the self-administered questionnaire is to state the questions
in a comprehensive way. RE is dealing with a number of concepts, which could
be interpreted differently. To achieve a common understandability the definitions
were provided.

Unsolicited questionnaire does not help to reason why respondents prefer one or an-
other RE activity. The in-depth investigation could contribute with a close insight look into
the RE practice. But, a web-based questionnaire was appropriate due to the geographical
distance, as well as enabling an easy and relatively non-expensive data collection.

6. CONCLUSIONS AND FUTURE WORK

This paper analyzes the RE process in Lithuanian software development companies.
Although several companies use the predefined RE process, but the survey confirms that
the RE process is not mature.2 The findings emphasize for the RE challenges:

• The analysis of non-functional requirements would stimulate the creativity of the
software engineers. The common non-functional requirements could be reused in
several projects and reduce the time and resource needs.

338 R. MATULEVIČIUS

• Reuse of requirements specification would be effective, if requirements reposito-
ries are introduced. Repository tends to support storage of requirements metadata
and traceability when relevant requirements are modified.

• Adaptation of RE tools for organizational needs could contribute towards RE
process improvement. The market suggests RE tools, which allow integration with
other modelling environments and support RE activities such as scope manage-
ment, version and configuration control, quality assurance and quality control.
The requirements specifications of different types, contents, and level of details
could be automatically generated from the requirements repositories using appro-
priate selection criteria and templates.

The most effective software development cycles19 are iterative, incremental, parallel,
and timeboxed. Elsewhere,27 the RE process is discovered not as a smooth and incremen-
tal evolution, but characterized by occasional “crisis” points where the requirements are
reconceptualised, restructured, and simplified. The work findings suggest the investigation
not only the importance of the individual RE activities, but also the interaction and re-
lationships between them. This leads to the follow up questionnaire with more in-depth
investigation in particular software development companies.

ACKNOWLEDGMENT

The author would like to thank Guttorm Sindre for the feedback concerning drafts of
this paper and Rita Butkienė for the help during the survey process in Lithuania.

REFERENCES

1. K. Pohl, The three dimensions of requirements engineering: a framework and its applications, Information
systems 19(3), 243–258 (1994).

2. H. Kaindl, S. Brinkkemper, J. Bubenko, Jr., B. Farbey, S. J. Greenspan, C. L. Heitmeyer, J. C. S. do Prado
Leite, N. R. Mead, J. Mylopoulos, and Siddiqi, Requirements engineering and technology transfer:
obstacles, incentives, and improvement agenda, Requirements Engineering 7, 113–123 (2002).

3. P. Chatzoglou, Factors affecting completion of the requirements capture stage of projects with different
characteristics, Information and Software Technology 39, 627–640 (1997).

4. B. Curtis, H. Krasner, and N. Iscoe, A field study of the software design process for large systems, Commu-
nication of the ACM 31(11), 1268–1287 (1998).

5. K. El Emam and N. H. Madhavji, A Field Study of Requirements Engineering Practice in Information Sys-
tems Development, in: RE’95. Second IEEE Int. Symposium on Requirements Engineering (1995), pp.
68–80,

6. H. F. Hofmann and F. Lehner, Requirements Engineering as a Success Factor in Software Projects, IEEE
Software, pp. 58–66 (2001).

7. L. Karlsson, A. G. Dahlstedt, J. Natt och Dag, B. Regnell, and A. Persson, Challenges in Market-Driven
Requirements Engineering – an Industrial Interview Study, in: REFSQ’02. Proceedings of the 8th In-
ternational Workshop on Requirements Engineering – Foundation for Software Quality (German).

8. S. Ekremsvik and E. M. Tiset, Kravspek-verktøy, marketstudiet, TDT4730 Information System Specification
Report, IDI-NTNU, Trondheim, Norway, December, 2003.

9. M. Lubars, C. Potts, and C. Richter, A Review of the State of the Practice in Requirements Modelling, in:
RE’93. First IEEE Int Symposium in Requirements Engineering (RE’93, 1993), pp. 2–14.

10. U. Nikula, J. Sajaniemi, and H. Kälviäinen, A State-of-the-Practice Survey on Requirements Engineering in
Small- and Medium-Sized Enterprises, TBRC Research Report 1 (Telecom Business Research Center
Lappeenranta, Lappeenranta University of Technology, 2000).

SURVEY OF RE PRACTICE IN LITHUANIAN SOFTWARE DEVELOPMENT COMPANIES 339

11. M. Nissinen, The Baltics as a Business Location for Information Technology and Electonics Industries, VTT
Research Notes 2169 (2002); http://www.infobalt.lt.

12. P. L. Ferdinandi, A Requirements Pattern. Succeeding in the Internet Economy (Addison-Wesley, 2002).
13. G. Kotonya and I. Sommerville, Requirements Engineering: Process and Techniques (Wiley, 1998).
14. D. Leffingwell and D. Widrig, Managing Software Requirements. A Unified Approach (Addison-Wesley,

2000).
15. P. Loucopoulos and V. Karakostas, System Requirements Engineering (McGraw-Hill, 1995).
16. R. Matulevičius, Validating an Evaluation Framework for Requirement Engineering Tools, in: Information

Modeling Methods and Methodologies (Adv. Topics of Database Research), edited by J. Krogstie, T.
Halpin, and K. Siau (Idea Group Publishing, 2004), pp. 148–174.

17. J. Krogstie and H. Jørgensen, Quality of Interactive Models, in: IWCMQ’02, Proceedings of the 1st Interna-
tional Workshop on Conceptual Modeling Quality (Finland, 2002), pp. 115–126.

18. M. Lang and J. Duggan, A tool to support collaborative software requirements management, Requirement
Engineering 6, 161–172 (2001).

19. D. Firesmith, Modern requirement specification, Journal of Object Technology 2(1), 53–64.
20. W. Harrison, H. Ossher, and P. Tarr, Software Engineering Tools and Environments: a Roadmap, in: The

Future of Software Engineering, edited by A. Finkelstein (ACM Press, 2000).
21. G. A. Churchill, Jr., Basic Marketing Research (The Dryden Press, 2001).
22. D. A. Dillman, Mail and Internet Surveys (John Wiley & Sons Inc., 2000).
23. B. Kitchenham and S. L. Pfleeger, Principles of survey research. Part 4: questionnaire evaluation, Software

Engineering Notes 27(3), 20–23 (2002).
24. P. Zave, Classification of research efforts in requirements engineering, ACM Computing Surveys 29(4), 315–

321 (1997).
25. B. Regnell, M. Host, J. Natt och Dag, and T. Hjelm, Visualization of Agreement and Satisfaction in Dis-

tributed Prioritization of Market Requirements, in: REFSQ2000. Proceedings of the 6th International
Workshop on Requirements Engineering – Foundation for Software Quality (Sweden, 2000).

26. I. Davies, P. Green, and M. Rosemann, Modelling in the Australian Practice – Preliminary Insights, Centre
for Information Technology Innovation, Queensland University of Technology.

27. L. Nguyen and P. A. Swatman, Managing the requirements engineering process, Requirements Engineering
8, 55–68 (2003).

APPENDIX

The appendix presents the mean (M), variance (V), and chi-square (χ2) calculations
for the RE activities. χ2 is calculated like

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei

,

where O is the observed pattern, E is the expected pattern. The table value of χ2 for five
degree of freedom and α = 0.05 is 11.07. Two importance levels – high and low - are
selected according to the E mean threshold, which is equal to 3.79. High importance is if
E equals to {18, 6, 1, 1, 1, 1} and {12, 8, 4, 2, 1, 1}. Low importance is if the E equals to
{9, 10, 6, 1, 1, 1} and {10, 9, 5, 2, 1, 1}. If the calculation is higher than χ2 value (with all
E), then the activity is considered not important.

FUNCTIONALITY OF INFORMATION SYSTEMS
SPECIFICATION LANGUAGE: CONCEPT,

EVALUATION METHODOLOGY,
AND EVALUATION PROBLEMS

Albertas Caplinskas and Jelena Gasperovic∗

1. INTRODUCTION

The ISO/IEC 9126 standard (ISO/IEC 9126, 1991) distinguishes internal quality and
quality in use. It defines internal quality as “the totality of attributes of a product that deter-
mines its ability to satisfy stated and implied needs when used under specified conditions”
and quality in use as “the extent to which a product used by specified users meets their
needs to achieve specified goals with effectiveness, productivity and satisfaction in speci-
fied context of use.” In other words, internal quality is defined without any particular con-
text; quality in use depends on the context. In (Caplinskas et al., 2002) and (Caplinskas and
Gasperovic, 2004) we have investigated the problem of evaluation of quality of IS specifi-
cation languages, proposed the evaluation procedure for quality in use and defined the tax-
onomy of quality characteristics for internal quality. Following the philosophy of ISO/IEC
9126, we argued that internal quality of a specification language could be described by
four groups of quality characteristics: functionality, reliability, usability, and efficiency.
However, these characteristics, when applicable to specification languages, should be un-
derstood in a quietly different way. The main purpose of this paper is to analyse internal
structure of functionality of IS specification language and discuss issues of operationalisa-
tion of sub-characteristics of this characteristic. The paper discusses internal structure of
this characteristic and its semantic and ontological aspects.

The rest of the paper is organised as follows. Section 2 surveys related works. Sec-
tion 3 analyses the concept of functionality. Section 4 shortly discusses the problems of
operationalisation. Finally, Section 5 concludes the paper.

∗ Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663, Vilnius, Lithuania, alcapl@ktl.mii.lt,
j.gasperovic@algoritmusistemos.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 341

342 A. CAPLINSKAS AND J. GASPEROVIC

2. RELATED WORKS

Functionality (from Latin functio meaning “to perform”) means the degree to which
the designed product will perform to meet its intended purpose. In the case of specifi-
cation languages, functionality is understood as the set of features necessary to describe
requirements of a future system. Despite the fact that functionality is one of the most im-
portant characteristics of internal quality of a specification language, only separate aspects
of functionality, mostly expressiveness and ontological completeness, have been discussed
in scientific literature.

A language is said to be more expressive than another one if it can express more
concepts than the other. The concept of expressiveness has been studied formally already
in logic (Kleene, 1952; Troelstra, 1973). The main result is that the additional symbols
of core logic can be eliminated (i.e. expressed) if there exists a translation from extended
logic to its core that satisfies some given conditions.

The concept of expressiveness has been extensively studied also in the realm of pro-
gramming languages. The earliest works (e.g. (Chandra and Manna, 1975)) in this field
have been based on comparative schematology. In this context, some authors consider such
concept as computable functions and define maximally expressive class of languages as
those that are equivalent to Turing machine. However, as it is pointed out in (Felleisen,
1990), “Comparing the set of computable functions that a language can represent is use-
less, because the languages in question are usually universal; other measures do not exist.”
Other authors (Reynolds, 1981; Steele et al., 1976) studied expressiveness of imperative
programming languages modelling common programming constructs in terms of a simple
applicative language based on a lambda calculus. They demonstrated that a number of pro-
gramming constructs can be modelled locally, without restructuring the whole program,
and analysed to which extent a language can support the organisation of a problem. Steele
and Sussman (1976) pointed out “The emphasis not should be on eliminating “bad” lan-
guage constructs, but on discovering or inventing helpful ones.” Further, Felleisen (1990)
suggested the following analogy between formal systems and programming languages: the
set of phrases of a programming language corresponds to the expressions of a formal sys-
tem, the set of programs corresponds to the set of well-defined formulae, and the set of
terminating programs corresponds to the set of theorems. On the basis of this analogy and
the works (Kleene, 1952; Troelstra, 1973) he made an attempt to develop a formal theory of
expressiveness for programming language. In this approach a common language universe
U that comprises all constructs of interest is constructed. A language L is less expressive
than language L1 if L1 can express all the constructs from U, which L can express. Felleisen
concluded that programs in less expressive languages exhibit repeated occurrences of pro-
gramming patterns and suggested that such programming style is harmful.

Ontological completeness is the ability of a specification language and associated rea-
soning system to represent all phenomena of interest in the domain of discourse (Wand and
Weber, 1993) or, in other words, the ability to describe social reality at a certain level of
granularity (Colomb and Weber, 1998). Ontological completeness of a number of specifica-
tion languages (mostly diagrammatic languages) has been analysed in (Colomb and Weber,
1998; Rosemann and Green, 2002; Wand and Weber, 1993; Wand and Weber, 1990). As
a theoretical basis to evaluate ontological completeness in this approach so called Bunge-

FUNCTIONALITY OF INFORMATION SYSTEMS SPECIFICATION LANGUAGE 343

Wand-Weber (BWW) models have been used. These models are based on the ontology
proposed by the philosopher Mario Bunge. In other words, ontological completeness of
the language in question is evaluated with regards to Bunge’s ontology. So, BWW play
the role of universe of ontological primitives. In this sense BWW approach is similar to
Felleisen’s approach. A language L is less expressive than language L1 if L1 can express
all the ontological BWW primitives, which L can express. The shortcoming of both ap-
proaches is that they can be accepted only in the case when one shares objectivistic point
of view that the proposed universes are universal indeed, that is represent everything that
may be important for the user of programming or specification language, and those repre-
sentations are language neutral and independent of any user’s interest.

Another similar approach to evaluate ontological completeness has been proposed in
(Milton et al., 1998). In this work, it is proposed to use Chisholm’s ontology instead of
Bunge’s ontology and to evaluate ontological completeness not from the viewpoint of lan-
guage constructs but from the point of its ability to specify a variety of situations.

Sølvberg and co-authors (Krogstie and Sølvberg, 1999; Lindland et al., 1994), see this
problem in a slightly different way. Discussing wider issues of appropriateness (Krogs-
tie, 2001; Krogstie, 2002; Krogstie, 2003), they analyse also the concept of expressive
power that differs from the discussed concept of ontological completeness in the measure
that could be used not only to evaluate is any statement in the domain expressible in the
language, but also to evaluate whether it is impossible to express in the language any state-
ment, which is not in the domain. In (Krogstie and Sølvberg, 1999; Lindland et al., 1994;
Krogstie, 2001, Krogstie, 2002; Krogstie, 2003) the concept of expressiveness is defined
using set-theoretical approach. This definition, in principle, can be considered as an ab-
stract measure, however it is unclear how one can operationalise this measure.

3. ANALYSIS OF THE CONCEPT OF FUNCTIONALITY

3.1. Main Characteristics of Internal Quality

We consider the concept of functionality to be significantly wider than expressiveness
or ontological completeness. In our attempt to define internal quality of specification lan-
guage we follow the approach proposed by ISO/IEC 9126 standard (ISO/IEC 9126, 1991).

Although this standard addresses quality of software, its conceptual basis is signifi-
cantly wider and can be applied to evaluate quality of languages, too (King and Maegaard,
1998; QStudio® for Java, 2003). Thus we define internal quality through four lower-level
sub-characteristics: functionality, reliability, usability, and efficiency (Figure 1). We do not
include maintainability and portability, because these sub-characteristics are relevant rather
to software tools supporting production of specifications than to specification language it-
self.

It should be noted that sub-characteristics of internal quality can be considered from
conceptual as well as from representational points of view (Chandra and Manna, 1975;
Kleene, 1952) because any language has two most important aspects: its semantic and its
syntax. Although we share Felleisen’s viewpoint (Felleisen, 1990) that analogy between
formal system and language could be highly useful, we argue, however, that for specifi-
cation languages more useful is analogy with first-order languages. In (Caplinskas et al.,

344 A. CAPLINSKAS AND J. GASPEROVIC

Figure 1. Sub-characteristics of internal quality.

2002) we introduced the notion of the linguistic system defining a formal structure beyond
the language. Linguistic system has been defined as four-tuple:

� = 〈α,�,�,�〉,
where

α is a nonempty set of basic concepts (primitive concepts),
� is a set of constructors used to construct composite concepts,
� is a nonempty set of constructors used to construct statements,
� is a reasoning apparatus.
In this definition a concept is considered as some abstract meaning that can be repre-

sented in many different ways using syntactically different notations. It is also supposed
that the notion of constructor comprises also the rules of correct application of construc-
tors. So the set of composite concepts corresponds to the set of the terms of first-order
language and the set of statements corresponds to the set of well-defined formulae.

It is supposed further that the set α is defined by the chosen ontology (more exactly,
by the chosen conceptualisation) and provides a set of ontological primitives. So it an-
swers the question: In what terms does a language describe the systems? The set � de-
fines a kind of “algebra of concepts” (Nilsson, 2000) on α. It provides the apparatus to
define domain-oriented conceptual primitives and operators, including so-called epistemo-
logical (abstraction/structural) primitives, that allows constructing complex concepts from
primitive ones. In some cases (e.g. for domain-oriented specification languages) domain-
oriented primitives can be built-in into linguistic system itself. It is supposed that in such
cases domain-oriented primitives have the status of ontological primitives and are consid-
ered as elements of the set α. The set � defines apparatus to express assertions (more
exactly, axioms) about the properties of the system in question.

It should be noted that specification languages can be seen as modelling languages that
are used to build an abstract model (a theory) of system in question or, in other words, to
define a set of assertions about the required properties of an existing or a future system. Lin-
guistic system describes modelling facilities and, like description logics, distinguishes two
modelling levels, conceptual and assertional, although language itself cannot distinguish
those levels explicitly. Employing conceptual level apparatus one can define conceptual
primitives and create complex concepts. Assertional level apparatus allows formulating
statements about the properties of instances of concepts.

It should also be noted that specification languages are used to describe systems as
“black boxes” and to define their external properties; design and programming languages

FUNCTIONALITY OF INFORMATION SYSTEMS SPECIFICATION LANGUAGE 345

deal with the “transparent boxes” and are used to describe implementation details. The
purpose of design language is to refine operational specification and the purpose of pro-
gramming language is to refine design specification. Therefore it is desirable that the tran-
sition from specification to design and further to implementation would be seamless. On
the other hand, the development of an information system starts usually with business mod-
elling and is completed by the implementation of a number of applications. Architecture
of IS should be aligned with business goals and mission, and architectures of applications
should be aligned with goals and mission of the IS. Consequently, it is highly desirable that
the transition from business level to information processing level and further to application
requirements specifications would be seamless, too. Thus, in general case, it is desirable
that IS specification language would be suitable also to specify business systems as well as
applications and would be applicable at all stages of development. From this we conclude
that functionality should characterise the degree of potential appropriateness of a language
to specify properties of any kind of system (i.e. business system, information system, or
application) and at any stage of development. The higher is the value of functionality as an
aggregate quality characteristic of a specification language the less is the probability that
this language cannot be applied to specify some system in question.

3.2. Main Structure of Functionality

Usually a language provides core facilities allowing specifying in sufficient details
any aspect of “typical” systems in the realm. The functionality of core facilities can be re-
stricted in two different ways: by restricting the application area or by restricting the mean-
ing of used concepts. A flexible language should provide also some apparatus allowing ex-
tending or adapting core facilities in order to specify “untypical” systems.. Thus in addition
to suitability (i.e. core facilities) the concept of functionality comprises also flexibility of
a language. Consequently, we decompose functionality into two sub-characteristics: suit-
ability and flexibility (Figure 2).

Suitability, like functionality, is an aggregate characteristic. It is decomposed further
into lower level characteristics (Figure 2) for two reasons: to understand better the nature
of functionality and to facilitate the operationalisation of measures of functionality.

Suitability characterises how sophisticated statements about potential systems in a par-
ticular realm a specification language is able to express, and at what level of granularity
it can be done. The measure of suitability is the probability that any statement about any
system of a particular kind can be formulated in terms of a specification language. The
probability becomes equal to 1, if a language allows formulating statements about any
property of a system in a given realm and expressing it with the needed degree of pre-
cision. Therefore the higher is suitability of a language the more sophisticated systems
can be described and in the more details it can be done. Because of this dualistic nature
of suitability, we split it further into two sub-characteristics: completeness and expressive
adequacy (Figure 2).

3.3. Completeness

Completeness is the measure of the ability of specification language to describe any
system in question sufficiently and exhaustively. The value of this measure is the proba-

346 A. CAPLINSKAS AND J. GASPEROVIC

Figure 2. Sub-characteristics of functionality.

bility that any required property of a given system can be described in terms of evaluated
specification language. However, completeness does not ensure that statements about these
properties will be expressed in adequate terms or even that they will be expressed with suf-
ficient degree of precision. It has several aspects (Figure 2). One of the most important
from them is semantic sufficiency.

Semantic sufficiency characterises the conceptual level of the linguistic system. It is
the measure of the ability of specification language to specify all “things” that might be
necessary for analysis and design of any system in question. Semantic sufficiency is mea-
sured by the probability that any required concept can be expressed in terms of specification
language in question. In other words, semantic sufficiency answers the question: In which
degree the sets α and � of the linguistic system beyond the language in question are suf-
ficient for the needs of IS engineer? Consequently we split further semantic adequacy into
ontological sufficiency and epistemological sufficiency (Figure 2).

We use the term “ontological sufficiency” instead of the traditional term “ontologi-
cal completeness” because ontological completeness characterises a specification language
with regards to a chosen ontology. A language L is ontologically complete with regards to
ontology O if there exists a total mapping f from a set of ontological constructs of αO of
this ontology to the set αL of ontological primitives of the linguistic system beyond the
language L. In other words, language L is ontologically complete if there exists a construct
of L that can be used to represent each ontological construct of O. We aim, however, to
define an ontology-independent measure of completeness. Ontological sufficiency is the
probability that any system in question will be conceptualised successfully through cate-
gories provided by αL. It answers the question: In which degree the set α of the linguistic
system beyond the language in question is sufficient for the needs of IS engineer?

FUNCTIONALITY OF INFORMATION SYSTEMS SPECIFICATION LANGUAGE 347

Epistemological sufficiency characterises the ability of the linguistic system to ex-
press epistemological primitives or, in other words, the constructive power of “algebra of
concepts” provided by �. Here we use the term “epistemology” in a very narrow sense,
namely, to refer to concept structuring/abstraction machinery beyond a language L or, more
exactly, to the facilities allowing to define conceptual primitives on the basis of ontological
ones and to combine defined concepts further in order to form more complex concepts.
Epistemological sufficiency can be measured by the probability that all required concep-
tual structures will be modelled using language constructs. It ensures the ability to structure
any given system in an adequate way and answers the question: In which degree the set �

of the linguistic system beyond the language in question is sufficient for the needs of IS
engineer?

Semantic sufficiency does not characterise completeness of a specification language
exhaustively because it describes only conceptual level of the linguistic system beyond lan-
guage. Assertional level can be described by two additional characteristics: expressibility
and reasoning power.

Expressibility of a language is a measure of what it can be used to say. However, we
use this term in more narrow sense. In our case, it describes the ability of a language to
express statements about properties of instances of concepts. In other words, expressibility
characterises the class of formulas expressible in language L and answers the question: In
which degree the set � of the linguistic system beyond a language L is sufficient for the
needs of IS engineer? The measure of the expressibility is the probability that any statement
about the system in question can be expressed using language constructs.

Reasoning power of the linguistic system beyond a language L is closely related to its
expressibility. Reasoning power characterises the ability of reasoning apparatus � to derive
new statements about properties of conceptual primitives and their compositions. Mainly,
reasoning power is important in cases when a specification is used to reason about a system
in question, for example, to prove some system properties. The measure of reasoning power
is the probability that any property of the system that in principle can be derived from the
stated basic assumptions can be proved using reasoning apparatus �.

One more characteristic of completeness is composability. It characterises the degree
of possibility to compose language constructs and features together. Limited composability
limits functionality because not all meaningful compositions can be expressed using a lan-
guage in question. In such cases composition cannot be realised because the composition
scheme adopted in the language does not support it, although composition is possible from
logical perspective. So the measure of composability is the probability that any intuitively
and logically correct composition is realisable in the language. In terms of the linguistic
system, it means that constructors of � and � are free from any artificial restrictions on
their applicability.

3.4. Expressive Adequacy

Completeness characterises how exhaustively can be described any system in ques-
tion using a specification language L. However, it ensures neither that statements about
the properties of this system will be expressed with sufficient degree of precision nor that
they are described in adequate terms. Expressive adequacy (Figure 2) is a characteristic of

348 A. CAPLINSKAS AND J. GASPEROVIC

internal quality of a language L that describes the ability of this language to specify the
properties of a system in question in an adequate way. The measure of this characteristic is
the probability that all statements about any system in question can be formulated in ade-
quate terms and can be expressed with required degree of precision. Expressive adequacy
has several aspects: ontological adequacy, epistemological adequacy, selective power, and
generalitive power. Thus we split expressive power into four sub-characteristics (Figure 2).

Ontological commitments can be regarded as decisions about interpretation of state-
ments in a given language. They can be defined not only by mapping to ontological prim-
itives directly. Even a language of symbolic level can be used to define ontological com-
mitments. For example, they can be defined on the basis of set-theoretical formalism as in
specification language Z. Ontological adequacy is the ability of the linguistic system to ex-
press its ontological commitments within this system itself. It focuses on the system-model
link and ensures that primitives from α are linked directly to categories describing IS. The
concern about ontological adequacy is that we can adequately capture peculiarities of IS
through ontology O beyond the language L. The measure of ontological adequacy is the
probability that any system in question can be conceptualised adequately using ontological
primitives provided by α. Thus ontological adequacy answers the question: How well do
specifications written in the language represent real-world phenomena?

Epistemological adequacy is closely related to ontological adequacy. The term episte-
mological adequacy is used in many different senses, for example, as a degree to which the
language is able to reflect all distinctions that are important. We define epistemological ad-
equacy as the characteristic that describes the degree to which the linguistic system beyond
the language is able to express epistemological primitives directly. In other words, episte-
mological adequacy ensures that constructors provided by � are linked directly to such
epistemological schemes as generalisation, aggregation, and etc. The measure of episte-
mological adequacy is the probability that any useful epistemological primitive has his
counterpart in �.

The notion of selective power has been developed in the realm of relational databases.
The measure of selective power of a query language is relational completeness. The lan-
guage L is relationally complete if any relation derivable by means of relational calculus
can be retrieved by means of this language. We argue the notion of expressive adequacy
is applicable also to other languages, including specification languages. For example, we
can say that the language of first order logic has limited selective power because it cannot
distinguish two elementary-equivalent structures (Rudys, 2004). The measure of selective
power of the specification language L is the probability that any two different concepts,
any two different instances of a concept and any two properties of an instance of a concept
can be described in the language L in a distinguishable way.

Finally, the fourth sub-characteristic of expressive adequacy is generalitive power. It
characterises the ability of the language to describe system at different levels of granu-
larity. Generalitive power allows suppressing irrelevant details while preserving essential
properties of the system. The influence of generalitive power on internal quality of the lan-
guage is ambiguous. The language that attempts to cover too many levels of granularity is
likely to be overly complex. On the other hand, the language that supports only one level
of granularity is likely to be overly restricted. However we suppose that measuring func-
tionality other aspects of quality can be ignored (they are described by other characteristics

FUNCTIONALITY OF INFORMATION SYSTEMS SPECIFICATION LANGUAGE 349

(Caplinskas and Gasperovic, 2004)) and define the measure of generalitive power as the
probability to describe any system in question at any required level of granularity.

3.5. Flexibility

Suitability characterises the power of built-in facilities of the language. Flexibility
supplements suitability because it in some sense characterises scope of applicability of
the language. The more flexible is the language the easier is to adjust built-in facilities to
situations that have been not provided in advance by language designers. Thus flexibility
describes the extent to which the language can be adjusted to specify preliminary not in-
tended properties. The measure of flexibility is the probability that the language can be
applied to the whole spectrum of IS-related systems, namely, business systems (from the
IS design perspective), information systems, and applications.

Flexibility can be achieved in different ways: by universalisation of the language con-
structs, by adaptability or by extensibility. So we split flexibility into three sub-characteris-
tics: universality, adaptability, and extensibility (Figure 2).

Universality characterises degree of generality of ontological primitives beyond the
language.∗ If the language is based on domain-oriented primitives, it has comparatively
low degree of universality because constructs of this language cannot be applied to systems
in other realms. On the other hand, such ontological primitives as class or relation are
universal and can be applied almost in any realm. Therefore the measure of universality is
the probability that ontological primitives, provided by α, are suitable to model concepts
from the whole spectrum of systems in question. In other words, universality answers the
question: To which extent the language can be considered as a general-purpose language?

Adaptability is in some degree is the characteristic that is opposite to universality. It
describes the ability of the language to configure syntax and semantics to adapt it for ar-
bitrary domain. Of course, adaptability is important for general-purpose languages only.
Mechanisms of adaptability still are studied insufficiently. An example of such mechanism
is tailoring that allows selecting some predefined constructs of general-purpose language
and specialising these constructs in order to generate the language dedicated to some spe-
cific uses. In general, mechanisms of adaptability allow offering domain-specific notation,
constructs and abstractions on the basis of syntax and semantics of a general-purpose spec-
ification language. Therefore adaptability characterises both linguistic system and repre-
sentational system beyond the language. The measure of adaptability is the probability that
any required domain-specificity can be introduced using adaptability mechanisms provided
by the language.

Extensibility is closely related to adaptability. It also allows introducing domain speci-
ficity by extending a general-purpose language with new features. However, we argue that
adaptability and extensibility should be considered as separate characteristics, because they
characterise presence of different mechanisms in the language and their power. Adaptabil-
ity answers the question: To which extent is the language reconfigurable? Extensibility
answers the question: To which extent can the language be extended by new features? A
well-known mechanism of extensibility is so-called problem domain-specific profiles in

∗ It should be noted that composability also can be considered as some aspect of universality.

350 A. CAPLINSKAS AND J. GASPEROVIC

UML that allow introducing some domain specificity into this language. The measure of
extensibility is the probability that any required domain-specific features can be introduced
using extensibility mechanisms provided by the language.

4. OPERATIONALISATION OF THE MEASURES OF FUNCTIONALITY

The proposed approach provides that the values of all characteristics of internal qual-
ity are treated as probabilities. Indeed, probabilities in our approach are used as a kind of
rating levels. Such approach allows calculating values of aggregate characteristics from the
values of lower level characteristics easily. However, characteristics of the lowest level such
as ontological and epistemological sufficiency, ontological and epistemological adequacy,
selective and generalitive power, universality, adaptability, and extensibility should be mea-
sured directly. Ontological completeness is measured usually (Rosemann and Green, 2002;
Wand and Weber, 1993; Wand and Weber, 1990) by comparing language constructs to
categories of some chosen ontology. However, this approach cannot be used to measure
neither ontological nor epistemological adequacy, because we aim to develop ontology-
independent approach to evaluate internal quality of the specification language. We argue
to use for this aim assessment case suites, as it is common for certification of compilers.
We are working currently on the development of such suites.

The measurement of expressibility and reasoning power is a complex problem. We
attempt to develop for this aim the measurement techniques that are based on classification
of formulae and reasoning methods and on analysis of peculiarities of � and �. The limited
space of this paper does not allow us to discuss the issues of operationalisation in more
details. We intend to consider this problem in a separate work.

5. CONCLUSIONS

This paper continues research on the evaluation of the quality of specification lan-
guages, which has begun in (Caplinskas et al., 2002; Caplinskas and Gasperovic, 2004). In
(Caplinskas and Gasperovic, 2004) we have proposed the taxonomy of characteristics of
internal quality and methodology how to evaluate quality in use (external quality) on the
basis of measurements of internal quality. Despite the fact that the quality of specification
languages has strong impact on the quality of specifications the research in this field is
still in beginning. No commonly accepted agreement exists about the required set of qual-
ity characteristics and even about their names. We hope that the analysis of the concept
of functionality that has been done in this paper will contribute both to the research on
evaluation of the quality of existing specification languages and to the development of new
ones.

REFERENCES

Chandra, A. K., and Manna, Z., 1975, The power of programming features, Journal of Programming Languages
1: 219–232.

FUNCTIONALITY OF INFORMATION SYSTEMS SPECIFICATION LANGUAGE 351

Caplinskas, A., and Gasperovic, J., 2004, A taxonomy of characteristics to evaluate specification languages,
in: BalticDB&IS 2004. Proc. of the Sixth International Baltic Conference on Databases and Information
Systems, Riga, Latvia, June 6–9, 2004, Vol. 672, J. Barzdins, ed., University of Latvia, Riga, pp. 321–336.

Caplinskas, A., Lupeikiene, A., and Vasilecas, O., 2002, A framework to analyse and evaluate information sys-
tems specification languages, in: ADBIS 2002. Proc. of the 6th East European Conference, Bratislava,
Slovakia, September 2002, LNCS 2435, Y. Manolopoulos and P. Navrat, eds., Springer, pp. 248–262.

Colomb, R. M., and Weber, R., 1998, Completeness and quality of ontology for an Information System, in:
FOIS’98. Proc. of the International Conference of Formal Ontology in Information System, Trento, Italy,
June 6–8, 1998, N. Guarino, ed., IOS Press, Amsterdam, pp. 207–217.

Felleisen, M., 1990, On the expressive power of programming languages, in: ESOP ’90. Proc. of the

3rd European Symposium on Programming, Copenhagen, Denmark, May 1990, Vol. 432, N. Jones,
ed., Springer-Verlag, pp. 134–151; http://citeseer.ist.psu.edu/cache/papers/cs/633/ftp:zSzzSzftp.cs.indiana.
eduzSzpubzSzscheme-repositoryzSzdoczSzpubszSzexpress.pdf/felleisen90expressive.pdf/.

ISO/IEC 9126, 1991, Information Technology – Software Product Evaluation – Quality Characteristics and
Guidelines for their use. International standard, first edition, 1991-12-15, reference number ISO/IEC 9126:
1991(E).

King, M., and Maegaard, B., 1998, Issues in natural language systems evaluation, in: LREC. Proc. of the First
Conference on Language Resources and Evaluation, Granada, Spain, May 28–30, 1998, Vol. 1, pp. 225–
230; http://citeseer.nj.nec.com/514907.html.

Kleene, S. C., 1952, Introduction to Metamathematics, D. Van Nostrand Co., Inc., New York, N. Y.
Krogstie, J., 2003, Evaluating UML using a generic quality framework, in: UML and the Unified Process,

L. Favre, ed., Idea Group Publishing, Hershey, PA, USA, pp. 1–22.
Krogstie, J., 2002, A semiotic approach to quality in requirements specifications, in: Proc. of the IFIP TC8/WG8.1

Working Conference on Organizational Semiotics: Evolving a Science of Information Systems, Montreal,
Quebec, Canada, July 23–25, 2001, K. Liu, R. Clarke, P. B. Andersen, and R. Stamper, with El-Sayed
Abou-Zeid, eds., Kluwer Academic Publishers, Boston, pp. 231–249.

Krogstie, J., 2001, Using a semiotic framework to evaluate UML for the development of models of high quality,
in: Unified Modelling Language: Systems Analysis, Design and Development Issues, K. Siau and T. A.
Halpin, eds., Idea Group Publishing, Hershey, pp. 89–106.

Krogstie, J., and Sølvberg, A., 1999, Information Systems Engineering: Conceptual Modeling in a Quality Per-
spective (the draft of the book), Information Systems Groups, NTNU, Trondheim, Norway.

Lindland, O. I., Sindre, G., and Sølvberg, A., 1994, Understanding quality in conceptual modelling, IEEE Soft-
ware 11(2), pp. 42–49.

Milton, S., Kazmierczak, E., and Keen, C., 1998, Comparing data modelling frameworks using Chisholm’s ontol-
ogy, in: ECIS’98. Proc. of the 4th European Conference on Information Systems, Aix-en-Provence, France,
June 1998, vol. 1, J-A. Bartoli, ed., Euro-Arab Management School, Aix-en-Provence, pp. 260–272.

Nilsson, J. F., 2000, A conceptual space logic, in: Information Modelling and Knowledge Bases XI, E. Kawaguchi
et al., eds., IOS Press/Ohmsha, Amsterdam, pp. 26–40;
http://www.imm.dtu.dk/∼jfn/publications/conceptspaces.ps.

QStudio® for Java, 2003, The Software Health Tool for Java. QA Systems BV, The Netherlands;
http://www.qa-systems.com/welcome.html.

Reynolds, J. C., 1981, The essence of Algol, in: Algorithmic Languages, Jaco W. de Bakker and J. C. van Vliet,
eds., North-Holland, Amsterdam, pp. 345–372.

Rosemann, M., Green, P., 2002, Developing a meta-model for the Bunge-Wand-Weber ontological constructs,
Journal of Information Systems 27(2):75–91.

Rudys, A., 2004, Elementary-equivalence, Lecture 21, in: Logic in Computer Sciences (course material), M. Y.
Vardi, ed., Department of Computer Science, Rice University;
http://www.cs.rice.edu/∼vardi/comp409/2001/lec21.ps.

Steele, G. L. Jr., and Sussman, G. J. Lambda, 1976, The ultimate imperative, Memo 353, MIT AI Lab.;
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-353.pdf.

Troelstra, A. S., 1973, Metamathematical Investigation of the Intuitionistic Arithmetic and Analysis, LNM, 344,
Springer-Verlag.

Wand, Y., and Weber, R., 1993, On the Ontological Expressiveness of Information Systems Analysis and Design
Grammars, Journal of Information Systems 3(4):217–237.

Wand, Y., and Weber, R., 1990, Mario Bunge’s ontology as a formal foundation for Information Systems concepts,
in: Studies on Mario Bunge’s Treatise, P. Weingartner, and G. J. W. Dorn, eds., Rodopi, pp. 123–149.

TEMPORAL SEMANTIC ABSTRACTION BASED ON
LAYERED MULTIMEDIA DATA MODEL

Yan Jian-feng, Li Zhan-huai and Guo Chen-juan∗

1. INTRODUCTION

With the development of the technique of data gathering and the capability of com-
puter storage, more and more multimedia data has been introduced into the computer sys-
tem; therefore, researches on multimedia database have become more important than ever
before. Temporal feature is one of the most important features in multimedia data, such as
video and audio. The multimedia database, which is the kernel part of multimedia infor-
mation retrieval system, should be able to provide detailed descriptions and queries to such
information.1

Compared to traditional alphanumeric data, multimedia data have a number of content-
based information and semantic information. So, the multimedia data model should not
only provide how to describe the alphanumeric data, but also describe some specific data,
such as temporal features in video or audio data and constraints among them. Semantic
information of temporal and spatial features are the most typical different between multi-
media data and other data, therefore, the conceptual model for describing multimedia data
should be able to distinguish different objects and the temporal or spatial relationships
among them. Then, based on these, it can answer the queries including temporal and spa-
tial features. For video data, temporal features are the base of spatial features. Therefore,
we have to introduce temporal dimension into the model when building such data models.

Many works have been done in order to introduce temporal features into the multi-
media data model. Time line is a directed descriptive method for media objects. It uses
absolute time to annotate temporal features of media objects in time axis. Breiteneder pro-
posed a model based on time line,2 which combined the video data into different groups
through entities such as Movie, Tracks, Media and Layer, and relationships such as is-
derived and t-comp. This model can distinct differentiation in expressive scene and trans-
mitted time. However, it does not have related description for temporal relationship, either
introduces temporal abstraction, therefore what can be described for semantic is limited.

∗ Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, P. R. China, jfyan@mail.nwpu.edu.cn,
lizhh@nwpu.edu.cn, cjguo@mail.nwpu.edu.cn.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 353

354 YAN JIAN-FENG ET AL.

Based on the Petri-Net, Little has proposed a descriptive method called OCPN,3 which
is able to describe comparatively simple temporal relationship like synchronism and conti-
nuity, by using place, which describes multimedia object, and transition, which describes
temporal synchronism. It can also describe absolute temporal features precisely by map-
ping place information into real numbers. However, this model can’t provide abstract de-
scription for temporal features, and cannot support description for user’s interactive op-
eration. Therefore when it is desired to enrich media information and recombine media
information that required specific domain knowledge, this model seems helpless.

The temporal complicacy of media objects is represented in comparative temporal
relationship. For example, there exist many temporal relationships in video object, such
as before, after, overlaps, equals and so on. Allen has concluded thirty correlations in
two temporal intervals.4 For the point of view of application, Schloss5 has discussed a
method to build layered model multimedia data, and proposed a method to operate tem-
poral relation through calculations of multimedia event. Little6 has proposed TIB (Time-
Interval-Based model), which not only describes absolute temporal intervals in object, but
also describes relative temporal relationships. Continuous research7 discusses the queries
in temporal intervals when there exists disconnection in temporal intervals. Zhang8 intro-
duced this idea into data stream management, which extends the application of temporal
interval model.

The description and management of information must satisfy different abstract layers
that users required. According to the rich semantic queries of multimedia temporal/spatial
features, Megalou9 proposed a method for multimedia temporal/spatial semantic abstrac-
tion, which divides multimedia objects into conceptual objects and presentational objects,
and the formal describe the content information of multimedia information, while the latter
describe temporal/spatial feature of the conceptual objects. Although this work provided
an operable semantic model for temporal/spatial semantic abstractions, temporal/spatial se-
mantic abstractions of multimedia object would change according to different application
and background. And so do the related generalization layers and aggregation granularities.
Therefore it is difficult to use this model to do everything.

Further more, multimedia data management should provide description for the compli-
cated semantic information when describing temporal information. M. Hacid10 proposed a
model named CoPaV2, which focuses on describing high semantic information by seman-
tic objects and describing temporal information by temporal aggregation objects. These
two kinds of objects build temporal relationships by object reference. The author also dis-
cusses the queries based on the model and designs a query language to query the temporal
relationships between semantic objects. But this model can’t provide precise description
and query for temporal interval, which is its limitation.

Our multimedia data model,11 which can provide a higher abstraction level, is de-
signed. And this model cans provide a comprehensive description for multimedia content
information, such as physics features, structure features and semantic features. Based on
this, in this paper, we will discuses description and query for absolute temporal intervals
and relative temporal relationships. Through the analysis of generalization and aggregation,
we also propose a structural algorithm and query method of relative temporal relationship
constrains in multimedia data content information management, and these can be used in
different generalization layers and satisfy different aggregation granularities.

TEMPORAL SEMANTIC ABSTRACTION BASED ON LAYERED MULTIMEDIA DATA MODEL 355

2. THE MDU DATA MODEL

2.1. Multimedia Object

A multimedia object, which describes a meaningful section of multimedia data, can
be identified by an identifier, which is one of the elements in identification set ID. ID is a
countable and infinite set. Different multimedia objects have different object identifiers. In
the life circle of an object, this element of ID is stable, and system can access an object by
its identifier.

The attributes of an object are used to describe the features of the object, and the
value of one attribute corresponds to one feature value of multimedia data. Multimedia
objects, which own temporal and spatial attributes, should be able to describe the temporal
and spatial features of this part of multimedia data. Those features are described by the
attributes of temporal interval and spatial interval, which describe the place where this
object is in the temporal interval domain and spatial interval domain, respectively.

Temporal interval domain T is defined as a set of tuples, one of which looks like
(t1, t2). Here, t1 and t2 are integers and t1 = t2, which represents the time that the object
appears and disappears in the temporal axis, respectively. The values of t1 and t2 are the
absolute time points of temporal feature. Any object, which have temporal constraints, own
a special attribute, which is temporal interval attribute I , and the value of this attribute is
an element in T , (ts , te).

Let’s write A = {a1, a2, . . . , an} for a set of all possible attributes of all the objects,
and write V for the value set, which is consisted of all the elements subsets in C ∪ ID ∪ T.
Here, C is a set of constants, and C ∈ 2ℵ ∪ 2� ∪ 2�. Here, ℵ is the set of all possible
natural numbers, � is the set of all possible real numbers, and � is the set of all possible
characters.

Definition 1. A Multimedia Object, mo, is a tuple (oid, v), in which oid is an ele-
ment of set ID. Function New(void) can generate a new object identifier, which is dif-
ferent from other objects. And v is an n-tuple (a1 : v1, . . . , an : vn), here, object attribute
ai(1 = i = n), which means the attribute type of this object, is an element of A. Function
Attributes(oid) can get all attributes of the object whose identifier is oid. vi(1 = i = n),
which is an element in set V , is the value of ai . In the rest of this paper, we write oid.ai

for the value of attribute ai for the object with identifier oid.

The following figure describes some multimedia objects in a video data of a football
game, especially, the temporal features and spatial features in some absolute time points
(spatial features are fixed by MBR, which is a minimum bound rectangle framing spatial
coordinate of an object. MBRs are represented in this figure by write rectangles.). The
object O1 represents the goal object that appears at absolute time point 67 and disappears
at time point 81. O2 represents the Argentina sporter A. O3 represents a England sporter,
who disappears at time point 51. O4 represents the Argentina sporter B. O5 represents the
goalkeeper appears at 60. The object O6 represents the football. We can notice that at time
point 70, this object will overlap the goal object in the spatial relationship.

356 YAN JIAN-FENG ET AL.

Figure 1. An example of the temporal features in a video data.

2.2. Multimedia Description Unit and Temporal Constraints

We represent a group of objects, which have certain relationships with each other, by
a data structure named Multimedia Description Unit (MDU). The following is the formal
definition of MDU.

Definition 2. A Multimedia Description Unit (MDU) is a triplet u: 〈O,C,R〉. Here,
O is a set of all objects that this MDU needs to describe. C is a set of all possible relation-
ship types that maybe exist among objects. R is a subset of the mapping set 2O ×2O → C,
which represents all possible relationships between objects.

Following Allen’s definition, C consists of at least the following 13 temporal relation-
ship elements, equal, starts, finishes, meets, overlaps, before, during, starts−1, finishes−1,
meets−1, overlaps−1, before−1, durings−1. Temporal constraints exist between the tem-
poral intervals of multimedia objects and the temporal relationships of those objects. For
example, two objects that have same attribute values in temporal interval must have a tem-
poral relationship called equal between them, which means that they appear and disappear
at the same time. If there exists some certain relationship c between object X and object Y ,
the constraints between temporal intervals and temporal relationships is defined in Table 1.

Additional six temporal relationships like c−1 can be gotten by exchanging object X

and object Y in upper table.
Following this formal definition, the video in Figure 1 can be described by the follow-

ing MDU.

uvideo = 〈{O1,O2,O3,O4,O5,O6},
{equal, starts, finishes, overlaps, during},
{(O6,O1) → overlaps, (O5,O2) → finishes, (O2,O4) → equal,
(O3,O2) → starts, (O6,O2) → starts, (O5,O1) → during}〉

We can find that uvideo describes six multimedia objects and their temporal relation-
ship, and objects are described by their attributes. These attributes can be gotten from
image processing and target identifying algorithms, and different applications focus in dif-
ferent attributes. For example, we can get the object description of the football game video

TEMPORAL SEMANTIC ABSTRACTION BASED ON LAYERED MULTIMEDIA DATA MODEL 357

Table 1. Temporal constraints between Allen’s temporal relationships and temporal inter-
vals

as following.

O1 = (oid1, (NAME: gate, TEAM: england, I:(67,81)))

O2 = (oid2, (NAME: sporterA, TEAM: argentina, I:(31,51)))

O3 = (oid3, (NAME: sporter, TEAM: england, I:(67,81)))

O4 = (oid4, (NAME: sporterB, TEAM: argentina, I:(31,87)))

O5 = (oid5, (NAME: goalkeeper, TEAM: england, I:(60,87)))

O6 = (oid6, (NAME: football, I:(31,75)))

3. SEMANTIC ABSTRACTION IN MULTI-GRANULARITIES TEMPORAL
INTERVAL

3.1. Partitions of Temporal Interval Domain

Temporal interval domain T can be divided into several partitions T (G0), T (G1),

. . . , T (Gn) according to different granularities G0,G1, . . . ,Gn. Under one granularity,
there is a partition, and all the different partitions form a layered structure.

Definition 3. The Comparison of Granularity exists in any two different granularities
Gi and Gj of temporal interval domain T . For any temporal interval I , which belongs to
T (Gj), if we can find a set of temporal interval {I1, I2, . . . , In} in T (Gi), which contains
I , then we say that granularity Gi is Finer than granularity Gj , which is represented by
Gi ≺ Gj . Formally, it can be defined as the following:

∀I ∈ T (Gj), I =
n⋃

k=1

Ii, {I1, I2, . . . , In} ⊆ T (Gi) (1)

For any Il , Ik ∈ {I1, I2, . . . , In}, Il ∪ Ik = (min(Il .ts, Ik.ts), max(Il .te, Ik.te))

Such mappings exist between different granularities of temporal interval domain. The
map from coarse granularity to fine granularity is called interval extension, which means

358 YAN JIAN-FENG ET AL.

using temporal interval set on Gi to express some temporal interval on Gj ; while the map
from fine granularity to coarse granularity is called interval approximation, which means
using a bounder temporal interval on Gi to express a temporal interval on granularity Gi .

Definition 4. For the temporal interval on granularity Gj , the mapping ExpGi

Gj
: T (Gj)

→ T (Gi) of interval extension on granularity Gi is a mapping set described by (2). Simi-

larly, for the temporal interval on granularity Gi,, the mapping App
Gj

Gi
: T (Gi) → T (Gj)

of interval approximation on granularity Gj is a mapping set described by (3):

∀I ∈ T (Gj), ExpGi

Gj
(I) = {I ′ | I ′ ∈ T (Gi), I

′ ⊆ I } (2)

∀I ′ ∈ T (Gi), App
Gj

Gi
(I ′) = I, I ∈ T (Gj) ∧ I ⊆ I ′ (3)

The map of extension and approximation of temporal interval between different gran-
ularities is showed as following.

Figure 2. The mappings between two granularities Gi and Gj (Gi ≺ Gj).

3.2. Temporal Semantic of Generalization

In the temporal queries of multimedia data, besides the querying about thirteen basic
temporal relationships by Allen, it is always necessary to answer the queries on general-
ization temporal semantics. Here, generalization is to abstract a more normal and higher
layer temporal relationship from two or more basic temporal relationships. For example,
the query to find an object set that appears at the same time with object A, or to find an
object set that appears after object A. These two queries do not need strict basic temporal
relationships. It only needs to query through generalized temporal semantics relationship
between objects. Temporal generalization is different from one application to another ap-
plication.

Figure 3 describes a hierarchy of one kind temporal generalization, in which the re-
lationship before and meets are abstracted as ahead, which represents the predecessor re-
lationship between objects. While the relationship before−1 and meets−1 are abstracted
as behind, which represents the successor relationship between objects. The relationship
Ahead and behind have been abstracted as sequential, which represents the sequential re-
lationship between objects.

Allen’s basic temporal relationships exist in the multimedia data that is described by
MDU. For the queries with generalization temporal relationship, we have to get abstract
temporal relationships between MDU objects according to the different generalization hi-
erarchy.

TEMPORAL SEMANTIC ABSTRACTION BASED ON LAYERED MULTIMEDIA DATA MODEL 359

Figure 3. An example of temporal generalization hierarchy (c(−1) means c ∪ c−1).

Table 2. Temporal generalization abstraction hierarchyi and temporal constraints

The generalization abstraction of temporal relationship needs to judge new temporal
interval constraints. For the relationship between object X and object Y as described in
Figure 3, Table 2 defines its temporal interval constraints of generalization temporal rela-
tionships.

Definition 5. Temporal relationship generalization of a multimedia description unit
u is the generalization abstraction of temporal relationship between objects in u, written
as GenT (u, hierarchyi (H)), which means a new multimedia description unit u′ that is got
from u through temporal generalization. Here, hierarchyi means a certain temporal gener-
alization abstraction i in the form of a tree; H means a certain abstract node in this gener-
alization abstraction. If all children of H are basic temporal relationship, we call H direct
generalization of basic temporal relationship; if not, we call indirect generalization.

The temporal direct generalization is defined as:
u′ = GenT (u, hierarchyi (H)) ⇔ u′.O = u.O, u′.C = u.C ∪H,u′.R = u.R ∪ R′, in

which:
R′ = {(Oi,Oj) → H | ∀Oi,Oj ∈ u′.O, ∃c ∈ C, ((Oi,Oj) → c) ∈ R ∧ H is the

direct generalization abstraction of c}
If abstract node H can be got through many times abstraction of basic temporal rela-

tionship c, such as the indirect generalization sequential of the basic temporal relationship
before(−1) and meets(−1), temporal relationship generalization of MDU can be got through
by a recursive algorithm. To a known generalization abstract structure, we can abstract the
basic temporal relationship to every corresponding node in generalization structure; there-

360 YAN JIAN-FENG ET AL.

fore it has been extending the description ability of MDU in the system. The following is
a completed description algorithm for temporal relationship generalization semantic.

The definition of temporal relationship generalization allows to do abstract temporal
expression for temporal relationship between multimedia objects according to the required
abstract method, which extends the expression capability of MDU in temporal relationship.
For example, we can use the generalization abstract layer in Figure 3 to extend MDU
uvideo(use an abstract hierarchy sub-tree whose root is parallel) of the video section in
Figure 1 to get a new MDU ugen video :

ugen video = 〈{O1,O2,O3,O4,O5,O6},
{equal, starts, finishes, overlaps, during, parallel, concurrency},
{(O6,O1) → overlaps, (O6,O1) → parallel, (O5,O2) → finishes, (O5,O2) →

parallel,

(O2,O4) → equal, (O2,O4) → concurrency, (O2,O4) → parallel,

(O3,O2) → starts, (O3,O2) → concurrency, (O3,O2) → parallel,

(O6,O2) → starts, (O6,O2) → concurrency, (O6,O2) → parallel,

(O5,O1) → during, (O5,O1) → concurrency, (O5,O1) → parallel, }〉
It is obviously that the description capability of ugen video is higher than uvideo, which

provids data description for temporal relationship queries like parallel and concurrency.

3.3. Temporal Aggregation Semantic

In the data management of multimedia information system, another important seman-
tic abstraction, aggregation semantics, is needed, and this semantic abstraction can aggre-
gate some parts to a whole. For example, there is a video section, which is about the best

TEMPORAL SEMANTIC ABSTRACTION BASED ON LAYERED MULTIMEDIA DATA MODEL 361

scenes in a football game, and has described every team member as an object by MDU,
including the temporal relationship between objects. However, if we want to answer the
query like to find all scenes including shooting team members and resist team members,
we have to abstract some objects and their temporal relationship to a certain group, so we
can make the objects like shooting team members and resist team members as a new shoot-
ing scene object. The essence of temporal aggregation semantics is to construct temporal
relationship in higher layer granularity from temporal relationship in some lower layer
granularity on temporal interval. Here, object in coarse granularity has maps to a group
objects in fine granularity and the temporal relationship between them.

Definition 6. Temporal relationship aggregation in a multimedia description unit u

is the aggregation abstraction of a set of object’ sets {O1,O2, . . . ,Om} on u, (in which⋃m
i=1 Oi ∈ u.O), written as AggT (u, {O1,O2, . . . ,Om}), which represents the new mul-

timedia description unit u′ gotten from temporal aggregation on u. If the set {O1,O2, . . . ,

Om} only includes one set of objects, it is named as basic aggregation; otherwise, it is
named as complex aggregation. To the basic aggregation, if O1 = {O1,O2, . . . ,On},
then we can define:

u′ = AggT (u, {O1,O2, . . . ,On}) ⇔ u′.O = u.O ∪ O ′

Here, the object O ′ is a new object aggregateed from the set of objects {O1,O2, . . . ,

On}, whose object identifier, which is different from other identifiers, is created by the
system, and the set of attributes, which is shown as following, is gotten from objects in
{O1,O2, . . . ,On}:

O′.ID = New(MO), Attibutes(O′.ID) =
n⋃

i=1

Attibutes(Oi .ID)(Oi ∈ {O1,O2, . . . , On})

Temporal interval attribute I in the new multimedia object O ′ can be gotten from
granularity approximation operation. Let Gi be the granularity before aggregation; and Gj

be the granularity after that. The formal calculation is defined as following:

O ′.I =
n⋃

i=1

App
Gj

Gi
(Oi.I)(Oi ∈ {O1,O2, . . . ,On})

New object will be created after aggregation semantic abstraction, and has extended
the former temporal relationship set of multimedia description unit. Therefore, some oper-
ation is required to get the temporal relationship type set C and temporal relationship set
R′ of u′. The detailed operation is shown as following:

C′ = {aggregate, aggregate−1},
R′ = {(Oi,O

′) → aggregate, (O ′,Oi) → aggregate−1 | Oi ∈ {O1,O2, . . . ,On}
Then, we can get a new complete multimedia description unit u′ as following:

u′.C = u.C ∪ C′, u′.R = u.R ∪ R′

362 YAN JIAN-FENG ET AL.

The following is a descriptive algorithm for temporal relationship generalization se-
mantics:

Applications should appoint the object set needed to be aggregateed for temporal ag-
gregation abstraction, and this appointment is decided by the semantics of multimedia
objects. For example, shoot scenes can be calculated by football shooting to the gate in a
football match. Therefore, goal scenes should include the scene subset of football and gate.
We can aggregate set {O1,O6} on uvideo to a new MDU uagg video as following:

uagg video = 〈{O1,O2,O3,O4,O5,O6,Onew},
{equal, starts, finishes, overlaps, during},

{(O6,O1) → overlaps, (O5,O2) → finishes, (O2,O4) → equal,

(O3,O2) → starts, (O6,O2) → starts, (O5,O1) → during,

(O1,Onew) → aggregate, (O6,Onew) → aggregate,

(Onew,O1) → aggregate−1, (Onew,O6) → aggregate−1, }〉
Onew = (oidnew, (NAME: shoot, TEAM: argentina, I:(60,87)))

From above, it can be concluded that the descriptive capability of uagg video is stronger
than uvideo, which has provided data description for temporal relationship query, such as
shooting.

Additionally, temporal aggregation abstraction is especially suit for management of
multimedia file on Internet. The access to a web site is always processed according to right
figure. The click to different entry would lead to different processes, which can be viewed
as sequence of multimedia file in temporal constrains. If application focuses on the content
of multimedia file, the creation of MDU should be fined to each object’s granularity in the
file. If application needs to manage the right figure of the wed site, then it is required to
aggregate the file related to one subject to multimedia description unit on file granularity.

4. CONCLUSION

Multimedia temporal features management and temporal semantic abstraction are the
focal problems that need to be solved in the research domain of multimedia data manage-
ment. Based on absolute temporal management and temporal relationship research, this
paper proposes a multimedia data model based on multimedia object description, and dis-
cusses the descriptive algorithm of generalization and aggregation, which are the two im-
portant temporal semantic abstractions. The table below describes a comparison between
the model in this paper and other related researches:

From this table, it is obviously that MDU model, can describe absolute temporal fea-
tures and temporal relationships at the same time. In semantic abstraction, MDU can per-
fectly describe generalization and aggregation, the two important temporal semantic ab-
stractions, as well as support multimedia data independence, which mean it can realize

TEMPORAL SEMANTIC ABSTRACTION BASED ON LAYERED MULTIMEDIA DATA MODEL 363

Table 3. The comparison between related multimedia data models (+ Means support, -
means unsupported)

multimedia index and reform based on temporal features. Our future researches will be
focused on the realizing of the above model, including temporal query processing, query
optimizing and the design of query language of multimedia data.

REFERENCES

1. M. Tamer Özsu, Issues in Multimedia Database Management, in: IDEAS’99. Proceedings of the International
Symposium on Database Engineering and Applications (IEEE-CS Press, Montrea, 1999), pp. 452–459.

2. C. Breiteneder, S. Gibbs, and D. Tsichritzis, Modeling of Audio/Video Data, in: Proceedings of the 11th
International Conference on the Entity-Relationship Approach (Karlsruhe, Germany, October 1992),
pp. 322–339.

3. T. D. C. Little, A digital On-Demand Video Service Supportin Content-based Queries, in: Proceedings of
ACM Multimedia (USA, August 1993), pp. 427–436.

4. J. F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 26(11), 832–843
(November 1983).

5. G. A. Schloss and M. J. Wynblatt, Building Temporal Structures in a Layered Multimedia Data Model, in:
Proceedings of ACM Multimedia (San Francisco, USA, August, 1994), pp. 271–278.

6. T. Little and A. Ghafoor, Interval-based conceptual models for time-dependent multimedia data, IEEE Trans-
action on Knowledge and Data Engineering 5(4), 551–563 (1993).

7. T. Amagasa, M. Aritsugi, and Y. Kanamori, An Implementation of Interval-Based Conceptual Model for
Temporal Data, IEICE’99, Transactions on Information & System, Special Issue on Next Generation
Database Technology, Jan. E82-D(1), 136–146 (1999).

8. D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger, Temporal and spatio-temporal aggregations over data
streams using multiple time granularities, Information Systems 28(1–2), 61–84 (2003).

9. E. Megalou and T. Hadzilacos, Semantic abstractions in the multimedia domain, IEEE Transactions on
Knowledge Data Engineering 15(1), 136–160 (2003).

10. M. Hacid, C. Decleir, and J. Kouloumdjian, A database approach for modeling and querying video data,
IEEE Transactions on Knowledge and Data Engineering 12(5), 729–750 (2000).

11. J. F. Yan, Y. Zhang, and Z. H. Li, A Multimedia Document Database Model Based on Multi-Layered Descrip-
tion Supporting Complex Multimedia Structural and Semantic Contents, in: MMM’04, Proceedings of
the 10th International Multimedia Modelling Conference (Brisbane, Australia., Jan. 2004), pp. 33–37.

NEW METHODS FOR ENHANCING
THE EFFECTIVENESS OF THE DUBLIN

CORE METADATA STANDARD USING
COMPLEX ENCODING SCHEMES

István Szakadát, László Lois, and Gábor Knapp∗

1. PROBLEM OUTLINE

After several pilot projects performed in the previous years (e.g.1, 2), the Hungarian
Government decided in 2002 to start a new initiative for enhancing the digitization process
of Hungarian cultural contents within the framework called the National Digital Archive
(NDA). The most important question of the NDA concept was how the digitized cultural
content can be integrated at as high a level as possible. In order to integrate the contents
of the different archives within the NDA framework, two basic standards were offered to
the participants: the architecture described by the Open Archives Initiative (OAI) helped
the content integration, and the Dublin Core Metadata Standard was proposed for the data
exchange format. During the implementation process we were faced with some problems
when we wanted to apply qualified DC schemas.

Since the first workshop of the Dublin Core Metadata Initiative (DCMI), several au-
thorities (including ISO,3 NISO4 and CEN5) standardized the basic 15 elements of the
schema.6 The Dublin Core Metadata Element Set was originally agreed at a workshop
convened by the Online Computer Library Centre (OCLC) and the National Centre for
Supercomputing Applications (NCSA) at Dublin, Ohio in March 1995. This invitational
workshop convened selected librarians, archivists, humanities scholars, geographers and
standards makers, with the specific aim of achieving consensus on a list of metadata ele-
ments which could produce basic descriptions of data in a wide range of subject areas. Due
to its simplicity, the schema is widely accepted and used as the metadata exchange format
among different digital object domains. The Dublin Core metadata are usually expressed

∗ Budapest University of Technology and Economics, Budapest, Hungary, syi@axelero.hu, lois@hit.bme.hu,
knapp@mokk.bme.hu,

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 365

366 I. SZAKADÁT ET AL.

using XML syntax. The basic elements are represented as tags, the values are as simple
character strings, no attributes were defined. The resulting record can be easily parsed and
validated by standard XML tools, however it remains human readable.

The Dublin Core as a whole is not so stable as some established metadata standards
(like MARC) because it is a ’loose implementation model’ which is evolving as a variety
of people continue to refine it. The most important layer, the Elements of the Dublin Core
standard are fixed. Interoperability was made possible by the stable and well defined list of
15 elements.

“The simplicity of Dublin Core can be both a strength and a weakness. Simplicity lowers
the cost of creating metadata and promotes interoperability. On the other hand, simplicity
does not accommodate the semantic and functional richness supported by complex meta-
data schemes.”5

For more sophisticated document description and search support the schema had to be
extended. As a first step, DCMI qualifier attributes were introduced to refine the meaning
of the basic terms and type attributes to specify the source or syntax of the value.7 Qual-
ified DC schemas appeared for a more precise description of different document types in
several institutes (e.g. in the European Broadcasting Union).8 Although the recommended
set of qualifiers was published quite early, different needs resulted in different element and
qualifier sets, and the semantic unity could only be sustained with difficulty, and the syntax
of records became more and more confused.

The publication of DCMI Metadata Terms in 20039 can be considered as an attempt to
make the Dublin Core based metadata schemas manageable, and support interoperability
and semantic consistency, while retaining the simplicity and flexibility. The terms for var-
ious purposes were organized into a linear list. Application Profiles for the description of
resource types using the terms defined by DCMI became consistent and they now support
interoperability and novel terms can be easily defined. However, the association of ele-
ments and different extended term types (for refinement, encoding scheme or vocabulary
term) is not complete and not always consistent.

Identifying the role and possibilities of current encoding schemes recommended for
particular elements and extending their usage to all elements makes Dublin Core based
description more expressive.

2. INCONSISTENCY PROBLEMS OF CURRENT SOLUTIONS

Generally, in order to characterize a resource, a set of statements can be used, each con-
sists of a property name and a value. The Dublin Core Metadata Initiative defined a simple
system that could be accepted by most repository owners for metadata exchange. In Dublin
Core based schemas property names are represented by a set of Elements and Element Re-
finements (formerly called qualifiers), property values can be simple character strings or
can be controlled by Encoding Schemes.

Elements and Element Refinements always used to express semantics, the properties
of the resource. The Encoding Schemes have a more complex role. They are essentially
used for syntax description, but sometimes they may have semantic role either. Although

NEW METHODS FOR ENHANCING THE EFFECTIVENESS OF THE DCM STANDARD 367

all terms are defined in a single namespace, it is worth to discuss the two basic types
separately.

2.1. The First Interpretation of the Qualified DC: Qualifiers as Attributes

If we would like a more sophisticated description we need a structure, a hierarchy of
properties. Adding new elements to the basic 15 items can be easily done in a technical
sense, but if the new element is not widely accepted, interoperability remains restricted.
Better solution is to retain basic elements and use terms that narrows the meaning of the
related element. How it is possible technically?

The first attempt was to qualify DC elements with attributes. Syntactically it can be
represented by an attribute called ‘qualifier’ within the XML tag.

<dc:creator qualifier=”director”>John Smith</dc:creator>

The advantage of this method is, that the record remains human readable, and the
relation between the element and the qualifier appears in the metadata record itself. Us-
ing the qualifier attributes the application of the “dumb-down” principle (i.e. ignoring the
qualifiers not known by the client) is easy. However, in this case the qualifiers are built
in the schema and can not be changed separately. It is especially confusing in the world
of audiovisual documents, since the number of contributor or creator roles is more then
300 (according to the European Broadcasting Union’s list), which is changing rapidly and
permanently. So there are qualifiers that change independently of the remaining part of the
schema. The changes are usually initiated by different organisations than the board respon-
sible for the schema itself. Another disadvantage of such a method is, that a repository
owner with special needs either has to build his own schema (define, publish elements and
harmonize them with standards etc.), or he has to use an already accepted, but not cus-
tomized schema. That’s why, the qualifier as an attribute is not recommended by the DC
community any more.

2.2. The New Interpretation of the Qualified DC: DCMI Metadata Terms

The new recommendation is the set of the DCMI Metadata Terms, which consists of
a well defined, standardized set of the following types of terms:

• original DC Elements (like Title, Creator, Relation etc.),
• other Elements (like Audience).
• Element Refinements (like Abstract, dateAccepted etc.),
• Encoding Schemes (like ISO3166, TGN etc.),
• Vocabulary Terms (like Image, MovingImage, Text, etc.).

Using this set anyone can assemble an Application Profile by selecting proper items.
The elements, the commonly used element refinements, and the other types of terms are
collected in a common namespace, so selecting items from this controlled list ensures,
that all terms are defined and understandable for all partners in a unified way. Since both
elements and element refinements form a single namespace, the relation between them can

368 I. SZAKADÁT ET AL.

be defined at the namespace level, and need not appear in the metadata exchange records.
The element refinement term inherits all properties from the element that it refines.

“However, since Element Refinements are properties of a resource (like Elements), El-
ement Refinements can alternatively be used in metadata records independently of the
properties they refine. In DCMI practice, an Element Refinements refines just one parent
DCMI property.”11

For example, the element refinement ‘DirectorOfPhotography’ inherits all the proper-
ties of the ‘Creator’ element, but the ‘DirectorOfPhotography’ term has a narrower mean-
ing then the ‘Creator’ term, so the former can be considered as a generic subordinate of the
latter. The usage of the two terms is identical, the difference between them reveals only in
the relation of the terms described in the namespace. It is an important shift comparing to
the original qualified DC interpretation, when the qualifier of an element had different role
in the DC based description. The difference between the two interpretations is shown by
the changed naming convention:

“A shift from the former view to the latter is reflected in the names assigned by the Usage
Board to Element Refinements, with a move away from adjective-like names such as ‘cre-
ated’ (approved in July 2000) towards noun-phrase-like names such as ‘dateCopyrighted’
(approved in July 2002).”11

The consequence of this approach is that an element refinement can have just one
parent: the ‘DirectorOfPhotography’ element refinement can refine only the ‘Creator’ ele-
ment, but it can not be used to refine the ‘Contributor’ element, or conversely. It means that
the implicit organizing principle among the DCMI terms is the so called mono-hierarchy
(this term is borrowed from librarian heritage).

However this simple solution can cause some confusion. If we have an element refine-
ment term (for example the ‘DirectorOfPhotography’), this term can be subordinated to the
‘Creator’ element if we would like to describe a photo as a resource, but the same element
refinement term should belong to the ‘Contributor’ element in the case of a bibliographic
metadata schema. The same term (with the same meaning) can have two superordinated
terms. If one would use one general schema for these two cases, the element refinements
can have two (or more) parents i.e. the refinement relation is poly-hierarchical. However,
this option is unacceptable if we would like to maintain the validity of the dump-down
principle, because in this case we could not know which parent elements (‘Creator’ or
‘Contributor’) should be used if the element refinement term (‘DirectorOfPhotography’)
can not be parsed.

It has to be notified, that the basically two-level hierarchy in DCMI terms can be easily
expanded to more levels. The DCMI element refinement term has a ‘Refines’ property that
defines the generic relation to the parent element. There is no any practical example among
the DCMI Terms, but theoretically it is conceivable, that an element refinement term refines
another element refinement term. In this case we can have three or maybe more levels of
a hierarchical structure.

Using DCMI terms applications made for the handling of pure Dublin Core metadata
can be adapted easily, because the exchange format is unchanged (e.g. eprints14).

NEW METHODS FOR ENHANCING THE EFFECTIVENESS OF THE DCM STANDARD 369

Comparing the two approach:

2.3. The Two Basic Types of Encoding Schemes

The next important DCMI metadata term types are the encoding schemes which are
used to control the values of the properties of the resources. An encoding scheme can define
the parsing rules, the interpretation of the value, or even the semantics. Encoding schemes
usually appear as the value of the Type attribute in the original qualified DC schemas. The
DCMI defines only two types of encoding schemes “officially” (the first two items of the
following list); practically, however, there are three:

• Vocabulary encoding schemes,
• Syntax encoding schemes,
• Semantically structured values with optional syntax restrictions.

Looking at the list above, it can be seen that the last version promises the most flexible
description (and the most complicated as well).

‘Vocabulary encoding schemes’ are used to indicate the simple fact, that the property
value is derived from a controlled vocabulary. Using terms from the same origin is essential
to ensure integration and interoperability (e.g. the Library of Congress or Dewey Decimal
Classification). Referencing to another scheme (beyond DCMI terms), however, makes
the development of the collection management and search application more complicated.
Other vocabulary encoding schemes satisfying special requirements can be easily added.

(It is worth mentioning, that one of the DCMI vocabulary encoding schemes is princi-
pally different from the others. The Getty Thesaurus of Geographic Names is a system of
proper names, while all others are composed of common nouns.)

370 I. SZAKADÁT ET AL.

The basic ‘Syntax encoding schemes’ can help metadata harvesting clients to interpret
and validate values. For example, the W3C-DTF scheme defines date formats, supported
ISO and RFC specification the country codes, or URI syntax.

2.4. Vocabulary Terms

Among the DCMI terms there are some vocabulary terms, which are all elements of
the DCMIType encoding scheme. These terms can be the values of the ‘Type’ DC element,
and this simple fact clearly shows that these terms have different role in the DC description:
a vocabulary term can be the value of a property (an element or an element refinement). The
class of the elements of the DCMIType encoding scheme is the only one example among
the DCMI Terms for the ‘Vocabulary Terms’, but the functionalities of the DCMIType
encoding scheme and the other vocabulary encoding schemes (like LCSH, TGN) are the
same: providing uniform semantics for all terms what we would like to describe the values
of the DC properties with. From this point of view we can say, that semantically vocabulary
terms have the similar role as ‘Element refinements’ (to provide more exactly, more refined
description), however their grammatical role differs.

Although ‘Vocabulary Terms’ appear as identical parts of the term system, their func-
tionality significantly differs from the ‘Element’ and the ‘Element Refinement’ terms. The
narrowing of semantics in this case is obtained by restricting the values of a property for
a controlled list. All vocabulary terms currently registered among DCMI terms are related
exclusively to the ‘Type’ element, however all controlled lists could be treated this way.
The DCMI give preference to the ‘Type’ element over other elements (e.g. ‘Subject’). The
Vocabulary terms fit into a semantic hierarchy (using the ‘narrower’ and ‘broader’ prop-
erties of the terms), and can be expanded easily if required. For example we can say, that
the ‘type’ (‘Element’) of a resource is an ‘Image’ (‘Vocabulary term’), or a ‘Moving Im-
age’ (‘Vocabulary term’ with narrower semantics as ‘Image’), or a ‘Silent Moving Image’
(‘Vocabulary term’ with narrower semantics as ‘Moving Image’). The latter term is not
included into the DCMIType encoding scheme, but theoretically we can easily add it to
this class.

2.5. The Third Type of Encoding Scheme

In a previous section we already mentioned, that in spite of the belief of the DC com-
munity we can differentiate three types of encoding schemes. The interesting exceptions
among encoding schemes are the Box and Period terms which are intended to specify the
syntax of the Coverage and the Date Elements, and the Spatial and Temporal Element Re-
finements. Conventional syntax encoding schemes are restricted to formal syntax, thus no
more information is supplied about the document. These exceptions however provide more
semantics as well.

Let us see the Period term!10 Using the structured element value, it is possible to
determine a period without definite Start or End point, or a period with uncertain bounds
characterized by a name (e.g. ‘Middle ages’).

<dcterms:date xsi:type=”dcterms: Period”> Start=1991; End=2000;
Scheme=”W3CDTF”</dcterms:date>

NEW METHODS FOR ENHANCING THE EFFECTIVENESS OF THE DCM STANDARD 371

This – DCMI supported – encoding scheme is called DCSV (Dublin Core Structured
Value) scheme8 where punctuation characters are used in the element value to describe
a structured value as follows:

• equals-signs (=) separate plain-text labels of structured value-components from
the values themselves,

• semi-colons (;) separate (optionally labelled) value-components within a list,
• dots (.) indicate hierarchical structure in labels, if required.

If we use the Period encoding scheme to describe the value of the Date property of
a resource (as in the above example), we can know more about the resource. We could
express the same knowledge if we would define two new Element Refinements (dateStart
and dateEnd) within a NDA namespace recording the following two DC-sentences:

<NDA:dateStart> 1991 </NDA:dateStart>

<NDA:dateEnd> 2000 </NDA:dateEnd>

These two DC-records and the previous record expressed with the help of the Period
Encoding Scheme are semantically identical. The syntax of the Period term allows us to
refine the Date property of the resource within the structure of the value of this property. It
means that the Period term has not only a syntactic controlling power, but it has a semantic
refinement ability as well.

The DCMI-DCSV recommendation intends to define a compact human-readable data-
structuring method avoiding certain punctuation characters which can cause difficulties in
some encoding environments. The DCMI-DCSV notation should normally be used only
when no other suitable scheme is available. Note that some other more simple methods
exist i.e. the comma-separated value (CSV) and tab separated value (TSV) schemes but
these schemes are not human interpretable since the order of the values is fixed but not
indicated textually. The XML provides a general solution using tags contained within angle
brackets (<, >) to indicate the structure hence this approach covers the DCMI-DCSV but
the human-readability is worse.

The speciality the DCMI-DCSV scheme is that it has a semantic message besides
syntax definition as well. Note, that a syntax encoding form is embedded in the data struc-
ture. This encoding formalism is not familiar with the original DC concepts. However it is
accepted, because closely linked semantic terms can not be expressed using unstructured
values.

3. COMPLEX ENCODING SCHEMES FOR CONSISTENT DESCRIPTION

The XML attributes are commonly used to provide information that is not relevant
to the value i.e. the used encoding scheme, the unique identifier within a global system
etc. We show that the XML attribute is only slightly capable of element refinements. To
demonstrate this we show the possibilities of the refinement encoding on a simple example.

Let us imagine that we have to describe a Contributor property of a resource (its value
let it be ‘Rex Gleam’) and we would like to refine the Contributor element itself, i.e. we
would like to express Rex Gleam’s role subordinated to Contributor (let it be ‘lighting

372 I. SZAKADÁT ET AL.

Figure 1. Refined description of a property by using XML attributes.

assistant’). Assume that one has defined a ‘qualifier’ attribute for all DC elements within
the NDA namespace. By using this attribute to indicate the ‘role’ refinement we have to
introduce one more attribute to describe the content of the role since an attribute can not
contain structure or multiple values (see Figure 1):

<NDA:contributor NDA:qualifier=”role”

NDA:role=”lightingAssistant”>Rex Gleam</NDA:contributor>

Alternatively, we get the same result by avoiding the qualifier attribute:

<NDA:contributor NDA:role=”lightingAssistant”>

Rex Gleam</NDA:contributor>

On the other hand, the original schema definition files of the dublincore.org (dc.xsd and
dcterms.xsd) do not enable us to extend the schema of the DC elements with attributes
not specified by them hence only the common XML attributes are useable i.e. xsi:type or
xml:lang attributes. Hence the example above assumes that the original DC XML name-
space is overridden with a new XML schema. The name ‘lightingAssistant’ could be
a name in a namespace, but the attribute value validation of this is difficult in XML.

When we avoid using the attributes, we have two other solutions to encode the person
and his/her role:

• new term approach: a new term for each role is introduced and the value of the
term describes the person,

• structured value (or mixed encoding scheme) approach: a structure within the
XML element value is used where both the person and the role is described (see
Figure 2.)

An example for the first approach could be any dcterm element, but to solve our current
problem the result of the first approach is the following:

<NDA:lightingAssistantContributor>Rex Gleam

</NDA:lightingAssistantContributor>

NEW METHODS FOR ENHANCING THE EFFECTIVENESS OF THE DCM STANDARD 373

Figure 2. Comparing refinement using a new DC Term (left) and using structured value (right).

The second approach is based on a new XML element data type similarly to the Period
encoding scheme. The DCMI-DCSV version is the following:

<NDA:Contributor xsi:type=”NDA:personDCSVType”>

name=Rex Gleam; role=lightingAssistant </NDA:Contributor>

while an XML friendly version of the above DCMI-DCSV scheme can also be used:

<NDA:Contributor xsi:type=”NDA:personComplexType”>

<name>Rex Gleam</name>

<role>lightingAssistant</role>

</NDA:Contributor>

Since the original dc and dcterms XML namespaces do not allow to extend the types
within the namespace we have to derive a new Contributor element within a new namespace
called NDA. Of course, we can “refine” the Creator element in the same way, and we can
handle the problem mentioned earlier, that on the one hand a role, i.e. a photographer,
can belong to the Creator element (in the case of a photo schema), while on the other it
can refine the Contributor element (within a bibliographic schema). If we would like to
resolve this problem with refinement elements, we would be faced with the problem of
poly-hierarchy, which is not allowed within the DCMI, but if we use the offered DCSV-
like solution, we can semantically refine both the Creator and the Contributor elements
(even the Publisher one, also), and we do not harm the dump-down principle as well.

Using the structured value approach the role could be taken from a simple controlled
list or from a thesaurus (i.e. from a new Vocabulary Encoding Scheme), and the – se-
mantic – poly-hierarchy is also allowed, similarly to the avoided XML attribute-based ap-
proach. Furthermore, the structured value approach enables the schema designer to extend
the structure with more sub-elements and within the XML based version the ‘role’ sub-
element could be imported from a namespace:

<NDA:Contributor xsi:type=”NDA:personComplexType”>

<name>Rex Gleam</name>

374 I. SZAKADÁT ET AL.

<agent>Person</agent>

<agentID xsi:type=”NDA:agentNameSpace”>02x3h54f5f2</agentID>

<role xsi:type=”NDA:roleType”>lightingAssistant</role>

</NDA:Contributor>

The DCMI-DCSV version of the last example is a bit more complicated:

<NDA:Contributor xsi:type=”NDA:personDCSVType”>

name=Rex Gleam;

agent=Person;agentID=02x3h54f5f2; agentNS=”NDA:agentNameSpace”;

role=lightingAssistant; roleNS=”NDA:roleType”;

</NDA:Contributor>

The XML-based version could be more easily validated with an XML based system
and the validation of the DCMI-DCSV version could be validated with an application
outside the XML domain. Both versions are human-readable, but in this aspect the DCMI-
DCSV scheme is the favourable.

Extending the DC refinement formalism to the other elements, the problem of the
several possible subtypes (refinements) of the Contributor (Creator and Publisher) element
can be handled. Defining a semantic-syntactic structured Role scheme, combined with an
embedded RoleType Vocabulary Encoding Scheme containing the list of possible roles, and
namespace containing the enumerated type of the proper names of agents, makes possible
to accurately express the role-agent relation without leaving the domain of DCMI concepts.

4. CONCLUSIONS

The mission of the Hungarian National Digital Archive (NDA) is the enforcement of
the digitization of the documents of cultural heritage. Digitization does not only mean the
production of the digital representation of physical objects. The main purpose is to make
accessible cultural values, and to achieve as high a level of integration among the different
archives as possible. Based on some offered standards and solutions, the metadata of the
different archives can be freely harvested which makes simultaneous searches possible.

However, at this point an important problem arises from the differences between the
requirements of the collection management of the archives and the searching expectations
or intentions of the users, or of the searching service providers. The generalization of the
structured DCMI encoding scheme, like the term Period, will make it possible to satisfy
both the professional’s requirement of sophisticated description and the support of user
search as well.

The choice of the best solution depends on the application. First, the solution must
conform the DCMI recommendations as closely as possible hence we do not recommend
using the XML attributes for DC element refinements. When one does not have to intro-
duce many element refinements, and the mono-hierarchy is held, we recommend introduc-
ing them as a direct descendant of the DC elements like the so called dcterms. When the
new refinements require a poly-hierarchical relation to the DC elements, like the set of
the role refinements, we recommend using a child element structure within the appropri-
ate descendant of the DC or dcterms element. The structure could be based on either the

NEW METHODS FOR ENHANCING THE EFFECTIVENESS OF THE DCM STANDARD 375

DCMI-DCSV approach which can be validated against a syntax rule, or on the XML-based
approach where not only the syntax but also the content of a sub-element can be validated.
The XML-based version also enables us to use external namespace referencing, controlled
lists etc., but it is important to underline that the overall metadata structure should not be
too large or complicated since one must create and maintain the metadata and the human-
readability must be held as much as possible.

REFERENCES

1. G. Knapp, G. Magyar, and G. Németh, Building an Open Document Management System with Components
for Trust (Twelfth International Conference on Information Systems Development, Melbourne, 2003).

2. G. Magyar, G. Knapp, and I. Szakadát, Information Systems Development in the e-Age, conference paper
(Tenth International Conference on Information Systems Development, London, 2001).

3. Dublin Core Metadata Element Set – Reference Description – Version 1.1 (CEN, 2000).
4. The Dublin Core Metadata Element Set, ANSI/NISO Z39.85-2001 (ANSI, 2001).
5. Information and documentation – The Dublin Core metadata element set (ISO, 2003); http://www.niso.org/

international/SC4/n515.pdf.
6. Dublin Core Metadata Element Set, Version 1.1: Reference Description (2003); http://dublincore.org/

documents/2003/06/02/dces/.
7. Dublin Core Qualifiers (2000); http://dublincore.org/documents/2000/07/11/dcmes-qualifiers/.
8. EBU Core Metadata Set for Radio Archives, Tech 3293 (European Broadcasting Union, 2001).
9. DCMI Metadata Terms, DCMI Usage Board (2001); http://dublincore.org/documents/2003/11/19/

dcmi-terms.
10. DCMI DCSV: A syntax for writing a list of labelled values in a text string; http://dublincore.org/documents/

dcmi-dcsv/.
11. DCMI Grammatical Principles (2003); http://dublincore.org/usage/documents/principles.
12. S. Cox, DCMI Period Encoding Scheme, specification of the limits of a time interval, and methods for

encoding this in a text string (2000); http://dublincore.org/usage/documents/2000/7/11/dcm-period/
index.shtml.

13. Powell, M. Nilsson, A. Naeve, P. Johnston, DCMI Abstract Model (2004); http://www.ukoln.ac.uk/metadata/
dcmi/abstract-model.

14. http://www.eprints.org/.

FROM ANALOG INFORMATION TO DIGITAL
DATABASES – DOES IT KEEP EVERYTHING INTACT?

Hagai Kirshner and Moshe Porat∗

Abstract Information systems encapsulate digital data although the origin of many sources of
information is analog or continuous. Digital signal representation has been widely
used since Shannon formulated his sampling theorem. Still, several questions regard-
ing digital information processing remain unsolved. One of the most relevant up-to-
date goals is data storage and mining. The purpose of this work is to analyze the
relation between continuous signals, or data sources, and their digitized representa-
tion. We concentrate on the operation widely used to compare and find similarities
in vector representation, the inner-product. Applying the sampling scheme to contin-
uous information sources that do not satisfy Shannon conditions (non band-limited),
but with higher enough sampling rate, is assumed to yield only small approximation
errors. In this work it is shown, however, that this assumption should be made with
much prudence. In some cases, the result is likely to differ from that of the original
continuous signals. We provide an analytic estimation to this error of digitization, and
several applications are considered, including medical records. Our results provide a
quantitative tool for calculating sampling errors, thus affording a useful means in
evaluating the ongoing process worldwide of digitizing analog information sources.

1. INTRODUCTION

Information systems contain mainly digital data although the origin of many sources of
information is analog or continuous. This is the case in medical applications for example,
where continuous signals - physical or biological - are digitized by sampling procedures.1

As a result, one might seek for suitable digitization tools and processes, such as storage,
transmission, retrieval or classification. Digital signal representation has been widely used
since Shannon formulated his sampling theorem. In its foundation, the sampling theorem
reveals an explicit relation between a continuous signal and its samples. His major contri-

∗ Department of Electronics, Computers and Communication, Faculty of Electrical Engineering, Technion – Is-
rael Institute of Technology, Haifa 32000, Israel. kirshner@tx.technion.ac.il, mp@ee.technion.ac.il.

377

378 H. KIRSHNER AND M. PORAT

bution in the field of information representation is the basis for many present achievements
in information technology. Still, several questions regarding digital information processing
remain unsolved. One of the most relevant up-to-date goals is data storage and mining.
With the ever-increasing amount of stored data, one needs reliable tools to compare and
retrieve relevant data from available databases.

The purpose of this work is to characterize the relation between continuous signals,
or data sources, and their digitized representation. We concentrate on the operation widely
used to compare and find similarities in vector representation, the inner-product, denoted
here as 〈a, b〉, where a and b are two vectors or signals (including images) in the database.
This measure of inner-product, which acquires high values if two vectors are similar, and
a zero value when they are totally different or orthogonal, is a useful tool in comparing
images, speech signals, medical records, and the like. In this paper we will refer to the most
common definition of inner-product: for two continuous data sources f (t), g(t), the inner
product is defined as 〈f (t), g(t)〉 = ∫

f (t)g(t)dt , and for two digitized sources a[n], b[n],
the inner product is defined as 〈a[n], b[n]〉 = ∑

a[n]b[n].
For example, consider three images containing two portraits and a tree (Figure 1).

Examination of the ensued inner-product values enables one to classify them properly,
similarly to what a human being would agree with:

Figure 1. Two portraits (a) and (b), and a landscape image (c). As expected, the inner-product provides a measure
of similarity, as judged by the human observer: 〈a, b〉 = 0.80, 〈a, c〉 = 0.55, 〈b, c〉 = 0.62. These numbers are
normalized, such that 〈a, a〉 = 〈b, b〉 = 〈c, c〉 = 1.

The inner-product serves additional purposes, such as signal representation. In this
context, this work can also contribute to situations in which sampled information is used
for calculating representation coefficients of a signal with respect to a given set of basis
functions.

2. THE PROBLEM

Practically, the inner-product measures the similarity of two data sources (continuous
or digitized), thus giving rise to applications of data retrieval, data compression and pattern
recognition.2, 3 The question raised in this work is whether the inner-product as performed

FROM ANALOG INFORMATION TO DIGITAL DATABASES 379

Figure 2. Several orthogonal Hermite functions.

in the analog or continuous domain is equal, or at least similar, to the result one may get in
the digital domain of the same two entities, assuming that the digital signals are the sampled
version of the continuous signals. The following two examples provide some insight into
the problem.

2.1. Example 1: Digitizing MEG Signals

The Hermite functions constitute a useful basis for the vector space of continuous-
time function known as L2 (Figure 2). These functions are most suitable for describing
continuous data sources that have finite time support. Such signals are MEG (myoelectro-
graph), ECG (electrocardiogram) and EEG (Electroencephalogram) signals, widely used
in medical examination, storage and analysis. This set of functions is given by:

hn (t) = Hn (t) · e−t2/2

π1/42n/2 (n !)1/2

where Hn (t) are the Hermite polynomials, defined by a recursive formula:⎧⎪⎨
⎪⎩

gt · Hn (t) = 1
2 · Hn+1 (t) + n · Hn−1 (t)

H0 (t) = 1,H1 (t) = −2t, H2 (t) = 4t2 − 2,H3 (t) = −8t3 + 12t,

H4 (t) = 16t4 − 48t2 + 12 . . .

380 H. KIRSHNER AND M. PORAT

Figure 3. The inner product of two Hermite orthogonal functions h0(t), h2(t) (top) in the continuous-time space
is calculated and shown in the digital domain. Although the inner-product is supposedly zero, it is shown that in
a digital database this inner-product is dependent on the sampling rate. Shown is the result as a function of the
sampling interval in linear (bottom, left) and logarithmic (bottom, right) coordinates.

Figure 4. Similar to Figure 3, for two different orthogonal functions h1(t), h3(t).

The inner-product of any two Hermite functions is zero, making them a set of orthog-
onal functions. Their sampled sequences, however, are not necessarily orthogonal, making
these basic functions a suitable example to analyze and consider. Figures 3–5 illustrate the
variation of the ensued (digital) inner-product as a function of the sampling interval. Some
numerical results are also shown in Table 1.

FROM ANALOG INFORMATION TO DIGITAL DATABASES 381

Figure 5. Similar to Figure 3, for the orthogonal functions h0(t), h1(t) of Figure 2. This figure exhibits or-
thogonality of the sampled sequences regardless of the sampling interval. This is due to the symmetry and anti-
symmetry properties of the sampled functions.

Table 1. Comparison of analog- vs. digital inner product at several sampling intervals

Now, consider a simulated MEG signal g(t), composed here of five Hermite functions:1

g(t) = 0.03h0(t)−1.076h1(t)−0.012h2(t)+0.34h3(t)−0.089h4(t)−0.122h5(t). When
incorporating this signal into a medical database, digitization is a necessary step. The most
convenient way, thus common, is simply record g(t) at discrete, equally spaced set of
points. Upon acquisition, one may ask: “how much is the first Hermite function h0(t)

dominant within this signal?”. A natural way of answering this question is by applying
vector-like inner product calculation. However, it can be shown that the ensued value is
dependent upon the sampling interval T . For example, Figure 6 describes the calculated
expansion coefficient of g(t) with respect to h0(t) at various sampling intervals.

Since the correct value is known in this example (should be 0.03) it can be concluded
that the approximation error is as depicted in Figure 7. Some numerical results are shown
in Table 2.

382 H. KIRSHNER AND M. PORAT

Figure 6. MEG signal (top) and its estimated component h0(t) as a function of its sampling rate, using logarithmic
(bottom left) and linear (bottom right) coordinate systems.

Figure 7. E stimation error of simulated MEG signal with respect to h0(t) at various sampling intervals.

Table 2. Comparison of analog- vs. digital inner product at several sampling intervals

FROM ANALOG INFORMATION TO DIGITAL DATABASES 383

Figure 8. Two-dimensional (orthogonal) Hermite functions of order (0,0) (1,1) (3,1) & (4,2) used in analog image
representation.

2.2. Example 2: Digitizing an Image

Suppose that one needs to acquire a two-dimensional data source such as a medical
image. Again, digitization is a necessary step, and is done by recording the image at equally
spaced grid of sampling points. Now, consider a simple image g(x, y) composed of four
two-dimensional functions:

g (x, y) = 0.5h0,0 (x, y) + h1,1 (x, y) − 0.8h3,1 (x, y) + 1.5h4,2 (x, y)

where hm,n (x, y) are two-dimensional Hermite functions (Figure 8).
Assuming that the relative contribution of h4,2(x, y) to the acquired image is needed,

the calculated coefficient based on sampled values is again dependent on the sampling
interval as shown in Figure 9. Furthermore, here, in the two-dimensional case, it differs
from the known value of 1.5 even when the sampling resolution is relatively high (Figure 9
and Table 3).

In both examples, it is of major interest to predict these errors beforehand, i.e., prior
to sampling, where essential information may be lost. Shannon’s sampling theorem is of
limited use here since most signals, including medical records, do not satisfy Shannon’s
conditions with regard to being band-limited, like in fact all finite signals widely used in
databases and information systems.

384 H. KIRSHNER AND M. PORAT

Figure 9. A test image (a) and the expansion coefficient error (b) with respect to at various sampling grid resolu-
tions.

Table 3. Comparison of analog- vs. digital inner product at several sampling intervals

3. THE PROPOSED SOLUTION

Having considered these differences between digital and analog calculations of inner-
product, we introduce in this paper two theorems that provide an analytic prediction of the
result, based on typical characteristics of the signals involved. The first theorem deals with
the less prevailing band-limited signals. Although not very common, this is the basis for
the second, more practical theorem:

Theorem 1. Let f (t), g(t) be two band-limited data sources. Then, digitizing them
does not affect their inner-product if multiplied by the sampling interval T . i.e. the relation
〈f (t), g(t)〉 = T · 〈f [n], f [n]〉 holds for any T that satisfies the sampling theorem.

The more advanced Theorem deals with the more practical situation of general con-
tinuous data sources:

Theorem 2. Let f (t), g(t) be any two continuous-time data sources. Then, digitizing
them does affect their inner-product value. i.e. 〈f (t), g(t)〉 �= T · 〈f [n], g[n]〉. Given their
spectral transform4 f̂ (ν) and ĝ(ν) of the continuous-time signalsf (t), g(t), respectively,
the digital inner-product is calculated as follows:

〈
f [n] , g [n]

〉 = 1

T
·

∞∑
n=−∞

∫
f̂ (ν) · ĝ(n/T + ν)dν,

where an over-bar denotes complex conjugate. The proof for this theorem is given in the
appendix.

FROM ANALOG INFORMATION TO DIGITAL DATABASES 385

The use of these theorems, in particular Theorem 2, can be helpful in evaluating
the required sampling rate of analog signals. The only required information is the spec-
tral Fourier statistics of the digitized signals, which is readily available in most cases of
continuous-time data sources. It can easily shown that Theorem 2 can predict all the exper-
imental results encountered in the above two examples of the previous section.

4. CONCLUSIONS

In this work, we have introduced and analyzed a source of errors in the commonly
performed process of digitization, where analog information is transformed into digital
records to be used in information systems. The situation was analytically investigated us-
ing the tool of inner-product, which is useful in pattern recognition, data retrieval, storage,
compression and classification applications. It has been shown that the inner-product is not
digitization-invariant. Although frequently used, applying vector-like inner product calcu-
lation is erroneous in many cases.

Using our proposed theorem, we provide an analytic estimation of this digitization
error, using a general sampling scheme, and derive our result within the spectral domain.
Several applications have been considered, including the case of medical records. Since
our results provide a quantitative tool for calculating sampling errors, they afford a use-
ful means in evaluating the ongoing process worldwide of digitizing analog information
sources.

APPENDIX

Definition. Let g(t) ∈ L2. Given any ϕ̃(t) ∈ L2, the sampling functional by in-
terval T with respect to ϕ̃(t) would be the series g[n] = 〈g(t), (1/T)ϕ̃ (t/T − n)〉
n = 0,±1,±2

Lemma 1. It is guaranteed that {g[n]}∞n=−∞ ∈ l2. However, in order to include ϕ̃(t) =
δ(t) /∈ L2 within this sampling scheme, another constraint must be imposed on the function
to be sampled.

Lemma 2. Let g(t), g′(t) ∈ L2. If ¯̃ϕ(ν) < ∞ then{g[n]}∞n=−∞ ∈ l2. For a proof, see
[5, Appendix C].

Definition. Let ϕ(t) ∈ L2 such that {ϕ(t − n)}∞n=−∞ fulfills Riesz condition. Given
the space VT (ϕ) = Span{ϕ(t/T − n)}∞n=−∞, the function {QT g}(t) = ∑∞

n=−∞ g[n] ·
ϕ(t/T − n) would be the approximation of g(t) within VT (ϕ) by the sampling functional
{g[n]}∞n=−∞.

Definition. The autocorrelation series of ϕ(t) is given by aϕ[n] = 〈ϕ(t − n),ϕ(t)〉 =
〈ϕ̂(ν)e−2πιnν, ϕ̂(ν)〉 = ∫∞

−∞ ϕ̂(ν)ϕ̂(ν)e−2πιnνdν. Its Fourier transform is then,

Ãϕ (θ) =
∞∑

n=−∞
aϕ [n] e−ιθn =

∞∑
n=−∞

∫ ∞

−∞
ϕ̂ (ν) ϕ̂ (ν)e−2πιnνdνe−ιθn

386 H. KIRSHNER AND M. PORAT

=
∫ ∞

−∞
ϕ̂ (ν) ϕ̂ (ν) ·

[∞∑
n=−∞

e−2πιnνe−ιθn

]
dν

=
∫ ∞

−∞
∣∣ϕ̂ (ν)

∣∣2 ·
[∞∑

n=−∞
δ

(
ν + θ

2π
− n

)]
dν

=
∞∑

n=−∞

∣∣∣∣ϕ̂
(

n − θ

2π

)∣∣∣∣2 =
∞∑

n=−∞

∣∣∣∣ϕ̂
(

−
(

θ

2π
− n

))∣∣∣∣2

=
∞∑

n=−∞

∣∣∣∣ϕ̂
(

−
(

θ

2π
+ n

))∣∣∣∣2

Example. Let g(t), g′(t) ∈ L2, and the series g[n] its sampling functional by interval
T0 with respect to ϕ̃(t) = δ(t). The approximation of g(t) within the space of finite-energy,
bandlimited functions [−π/T1, π/T1] is

{QT g}(t) =
∞∑

n=−∞
g(nT0) sin c(t/T1 − n).

Exact reconstruction occurs when T0 = T1. If T0 > T1, aliasing occurs. One should
also note that the autocorrelation series of ϕ(t) = sin c(t) is a[n] = T δ[n](Ãϕ(ν) = T).

Lemma 3. Given non-complex analysis (ϕ̃) and synthesis (ϕ) functions,

〈QT g,QT h〉 =
∞∑

n=−∞

∫ ∞

−∞
ĝ (ν) ĥ

(n

T
+ ν

)
· ˆ̃ϕ (νT) ˆ̃ϕ (n − νT) · Âϕ (2πνT)dν.

Proof.

{QT g} (t)

= 1

T

∞∑
n=−∞

[∫ ∞

−∞
g (τ) · ϕ̃

(τ

T
− n

)
dτ

]
· ϕ

(
t

T
− n

)
︸ ︷︷ ︸

= 1

T

∞∑
n=−∞

[∫ ∞

−∞
g (τ) · ϕ̃

(τ

T
− n

)
dτ

]
·
︷ ︸︸ ︷
T

∫ ∞

−∞
ϕ̂ (νT) e−2πινT e2πινtdν

=
∫ ∞

−∞
ϕ̂ (νT) e2πινt ·

{ ∞∑
n=−∞

[∫ ∞

−∞
g [τ] · ϕ̃

(τ

T
− n

)
dτ

]
· e2πι(−ν)T

}
︸ ︷︷ ︸

dν

=
∫ ∞

−∞
ϕ̂ (νT) e2πινt ·

︷ ︸︸ ︷
∞∑

n=−∞
ĝ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT) dν

= Fourier−1

{ ∞∑
n=−∞

ĝ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT) · ϕ̂ (νT)

}

FROM ANALOG INFORMATION TO DIGITAL DATABASES 387

Now, due to invariance of the inner product under Fourier transform, one can write:

〈QT g,QT h〉 =
〈
Q̂T g, Q̂T h

〉
=

∫ ∞

−∞
Q̂T g (ν) Q̂T h (ν)dν

=
∫ ∞

−∞

∞∑
n=−∞

ĝ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT) · ϕ̂ (νT)

·
∞∑

n=−∞
ĥ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT) · ϕ̂ (νT)dν

=
∫ 1

2T

− 1
2T

∞∑
n=−∞

ĝ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT)

·
∞∑

n=−∞
ĥ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT) ·

∞∑
n=−∞

∣∣ϕ̂ (νT + n)
∣∣2 dν

=
∫ 1

2T

− 1
2T

∞∑
n=−∞

ĝ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT)

·
∞∑

n=−∞
ĥ
(n

T
+ ν

)
· ˆ̃ϕ (n − νT) · Âϕ (−2πνT) dν

=
∫ ∞

−∞
ĝ (ν) ˆ̃ϕ (−νT) ·

∞∑
n=−∞

ĥ
(n

T
+ ν

) ˆ̃ϕ (n − νT) · Âϕ (−2πνT) dν

=
∞∑

n=−∞

∫ ∞

−∞
ĝ (ν) ĥ

(n

T
+ ν

)
· ˆ̃ϕ (−νT) ˆ̃ϕ (n − νT) · Âϕ (−2πνT) dν

Restricting ourselves to non-complex analysis (ϕ̃) and synthesis (ϕ) functions yields:

〈QT g,QT h〉

=
∞∑

n=−∞

∫ ∞

−∞
ĝ (ν) ĥ

(n

T
+ ν

)
· ˆ̃ϕ (−νT) · ˆ̃ϕ (n − νT) · Âϕ (2πνT)dν

which proves the Lemma. Applying ϕ̃ (t) = δ (t) and ϕ (t) = sin c (t):〈{T · g (nT)}∞n=−∞ , {T · h (nT)}∞n=−∞
〉

= 〈QT g,QT h〉 =
∞∑

n=−∞

∫ ∞

−∞
ĝ (ν) ĥ

(n

T
+ ν

)
· 1 · 1 · T dν

proves the theorem.

388 H. KIRSHNER AND M. PORAT

ACKNOWLEDGMENTS

This research was supported in part by the HASSIP Research ProgramHPRN-CT-
2002-00285 of the European Commission, and by the Ollendorff Minerva Center. Minerva
is funded through the BMBF.

REFERENCES

1. L. R. Lo Conte, R. Merletti, and G. V. Sandri, Hermite expansions of compact support waveforms: Applica-
tions to myoelectric signals, IEEE Trans. Biomed. Eng. 41, 1147–1159 (1994).

2. R. O. Duda, P. E. Hart, and D. Stork, Pattern Classification, Second Edition (2001).
3. S. R. Kulkarni, G. Lugosi, and S. S.Venkatesh, Learning Pattern Classification, IEEE Trans. Info. Theory

44(6), 2178–2206 (1998).
4. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, Singapore, 1986).
5. T. Blu and M. Unser, Approximation error for quasi-interpolators and (multi) wavelet expansions, Applied

and Computational Harmonic Analysis 6, 219–251 (1999).

MODEL AND KNOWLEDGE MANAGEMENT
IN DISTRIBUTED DEVELOPMENT:

AGREEMENT BASED APPROACH

Darijus Strašunskas and Yun Lin∗

1. INTRODUCTION

Models are built to share knowledge or definitions with other people, and this applica-
tion is especially directed to people that want to share knowledge or define knowledge in
co-operation with others. Modeling is seen as “the activity of formally describing some
aspects of the physical and social world around us for purposes of understanding and
communication”,1 and is applied in the early phases of information system analysis and
design. However, many problems are encountered when building models. It is conceiv-
able that a variety of different versions of models will be used in different stages of the
development process; in general, it is difficult to develop a model that can be acceptable
for all participants in a development project. Furthermore, it is known that different peo-
ple usually present different models given the same domain and the same problem. The
same information about system can be modeled at various levels of abstraction and from
different viewpoints considering different aspects. Variations among models generally ap-
pear due to the creative nature of the modeling activity, as well as other factors such as the
richness of the modeling language,2 the ambiguities of modeling grammars, and others.

This problem becomes more evident when the process is distributed. Then the vari-
ability of the model versions increases due to the highly interactive and iterative nature of
the development process and to the different, sometimes conflicting, angles to the prob-
lem and solution taken by the different stakeholders. Therefore, modeling process can be
viewed as three dimensions of requirements engineering:3 agreement, representation and
specification dimension. The agreement dimension should be based on common under-
standing about problem domain, organizational strategy; the representation dimension is
based on the essential semantic aspects of system analysis; the specification dimension

∗ Darijus Strašunskas, Dept. of Computer and Information Science, Norwegian Univ. of Science and Technology,
NO-7491 Trondheim, Norway and Department of Informatics, Kaunas Faculty of Humanities, Vilnius Univer-
sity, 44280 Kaunas, Lithuania, dstrasun@idi.ntnu.no. Yun Lin, Dept. of Computer and Information Science,
Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway, yunl@idi.ntnu.no.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 389

390 D. STRAŠUNSKAS AND Y. LIN

bases on the implementation oriented system development aspects. The most difficult in
modelling is to arrive at a coherent, complete and consistent description of the problem
and domain. Description should be shared and agreed between all stakeholders. Therefore,
we focus on the agreement dimension that deals with the consolidation of logically and
geographically distributed views.3

In this paper, we discuss distributed modeling, focusing on support for individual
developers and allowing them expressing their view and perception of the Universe of
Discourse (UoD) in model fragments, which are integrated based on common agreement
among them. The paper is further structured as follows. Section 2 overviews related work.
In Section 3, we further elaborate complexity of distributed modeling, discuss settings for
our approach and present the approach. In Section 4, we illustrate our approach using ex-
ample from a travel domain. Finally, Section 5 concludes the paper and lays down future
work.

2. RELATED WORK

Many proposals on model composition are available in the literature. Model compo-
sition in a distributed heterogeneous environment has been the subject of a few recent
research activities. Namely, the merging of ontologies is one of the recent model merg-
ing scenario. Collaboration during the modeling is one of the most important features of
the ontology building tools, as ontology is seen as an explicit representation of a shared
conceptualization.4 However, less than half of ontology building tools surveyed in 5 have
a multi-user support. Even the tools supporting collaborative ontology development still
do it in the old-fashioned way, i.e. do not allow multiple accesses to concept (object) by
different developers at the same time. The work that has been done so far in the area of
collaborative work with ontologies mainly has focused on one ontology which is edited by
the developer. I.e., the web-based Ontosaurus∗ supports collaboration and allow developers
to edit ontology only when consistency is retained within the ontology as a whole.

Environments like Protégé† or Chimaera‡ offer sophisticated support for ontology en-
gineering and merging of ontologies, but lack sophisticated support for collaborative en-
gineering. Chimaera is build on top of Ontolingua Server6 and, therefore, has the same
support for collaborative engineering, i.e. read and write access rights to ontologies are
controlled by the ontology owner; users are able to join a session and work simultaneously
on the same ontology.

Some tools provide advanced support for communication between users contributing
to better collaboration during ontology engineering, e.g. Tadzebao7 supports both asyn-
chronous and synchronous discussions on ontologies; Apecks8 aims to support discussion
about ontologies and allows different conceptualizations of a domain to co-exist.

In9 we found the first attempt to use a totally distributed environment to work with
ontologies. They present their work with the peer-to-peer Semantic Web. It allows users

∗ http://www.isi.edu/isd/ontosaurus.html.
† http://protege.stanford.edu/.
‡ http://www.ksl.stanford.edu/software/chimaera/.

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 391

to create, maintain, and control sharing of ontologies in a P2P environment. Although it
allows users to add parts to ontologies, but it mainly seems to be built for maintaining,
sharing and retrieving other ontologies.

WebOnto∗ is a web-based tool for developing and maintaining ontologies. It includes
functions such as visualization, browsing and editing ontologies. The tool includes func-
tionality for sharing changes between users. Mintra et al. 10 present a toolkit called Onion.
It is a toolkit to help domain expert bridge the gap between smaller domain specific on-
tologies by creating links between ontologies based on their context. Before Onion was
developed most research on ontology construction focused on tools for building a single
global ontology.

Hozo11 environment for distributed ontology development is focused on building a
single ontology by on splitting it into components and establishing dependency between
them. The target ontology is obtained by compiling the component ontologies. System
does not allow multiple accesses to a concept by different developers at the same time, as
developers have assigned a particular component ontology to develop. OntoEdit12 allows
multiple user access to the same ontology to build it collaboratively. It provides namespace
mechanism allowing splitting ontologies into modules.

In summary, most tools provide the collaborative facilities by supporting basic require-
ments for distributed development, e.g. rights- and user management, locking mechanism,
communication and notification means. Even most sophisticated modeling environments
do not provide means for development of the shared conceptualization, i.e. allowing users
to develop overlapping fragments of models based on their own understanding and percep-
tion of the real world.

3. DISTRIBUTED MODELING

3.1. Complexity of Distributed Modeling

Model development is a complex and difficult task. It is usually a creative and col-
laborative process, during which different stakeholders are focusing on various aspects,
expressing them at different levels of abstraction, and producing several variants of each.

Different levels of abstraction of the same system enable to deal with complexity by
removing details from model. The model must be able to act as an efficient and effective
communications medium between the different parties involved in development project.
Usually, models are augmented by details on each development step.

A system can be described from many viewpoints. Each viewpoint defines what char-
acteristics should be included in its views and what issues should be ignored or treated
as transparent. A view is, therefore, a piece of the model that is small enough to compre-
hend but that also contains all relevant information about a particular concern. Variants
dimension is more concerned with different versions and configurations.

The success of distributed project depends on how well “laissez-faire” rule is obeyed,
meaning that developers should be allowed to express what they want in whatever form.

∗ http://webonto.open.ac.uk/.

392 D. STRAŠUNSKAS AND Y. LIN

More precisely, Farshchian13 emphasized a list of requirements for development environ-
ments to enable collaboration in geographically distributed developments. Here we adopt
the requirements (Req.n) as follows.

Req.1 - Unrestricted product object types – a development environment should allow
the developers to share any type of object that they might find useful for supporting their
cooperation.

Req.2 - Unrestricted relation types – a development environment should allow the
developers to create any type of relation between any two objects.

Req.3 - Incremental product refinement – a product development environment
should provide the developers with flexible mechanisms for incrementally refining the
product. The developers should be allowed to start with vague products, and to refine them
into more complete and formal ones.

Concurrent engineering changes old practice, when all the required objects were locked
during the whole change/modification activity. Each software engineer should have direct
access to all needed objects. But changed version should be kept with access forbidden
for other developers during modification, because the state of fragment is inconsistent in a
modification phase. If n engineers change the same object concurrently, this object should
have n + 1 different copies.14 It means that each developer needs the private copies of
fragments. On the other hand, the colleagues know that other changes possibly are done
on the same fragments/objects and want to be incorporated when relevant. In summary,
collaborative distributed development needs tools that allow the creation and access to a
central composite product, and at the same time support development in local workspaces.

3.2. Knowledge Preservation

In a collaborative environment where different users work on models, it is important
that there is a way of sharing own views, and step by step achieving agreement and common
conceptualization. This is usually called model integration and can be accomplished by
merging or term alignment. It is important to keep term merging separated from the term
alignment. Merging means that one new model is created from n existing models. Model
alignment is when links are created between models, so that the models can be used as one.

Although, the initial goal is usually to develop a single model of the UoD, it turns out
to be very important to preserve and model the various “views” of the information seen by
different stakeholders and participants during the system analysis phase. Usually, different
developers might have different vocabulary to express their perception of the world. It is
important to preserve knowledge of developer that is expressed in the model fragment she
has developed. We need to ensure that developer’s work will not be disturbed, for instance,
if a developer uses term ‘aircraft’ referring to ‘airplane’, this term should be preserved in
her local view, otherwise after several changes it will be difficult to continue.

3.3. An Approach

Underlying hypothesis of our approach is that given the same problem domain to rea-
son about, the model developed by different stakeholders will not only differ, but as well
will have some overlapping parts, i.e. some parts (views) in different models are com-

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 393

Figure 1. Functional view of our approach.

monly shared. In order to integrate the distributed models, these commonalities should be
captured.

Our approach consists of 3 basic steps (see Figure 1):
Step 1 - Model matching and similarity identification. Model integration typically

involves identifying the correspondences between two models, determining the differences
in definitions, and creating a new model that resolves these differences. Four types of view
differences are described in15, which were paraphrased by Hefflin and Hendler:16

• terminology: different names are used for the same concepts;
• scope: similar categories may not match exactly; their extensions intersect, but

each may have instances that cannot be classified under the other;
• encoding: the valid values for a property can be different, even different scales

could be used;
• context: a term in one domain has a completely different meaning in another.

Some of the above listed problems might be found and resolved automatically, i.e.
scope, context. At present, there exists a number of automated schema and model matching
systems, for instance,17−25 which produce correspondence suggestion between elements of
different models. In general, match algorithms developed by different researchers are hard
to compare since most of them are not generic but tailored to a specific application domain
and model types. Usually, use of only one approach will not produce good enough match-
ing; for better results we need to combine several schema matching approaches. Currently,
we are investigating which combination of techniques is most applicable for our approach.

Step 2 - “Sameness” identification. Given current techniques for correspondences as-
sertion between models, it is possible to calculate quite precise similarity of the concepts.
However, it is impossible to identify the “sameness” of concepts without knowing authors’
intention. Therefore, manual intervention and agreement is necessary at this step. The au-
thors of all model fragments are notified about the results of the model matching and are
asked to verify them by pointing the same concepts and achieving agreement about the
concept name, if they use different terms.

These two steps (step 1 and step 2) are iterated as many times as new fragments are
signed-in to the repository. Step 2 results in the common knowledge layer or so called
“concept-space”, where the commonly agreed concepts and relations between them are
placed. This layer is used to differentiate from the local namespace, which is kept unique
for each developer allowing to use own vocabulary. Figure 2 exemplifies the idea behind
our approach. I.e. after having identified the concepts being the same, despite of different

394 D. STRAŠUNSKAS AND Y. LIN

Figure 2. Management of “sameness”.

term used to name them, the “equality” relationship is established between local concepts
named ‘A1’ and ‘A2’, and the agreed concept named ‘A’.

Step 3 - composition of models. In this step a final application dependent model is
produced based on agreed view and formed model in the common concept space.

3.4. Further Elaboration

Since distributed models are built by different modelers having various modeling pur-
poses and viewpoints, the perspectives of different models may be far from each other.
Context similarity is considered during the agreement and identification of the same con-
cepts. Some constraints in different local models may conflict with each other, even being
agreed and integrated in common models. Furthermore, some concepts and relationships
in the integrated models may be redundant or may need to be further specified, i.e. what
to do with derived relationships or model fragments at different abstraction levels. Further,
we introduce more rules for model refinement (step 3).

Here, we mainly focus on static (class) diagram which presents concepts and their
relationships. Hence, the integration refining issues include abstracting concepts and re-
fining concepts, adding and deleting properties of concepts, adjusting types of properties,
abstracting transitive relationships into high level relationships and refining relationships
into low level relationships. We define a set of generic rules for the above mentioned refine-
ment transformations. Before formulizing those refining issues, we make some definitions.
Let UoDI be universe of discourse for integrated model, and UoDD– universe of discourse
for particular local model fragments. Then, CD is a concept used from a local model frag-
ment and CI is the concept in the integrated model. P(c) is the set of properties of concept
C and p is a property. While, R(Ci ∗ Cj) is the relationship between concepts Ci and Cj .

Rule 1. Abstraction of concepts. Concepts used in local models are usually more con-
crete. Often, during the integration, super concepts are needed to generalize those sub con-
cepts, or even replace sub concepts if the sub concepts are not important in an integrated
model.

Let, CDi and CDj be two concepts from a model i and model j . Both concepts are
elements from the same domain (UoD). Then a concept CI from the domain of integrated
model will be a super concept of CDi and CDj in the integrated model.

CDi ∈ UoDI ∧ CDj ∈ UoDI ∧ ∃CI (CI ∈ UoDI ∧ CDi ⊆ CI ∧ CDj ⊆ CI)

⇒ CI = Abstract(CDi, CDi) (1)

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 395

Rule 2. Refinement of concepts. There is a need to create new concepts, when UoDI
of an integrated system is broader than the one considered in the local model fragments.
Some of such concepts are created based on a relationship between existing concepts.

R(CDi ∗ CDj) ∈ UoDI ∧ ∃CI (CI ∈ UoDI ∧ CI /∈ UoDDi ∧ CI /∈ UoDDj)

⇒ Create(CI , R(CDi ∗ CDj)) (2)

Rule 3. Addition and/or deletion of properties of concepts. Certain properties of con-
cepts are ignored in the distributed model fragments as being not important in a limited
scope or in a certain viewpoint, but they might be critical for an integrated system. On the
other hand, certain concepts contain too many details which are necessary in some iso-
lated models, but inessential for the integrated system. Properties need to be further edited
according to requirements for new integrated system.

∃p(p ∈ UoDI ∧ p /∈ P(CD)) ⇒ AddProp(p,CI) (3)

∃p(p ∈ P(CD) ∧ p /∈ UoDI) ⇒ DelProp(p,CD) (4)

Rule 4. Adjustment of types of properties. Types of properties usually concern im-
plementation oriented aspects, and have little effects on the semantics of models. Meaning
that possibly the same property has different types in different models. In order to keep
the consistency of integrated model, types of the same property should be unified obeying
implementation requirements of system.

Let Sem(p) be the semantics of property p and T(p) be the type of property p.

Sem(pDi) = Sem(pDj) ∧ T (pDi) �= T (pDj) ⇒ Adjust(T (pDi), T (pDj)) (5)

Rule 5. Abstraction of transitive relationships into higher level relationships and re-
finement of relationships into lower level relationships. A transitive relationship is the se-
mantic equivalent of a collection of normal relationships.26 The transitive abstraction re-
lationship is the high level relationship and a direct relationship which can not be refined
is low level relationship. With different requirements, perhaps only high level relation-
ship is enough while on other cases low level relationship is necessary. There are three
generic relationships – generalization, aggregation and association, which are supported
by most modeling languages. The transitive abstraction rules for different combination of
three generic relationships are different. In27, they developed a set of transitive abstraction
rules for inference of transitive relationships (e.g., classA-association-> classB<- aggrega-
tion-classC ⇒ classA-weakAssociation->classC, meaning that, if classA has association
relation with classB, and classB is aggregated into classC, then the resulting abstraction
would be weak association between classA and classC), which we do adopt for our pur-
poses. Given the combination of R(CDi ∗ CDj) and R(CDj ∗ CDk) satisfies one of transitive
rules, the result would be R(CDi ∗ CDk), while R here is specified as either generalization
(RGe), aggregation (RAg) or association (RAs) and parameters are non-transitive.

R(CDi ∗ CDj) ∪ R(CDj ∗ CDk) ∈ RuleSet ⇒ R(CDi ∗ CDk) (6)

The refinement process based on rules is semi-automatic. Developers need to make
decision on what concepts and what properties are important, at what kind of granularity
concepts and relationships should kept as they depend on the requirements of integrated
system.

396 D. STRAŠUNSKAS AND Y. LIN

Figure 3. Airplane transportation model fragment.

4. APPLICATION OF THE APPROACH

In this section, we exemplify our approach using a case from a travel domain. There
are requirements to build a travel agency system which provide airplane and train ticket,
and hotel booking services as well to provide other tourism information. Separate models
are made by different modelers and later they are integrated into one model. To illustrate
our approach, we focus on two model fragments: airplane and train transportation model
fragments. Then these two models will be integrated as a part of the whole travel agency
system model.

Airplane transportation model fragment describes basic concepts and their relation-
ships about flight. Figure 3 shows UML class diagram for airplane transportation. Train
transportation model fragment contains concepts and relationships about train transporta-
tion information and is depicted in Figure 4, using UML class diagram as well.

Step 1. Model matching and similarity identification. Because both two models are
built in UML and they are quite similar in structure and in context, the model similarity
can be identified by current available schema and model matching systems.17−25 In this
particular case, we have adopted iMapper,25 developed in our group. Most similar concepts
pairs from the two models are {Schedule, Timetable}, {Flight, Trip}, {City, City} and
{Route, Route}∗ (see Figure 5).

Step 2. “Sameness” identification. With the list of similar concept pairs, modelers
should reach agreements on whether two concepts are same or not (see Figure 5). Concepts
‘Schedule’ and ‘Timetable’ are regarded as being the same, only different terminology
used. ‘Timetable’ is decided as a common concept name for this concept, so ‘Timetable’ is

∗ The first concept in parentheses is from airplane transportation ontology model fragment and the second one is
from train transportation ontology model fragment.

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 397

Figure 4. Train transportation model fragment.

Figure 5. Explanatory visualization of mappings between models in local namespaces (bottom part) and concept
space (upper part).

put in the common concept-space and is referred by ‘Schedule’ in airplane transportation
model fragment and by ‘Timetable’ in train transportation model fragment. ‘Trip’ is put in
the common concept-space as the reference of ‘Flight’. Trip is chosen because the name of
‘Flight’ is more specified to airplane but the structure of it is same as ‘Trip’ concept. Two
‘Routes’ concepts are regarded as the same. Two ‘City’ concepts look almost the same, but
the type of property ‘country code’ in two models are different: one is ‘int’ and the other
is ‘char’. Such difference is kept in common concept space and will be resolved in step 3
as it depends on an application.

398 D. STRAŠUNSKAS AND Y. LIN

Step 3. Composition of model. As ‘AirlineCompany’ and ‘RailwayCompany’ refer to
different entities, the way to integrate them is by generalizing and relating them by more
abstract concept. Therefore, we apply Rule 1 (see Eq. 1):

(AirlineCompany ∈ TravelDomain) ∧ (RailwayCompany ∈ TravelDomain)∧
(TransportCompany ∈ TravelDomain) ∧ (AirlineCompany ⊆ TransportCompany)∧
(RailwayCompany ⊆ TransportCompany)

(7)

And as result we introduce an abstract concept ‘TransportCompany’ being the super
concept of ‘AirlineCompany’ and ‘RailwayCompany’.

The generation links between ‘AirlineCompany’, ‘RailwayCompany’ and ‘Transport-
Company’ should be added into integrated model. When the generation links are added in
the model, other relationships related to ‘AirlineCompany’ and ‘RailwayCompany’ should
be checked if they are consistent with ‘AirlineCompany’ and ‘RailwayCompany’ or link
them directly to their super concept ‘TransportCompany’.

Applying Rule 4 (Eq. 5): Concept ‘City’ in Figure 3 is considered the same as in
Figure 4, but the type of property ‘country code’ in Figure 3 is ‘int’ while in Figure 4 it is
‘char’. Type ‘int’ is adjusted into ‘char’ in the integrated model.

Applying Rule 5 (Eq. 6): ‘TransportTicket’ is inserted as super concept (Rule 1) of
‘PlaneTicket’ (Figure 3) and ‘TrainTicket’ (Figure 4). ‘PlaneTicket’ has a relationship with
concept ‘Flight’, as well as ‘TrainTicket’ is related to concept ‘Trip’, and during sameness
check we have agreed on that ‘Flight’ is same as ‘Trip’. When integrating models, we
should remove all the relationships connected with ‘Flight’ to ‘Trip’. The link between
‘PlaneTicket’ and ‘Flight’ is removed and changed into relationship between ‘PlaneTicket’
and ‘Trip’. Such relationship is semantically equivalent to the one between ‘TrainTicket’
and ‘Trip’. The two relationships could be abstracted to the relationship between ‘Trip’ and
‘TransportTicket’ because of transitive relationship rule:

RGe(TransportTicket ∗ PlaneTicket) ∪ RAs(PlaneTicket ∗ Trip)

⇒ RAs(TransportTicket ∗ Trip) (8)

Finally, the integrated model is shown in Figure 6. It is based on the concepts identified
being the same (i.e., Figure 5) and the rules for model refinement. It should be noted that
the local distributed model fragments are still kept unchanged.

5. CONCLUSIONS AND FUTURE WORK

We have outlined a framework to support management of distributed modeling activ-
ities by distinguishing 2 main layers: the local namespace; the shared and agreed concept
space. The local namespace allows the developers to model their views as they perceive
and use their preferable terminology, i.e. providing full “laissez-faire” for their creativity.
The concept space is used for sharing of conceptualization. The concept-space, or common
knowledge layer, results into the target model. The most important contribution of this pa-
per is that separation between these two “conceptual” spaces provides means for preserv-
ing knowledge of each developer, allowing them to use their own terminology, agree about
individual conceptualization and still refer to the common concept space for agreement
purposes.

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 399

Figure 6. Integrated model for travel domain.

Model fragments alignment in the concept space provides a good means for learn-
ing while modeling. For instance, having identified parts of models being the same, the
developers are notified about certain mismatches (i.e. class concepts are the same, but re-
lationship type between them differs), and discuss the difference. Therefore, we consider
it being important to stepwise integrate model fragments during the development time, not
only the products (models) themselves. That is the main difference from current state-of-
the-art, where existing methodologies focus on models, as final product, integration.

The approach has limitation as it has not been yet tested in real distributed settings.
Having different people involved it may be difficult for them to agree about whether some
concepts are the same. But we believe that model integration during the development ac-
tivities having authors present will produce better results, than any other post-development
based integration, when authors of constituent model fragments are not available.

400 D. STRAŠUNSKAS AND Y. LIN

The approach is first step towards implementing the environment for collaborative
modeling considering other aspects of collaboration, e.g. user awareness, support for op-
portunistic communication. Future work mainly concerns developing mechanism for recor-
ding all operations performed, tracing the information and decisions based on which con-
cepts were added into the common knowledge layer. The challenge is creating an algorithm
for automatic update of the models in the concept-space based on observed changes in the
local model fragments.

REFERENCES

1. J. Mylopoulos, Conceptual modeling and Telos. Chapter 2, in: Conceptual Modeling, Databases, and CASE,
edited by P. Loucopoulos and R. Zicari (Wiley, 1992), pp. 49–68.

2. T. Moriarty, The importance of names, The Data Administration Newsletter 15 (2000).
3. K. Pohl, The three dimensions of requirements engineering, in: Proceedings of 5th Intl. Conf. on Ad-

vanced Information Systems Engineering (CAiSE’93), edited by C. Rolland, F. Bodart, and C. Cauvet
(Springer-Verlag, Paris, France, 1993), pp. 275–292.

4. T. R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition 5(2) (1993).
5. M. Denny, Ontology Building: A Survey of Editing Tools (2002); http://www.xml.com/lpt/a/2002/11/06/

ontologies.html.
6. A. Farquhar, R. Fikes, and J. Rice, The Ontolingua Server: A Tool for Collaborative Ontology Construction

(KSL Stanford University, USA, 1996).
7. J. Domingue, Tadzebao and WebOnto: discussing, browsing, and editing ontologies on the Web, in: Pro-

ceedings of the 11th Knowledge Acquisition for Knowledge-Based Systems Workshop (Kanff, Canada,
1998).

8. J. Tennison, and N. R. Shadbolt, APECKS: a tool to support living ontologies, in: Proceedings of 11th
Knowledge Acquisition for Knowledge-Based Systems Workshop (Banff, Canada, 1998).

9. M. Arumugam, A. Sheth, and B. Arpinar, Peer-to-Peer Semantic Web: a distributed environment for sharing
semantic knowledge on the web (2002); http://lsdis.cs.uga.edu/lib/download/ASA02-WWW02Work-
shop.pdf.

10. P. Mitra, M. Kersten, and G. Wiederhold, Graph-oriented model for articulation of ontology interdependen-
cies, Stanford University Technical Note, CSL-TN-99-411, (1999) and in: Proceedings of the 7th Intl.
Conf. on Extending Database Technology (EDBT 2000).

11. E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi, An environment for distributed ontology develop-
ment based on dependency management, in: Proceedings of 2nd Intl. Semantic Web Conf. (ISWC2003),
edited by D. Fensel et al. (LNCS 2870, Springer-Verlag, Berlin, Heidelberg, 2003), pp. 453–468.

12. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke, OntoEdit: collaborative ontology de-
velopment for the Semantic Web, in: Proceedings of the 1st Intl. Semantic Web Conf. (ISWC2002)
(Sardinia, Italy, 2002).

13. B. A. Farshchian, A Framework For Supporting Shared Interaction in Distributed Product Development
Projects (PhD thesis, IDI-NTNU, Trondheim, Norway, 2001).

14. J. Estublier, Objects control for software configuration management, in: Advanced Information Systems En-
gineering, proceedings of 13th Intl. Conf. CAiSE*2001, edited by K. R. Dittrich, A. Geppert, and M. C.
Norrie (Interlaken, Switzerland, LNCS 2068, Springer-Verlag, 2001), pp. 359–373.

15. G. Wiederhold, An algebra for ontology composition, in: Proceedings of 1994 Monterey Workshop on Formal
Methods (1994), pp. 56–62.

16. J. Hefflin, and J. Hendler, Dynamic ontologies on the Web, in: Proceedings of 17th National Conf. on Artifi-
cial Intelligence (AAAI-2000).

17. H. H. Do, and E. Rahm, COMA – A system for flexible combination of schema matching approaches, in:
Proceedings of 28th Intl. Conf. on Very Large Databases (VLDB, Hong Kong, 2002).

18. A. Doan, J. Madhavan, P. Domingos, and A. Halvey, Learning to map between ontologies on the semantic
web, in: Proceedings of WWW-02, 11th Intl. WWW Conf. (Hawaii, 2002).

19. W. Li, and C. Clifton, SEMINT: A tool for identifying attribute correspondences in heterogeneous databases
using neural networks, Data & Knowledge Engineering 33(1), 49–84 (2000).

MODEL AND KNOWLEDGE MANAGEMENT IN DISTRIBUTED DEVELOPMENT 401

20. J. Madhavan, P. A. Bernstein, and E. Rahm, Generic schema matching with Cupid, in: Proceedings of 27th
Intl. Conf. on Very Large Databases (VLDB) (Roma, Italy, 2001), pp. 49–58.

21. S. Melnik, E. Rahm, and P. A. Bernstein, Rondo: A Programming Platform for Generic Model Management
(SIGMOD, 2003), pp. 193–204.

22. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi, Observer: an approach for query processing in global
information systems based on interoperability between preexisting ontologies, in: Proceedings 1st Intl.
Conf. on Cooperative Information Systems (Brussels, 1996).

23. R. A. Pottinger, and P. A. Bernstein, Merging models based on given correspondences, in: Proceedings of
the 29th VLDB Conference (Berlin, Germany, 2003).

24. E. Rahm, and P. A. Bernstein, A survey of approaches to automatic schema matching, The VLDB Journal
10(4), 334–350 (2001).

25. X. Su, J. A. Gulla, Semantic enrichment for ontology mapping, in: Proceedings of the 9th Intl. Conf. on Ap-
plications of Natural Language to Information Systems (NLDB’04) (Manchester, UK, Springer-Verlag,
2004).

26. A. Egyed, Compositional and relational reasoning during class abstraction, in: Proceedings of the 6th Intl.
Conf. on the Unified Modeling Language (UML) (San Francisco, USA, 2003), pp. 121–137.

27. A. Egyed, and P. Kruchten, Rose/Architect: a tool to visualize architecture, in: Proceedings of the 32nd
Hawaii Intl. Conf. on System Sciences (HICSS) (1999).

RENAISSANCE OF BUSINESS
PROCESS MODELLING

Marite Kirikova and Janis Makna∗

1. INTRODUCTION

Business process modelling (BPM) became popular more than a decade ago, when
the activities and hopes related to business process reengineering where one of the most
popular issues to be researched and applied.1 However, business process reengineering was
not as successful as was expected. Therefore its popularity dimmed and interest from BPM
switched to other means of business process improvement. In the early years of BPM the
main purpose of this activity was to prove that the new business process to be introduced
is more efficient than the previous one. Therefore modelling was mainly concerned with
assigning values to economic and time attributes of the process and simulation of the de-
fined processes in order to obtain data for process evaluation. Most of BPM tools were
autonomous2 based on concepts of data flow diagrams or Petri nets and usually extended
by built-in or related business process simulation modules.

Over a decade later the number of BPM tools exceeds 300. Among the most popular
are those tools, which are an integrated part of enterprise modelling environments.3 Use
of BPM varies from simple models to very complex systems of models. Business process
re-engineering is only one of the current areas of BPM application. Quality management,
knowledge management, change management, continuous business process improvement,
development of different types of information systems, and enterprise integration are other
areas of BPM application. The high level of BPM popularity has led also to efforts to
standardize BPM notations.4

The goal of the paper is to develop a comprehensive survey of several approaches to
business process model descriptions, to analyse the role of BPM and business process mod-
els in different areas of application, and to draw conclusions regarding the requirements for
business modelling tools (software systems for business process modelling) in those areas.

Different concepts used in business process analysis are described in Section 2. Capa-
bilities of BPM tools are analysed in Section 3. Role of BPM in several application areas

∗ Department of Systems Theory and Design, Riga Technical University, 1 Kalku, Riga, LV-1658, Latvia,
marite@cs.rtu.lv, promis@apollo.lv.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 403

404 M. KIRIKOVA AND J. MAKNA

Figure 1. Use of different notations in business process description.

is illustrated in Section 4. Suitability of BPM tools to organisational BPM needs is dis-
cussed in Section 5. Brief conclusions and directions of future investigations are given in
Section 6.

2. CONCEPTS USED FOR BUSINESS PROCESS DESCRIPTION

From the point of view of systems theory, business process is the set of activities
that transform particular inputs into particular outputs. This implies that what is seen as
a process in one level of abstraction could be regarded as an activity at a higher level of
abstraction. Therefore it is not surprising that the use of such notions as business process,
activity, task, etc. varies from one business process oriented community to another. In Fig-
ure 1 some examples of notations are given. The notations are used for business process
descriptions, which may or may not include graphical business process models.

The set of notations shown in Figure 1a comes from P. Harmon’s book “Business
Process Change: A Manager’s Guide to Improving, Redesigning, and Automating Proces-
ses”5 and is supported by Business Process Trends portal.6 Both sets of notion reflected
in Figure 1 b1 and b2 appear in Business Process Improvement Workbook,7 the set of
notions given in 1c is supported by META Group.8, 9 The set in Figure 1d comes from
the practical application of BPM in requirements engineering.10 Figure 1 shows that there
is no a standard approach of how to call the phenomena at different levels of abstraction.
However, when it comes to business modelling tools usually one and the same notations
are used at all abstraction levels, because the number of levels is not limited.11–14

In this paper we will use term “process” at any level of abstraction i. We consider a
process as a system of subprocesses (where the number of subprocesses is equal to or more
than 1). Each subprocess at level i becomes a process at level i − 1. Notions “activity” and
“task” will be used as synonyms for the notion “subprocess”. This is a simplification that
suits the purpose of the paper. However it has to be taken into consideration that contents
of description in several approaches vary for process representations at different levels of
abstraction. Examples of such approaches are given in Figure 2. In case reflected in Fig-
ure 2a,10 processes at each level have unique attributes, in META group’s case8 shown in

RENAISSANCE OF BUSINESS PROCESS MODELLING 405

Figure 2. Detailed descriptions at different levels of abstraction.

Figure 2b, some of attributes (e.g., Skills and Metrics) are common for two levels, but some
(e.g., Area of Expertise and Integration) are unique for each particular level of abstraction.

Depending on the purpose of process descriptions several business process classifica-
tions are used. From the point of view of substance of performer of the task three types of
processes usually are considered:15

• Manual processes
• Semi-automated processes
• Automated processes

In the context of Web applications, processes are divided in the following three
groups:16

• Private processes
• Abstract processes
• Collaboration processes

Private (internal) business processes are internal to a specific organisation. Abstract
(public) business processes represent interactions between private business processes and
other processes or participants. Only those activities that are used to communicate out-
side the private business processes are included in the abstract processes. Collaboration
processes depict the interaction between two or more business entities. These interactions

406 M. KIRIKOVA AND J. MAKNA

are defined as a sequence of activities that represent the message exchange patterns be-
tween the entities involved.

From the point of management level, the processes may be divided in operational and
strategic processes.17 Processes may be classified also according to their functional role or
other selected criteria.18−21

Each of process classes mentioned above may require specific details in their descrip-
tions. However, there are attributes that are common for all process classes. We will focus
on those common attributes when discussing BPM tools and applications in further sec-
tions of the paper.

3. CAPABILITIES OF BPM TOOLS

By notion BPM tool we refer here to software systems meant for BPM. Number of
such tools exceeds 300.3 Therefore it is a challenge for the organisation to make informed
choice of the BPM tool. In this section we will refer to features of the tools that, if con-
sidered, could be helpful when deciding whether to use the tool, and, if yes, which tool to
choose. Popkin Software and Systems Inc.22 suggest the following 11 criteria for choice
of the business process reengineering tools:

• A common repository
• Ability to modify the repository
• Integrated process and data models
• Multiple approaches to modelling
• Comprehensive support in all modelling areas
• Flexible rule enforcement
• Ability to create detailed reports
• Full extensibility
• Complete functionality
• Multi-user product
• Low price with high functionality

The above-mentioned characteristics of tools are important not only for business pro-
cess reengineering, but also for business process modelling. However they are quite vague
and may be interpreted differently by various tool vendors. In addition, it is necessary to
consider some other issues that may help to evaluate BPM tools. Advanced BPM tools
fall into the category of CASE (computer aided systems engineering) tools and enterprise
modelling tools. Issues of selection and effective use of those tools have been quite widely
analysed.23, 24 The results of the analysis comply and go beyond the criteria mentioned
above and are applicable to BPM tools. However, they do not concentrate on the specifics
of BPM. Therefore in this paper we will consider such features as expressiveness of the
tool, conceptualisation capability, modelling flexibility, and representational effectiveness,
which are essential in contemporary BPM applications. Those features are not independent
properties of the tools, they are related each to other. Therefore equilibrium of these fea-
tures is an integrated or emergent property of the BPM tools that actually helps to evaluate
the suitability of a particular tool for a particular BPM situation.

RENAISSANCE OF BUSINESS PROCESS MODELLING 407

3.1. Expressiveness of BPM Tools

Expressiveness of a BPM tool is characterised by scope and number of attributes to be
reflected by business process model (diagram). However, comparison of tools on the basis
of represented attributes is very difficult, because the names and meaning of the attributes
vary from tool to tool according to business process description languages chosen (see also
Figure 1 and Figure 2). Different researchers to evaluate expressiveness of the tools have
used the following approaches:

• Evaluation on the basis of key attributes
• Evaluation on the basis of generic business process model
• Evaluation on the basis of distinguished features of a particular tool

Evaluation of BPM tools Axiom-SYS, BP Win, COSA Workflow, GRADE, Oracle
Designer, Scitor Process, Silverrun-BM, and Workflow BPR on the basis of such key at-
tributes as (1) multilevel representation, (2) simulation possibilities, and (3) possibility
to reflect external entities, subprocesses, information flows, material flows, control flows,
timers, triggering conditions, stores, performers, cost, and duration is presented in context
of workspace modelling.25 Attempts to provide a generic BPM framework are presented
by several researchers.16, 26, 27 Generic framework based comparison of business mod-
elling methodologies GERAM, ARIS, CIMOSA, GRAI/GIM, IEM and PERA is given
by K. Kosanke.28 Comparative original metamodel based overview of business modelling
languages EPC, BML, and SD is presented by a group of Swedish researchers.27 Generic
framework based comparison of business modelling techniques IDEF0, IDEF1, IDEFX,
RAD, REAL, DM, OO, AI, and MAIS are described by F.-R. Lin, M.-Ch. Yang, and Y.-H.
Pai.26 The BPM tool comparisons based on distinguished features of a particular tool are
usually given by the tool vendors.22

The evaluations mentioned above mainly focus on the presence of particular attributes
of business process in the BPM languages or tools. But the presence may occur differently –
the attribute may be given as a text description (T), it can be a built in attribute with a
possibility to directly assign its value during the modelling (A), there may be a possibility
to establish link to another business model where the attribute is reflected as an object
(L), and there may be a possibility to navigate to the business model where the attribute
is represented as an object (N). T and A here characterise direct expressiveness of the
models while L and N characterise extended or indirect expressiveness of the models.
Indirect expressiveness is a key for the next feature of BPM tools, namely cotextualisation
capability.

3.2. Contextualisation Capabilities

By conceptualisation capability we understand here an extent to which the tool can
show the business process in different contexts, such as strategy of organisation, organisa-
tional knowledge, computerisation of information processes, etc. This capability is directly
related to the indirect expressiveness of the tool. We can talk about two levels of concep-
tualisation capability (1) manual conceptualisation capability, and (2) automatic conceptu-
alisation capability. Manual conceptualisation capability means that there is a possibility
to find relationships between business process elements and related organisational issues,

408 M. KIRIKOVA AND J. MAKNA

i.e., it is possible to establish a link between the business process element and the issue
be it reflected in another model or the document, or marked by pointer to a particular per-
son. Automatic conceptualisation means that by clicking on a particular attribute of the
business process the user navigates to the graphical business model where the attribute is
represented as an object and highlighted among other objects included in this model.

Advanced business modelling environments, such as Casewise, ARIS, GRADE, ADO-
NIS11−13, 29 provide at least the so-called 3D automatic conceptualisation capability. 3D
automatic conceptualisation capability means that navigation between organisation process
model, organisational structure model, and data model is established. However, in different
applications of BPM other than mentioned above automatic navigation capabilities may be
needed. More details about these needs are given in Section 4.

Conceptualisation capability is closely related to the next feature of the BPM tools,
namely – modelling flexibility.

3.3. Modelling Flexibility

Modelling flexibility is a term that may be interpreted in many different ways. In this
paper by this term we mean a possibility to choose between several basic perspectives
in BPM. Since the times of functional, mechanistic organisations it is common to view
organisational structure as a more stable component than organisational process. Many
BPM tools are built with this assumption implied. This means that, in case the performers
of the process are shown in the graphical representation of the process, the performers are
defined first and then processes assigned to them.13 However in contemporary turbulent
environment not always the performers of the process are known in advance. Therefore it
is important to have a possibility to model process first and then assign performers. The
result of the modelling is the same as in the previous case, but the process of obtaining
the model requires different sequence of steps in knowledge development about business
processes and different modelling capabilities of BPM tool. There are several tools that
permit the structure-independent process modelling and still have a capability to reflect
performers in the model. ARIS11 and GRADE12 are two examples of such tools.

3.4. Representational Effectiveness

Representational effectiveness shows how much information may be included in one
screen or one page of business process model. Figure 3 illustrates this feature by comparing
two possible representations of one and the same information. In case a the representation
uses at least 2 times more space than in the case b. Case a does not focus on the process
view, i.e., all the details are represented graphically. It is not the best way of information
representation from the cognitive psychology point of view.30 For easier and faster com-
prehension it is better to represent graphically only the main objects and add the details
in the form of text (case b). There is a tendency to represent all business process infor-
mation, including event branching, graphically in several BPM languages and tools.11, 16

However, from the point of view of comprehension and effective use of modelling space,
balanced approaches to information representation as well as several representations of
one and the same modelling information are necessary. In this regard Leibniz prize winner

RENAISSANCE OF BUSINESS PROCESS MODELLING 409

Figure 3. Different representations of one and the same information.

business modelling tool GRADE12 is a good example of effective use of modelling space
and multiple representations of modelling information.

Business process information may be needed at different levels of abstraction and
detail, as well as focus on different issues relevant to organisations. Therefore capability
of the tool to represent this information effectively is one of the essential properties to be
considered when choosing the tool for organisational needs.

4. APPLICATIONS OF BPM

BPM first became popular during the era of business process reengineering. Today,
over a decade later, BPM is used not only in business process reengineering but also in
many other different areas.5 In this section we will briefly discuss BPM in contexts of
knowledge management, business process improvement, change management and infor-
mation systems development.

4.1. BPM in Knowledge Management

The role of BPM in Knowledge Management is threefold. First business processes, if
modelled, are a part of codified structural intellectual capital of the organisation.31 Sec-
ond, knowledge processes applied in an organisation are a part of business processes to
be modelled.21 Third, business process models may be used as a means for facilitation
of knowledge processes, such as knowledge creation.32 Knowledge management requires
knowledge as one of contextual dimensions to be available for BPM. This dimension has
two subdimensions, namely, the subdimension of tacit knowledge and subdimension of
codified knowledge. Tacit knowledge is related to organisational structure, which may
be used in parallel or sequentially with the knowledge dimension. Regarding codified
knowledge subdimension, documents that comprise information regulating the business
processes have a special role. Navigation possibilities from business model to these docu-
ments are one of desirable properties of BPM tools used in knowledge management.33, 34

410 M. KIRIKOVA AND J. MAKNA

The above mentioned three roles of business process modelling in organisational knowl-
edge management require tools that provide possibility to model at different levels of ab-
straction and at different levels of detail. Modelling of knowledge also requires a capability
of the tool to aggregate knowledge in lower levels of abstraction and represent it as a meta-
knowledge at higher levels of abstraction. BPM tools rarely meet this requirement because
they are mainly design for top-down modelling.

4.2. BPM in Business Process Improvement and Change Management

Some recent surveys show that about 83% of companies are engaged in business
process improvement and redesign.5 This is one of the main reasons of renaissance of
the business process modelling tools. To improve the process, it is necessary to discuss
it. Graphical representations are helpful tools for sensemaking regarding the processes.32

On the other hand, changes in one process may cause changes in many other processes.
When business processes are not modelled, those additional changes in many cases are un-
expected by organisation and require use of resources for firefighting. Sophisticated BPM
tools give an opportunity to make business processes transparent for decision makers and
consider possible consequences of particular changes.35 One more factor that facilitates
BPM activities in organisations is quality standards that require business process descrip-
tions. When descriptions are already there, the process of actual graphical modelling is
less time consuming and uncommon than in situations when the models must be built from
scratch.

Globalisation, extensive use of information technologies, and other present day phe-
nomena suggest that business process improvement and redesign are going to be contin-
uous phenomena in organisational activities. Business process improvement is one of the
ways in which organisations can stay competitive in a turbulent environment. Business
process redesign is needed in each case when internal or external changes hinder current
organisational work distribution and established flows of activities. Therefore contempo-
rary BPM tools are expected not only to reflect the business process at several levels of de-
composition and simulate it but also reveal such information as conformance to standards,
viewpoint diversity, complexity, etc. We surveyed nine popular BPM tools according to
more than 30 properties and found that they differ considerably in their capabilities to rep-
resent business process estimates and contexts while almost all of them provide all basic
BPM facilities (see Section 3.1).

4.3. BPM in Information Systems Development

One more area where business modelling becomes increasingly popular is informa-
tion systems development. Types of business process models used in information systems
development depend on development methodologies. In agile systems development meth-
ods easy to manage tools or even none software tools are used. Conversely, model driven
approaches rely on complex, expressive modelling environments. BPM is essential in the
following information systems development cases:

• Enterprise Resource Planning (ERP) systems acquisition
• Business process driven information systems development
• Use of BPM for requirements analysis

RENAISSANCE OF BUSINESS PROCESS MODELLING 411

• Requirements generation from business process models

Each ERP system has a business process model behind it. It is beneficial to be able
to compare organisational processes with this model when deciding which ERP system to
acquire. This comparison is possible only if business process models of both ERP system
and the organisation are available. Textual descriptions of the processes in this case do not
provide effective means for decision making.36

Model driven development, which is based on sophisticated systems development
tools capable to perform many automatic transformations of diagrams, is one of the recent
tendencies in the information systems development.37 The most advanced and challeng-
ing approach among the model driven ones is business process model driven information
systems development.38

One of the desirable properties of information systems requirements is their consis-
tency. If requirements are generated from business process models then the request for con-
sistency is satisfied. However, generation of requirements in terms of graphical program
specifications,12 use cases12, 29 or generation of XML code16 from the business process
model requires BPM languages and tools that are capable to represent all details needed
for requirements or XML code generation. Another way of supporting the consistency of
requirements is to represent them in business process model for consistency checking.39, 40

5. HOW TO CHOOSE THE BPM TOOL

Having more than 300 commercial BPM tools the choice of the right one for organ-
isational needs is a task of high complexity. Sections 3 and 4 of this paper were written
to introduce a spectrum of issues to be considered in tool acquisition process and to pro-
vide references to sources of more detailed information. We suggest the following 3-step
procedure for BPM tool acquisition:

1. Decide whether organisation needs the BPM tool at all
2. Define required functionality of the tool
3. Choose between tools that satisfy defined functionality taking into consideration

such factors as pricing policy, vendor support, and organisational context and con-
sequences of tool acquisition.24

In deciding whether the BPM tool is needed or not, several threats of BPM tool use41

are to be considered. Table 1 in column 1 reflects the list of threats highlighted by agile
systems development community.41 In column 2 we give some comments, which are based
on our theoretical research and ten-year experience of BPM tool use.

Required functionality of the tool may be defined on the basis of knowledge of BPM
tool capabilities in general and particular needs of organisation (see Sections 2 and 3).
It is a big difference whether organisation needs just a tool for drawing boxes and lines
between them in brainstorming sessions, or it wants to monitor its business processes by
maintaining and analysing their models.

The third step is fully common sense based. BPM tools are like people – each has its
own ‘personality’. It is almost impossible to compare many tools to one another without
introducing subjective bias. Therefore, when analysing suitability of available tools to or-

412 M. KIRIKOVA AND J. MAKNA

Table 1. Comments on BPM tool acquisition threats

ganisational needs, it is better to consider match between organisation and tool rather than
comparative characteristics of the tools. Still we suggest studying at least one of advanced
business modelling tools before making any decisions. ARIS,11 Provision,14 Casewise,13

and GRADE12 are good choices because they have high capabilities and helpful free eval-
uation versions.

RENAISSANCE OF BUSINESS PROCESS MODELLING 413

6. CONCLUSIONS

In this paper we amalgamated some issues on our current research on BPM tools. Re-
naissance of business process modelling, exposed by rich variety of BPM application areas
and large number of BPM application cases, which we are experiencing in the beginning of
the new millennium, is caused, on one hand, by organisational needs for business modelling
in order to survive in culturally, economically and technologically turbulent environment;
on the other hand, it is caused by the fact that the quality of commercial tools for BPM
has considerably increased during the last decade. Availability of many commercial BPM
tools calls for methods and methodologies for tool acquisition. The paper suggests some
issues to be considered and guidelines to be applied in tool acquisition. However, it is not
yet a methodology. Our further research is aimed at development of BPM tools knowledge
base and ontology of tools evaluation. Both of them could form the basis of tool acquisition
methodology.

REFERENCES

1. M. Hammer and J. Champy, Re-engineering the Corporation: A Manifesto for Business Revolution
(Ballinger, Cambridge, MA, 1993).

2. List of CASE tools. Available at http://www.cc.queensu.ca/Software-Engineering/tools.html (accessed June
25, 2004).

3. Briefing Business Process Modelling Tools. Available at http://www.bpmg.org/classic/Articles CaseStudies/
Briefing-ProcessModellingTools.htm (accessed June 25, 2004).

4. Business Process Modelling and Standardisation. Available at http://www.cimosa.de/Standards/
BPM and Standardisation.pdf (accessed June 25, 2004).

5. P. Harmon, Business Process Change: A Manager’s Guide to Improving, Redesigning, and Automating
Processes (Morgan Kaufman Publishers, 2003).

6. Business Process Trends portal. Available at http://www.bptrends.com (accessed June 25, 2004).
7. H. J. Harrington, E. K. C. Esseling, and H. van Nimwegen, Business Process Improvement Workbook: Doc-

umentation, Analysis, Design, and Management of Business Process Improvement (1997).
8. A. Bruce and D. Kutnick, Building Operational Excellence: IT People and Process Best Practices (Pearson

Educational, 2002).
9. META Group portal. Available at http://www.metagroup.com/us/home.do (accessed June 25, 2004).

10. S. Lausen, Task descriptions as functional requirements, in: IEEE Software (March/April, 2003), pp. 58–65.
11. ARIS toolset. Available at http://www.ids-scheer.com (accessed June 25, 2004).
12. GRADE tools. Available at http://www.gradetools.com (accessed June 25, 2004).
13. Casewise software. Available at http://www.casewise.com (accessed June 25, 2004).
14. ProVision enterprise modelling software. Available at http://www.proformacorp.com/ (accessed June 25,

2004).
15. Jenz and Parner portal. Available at http://www.jenzundpartner.de (accessed June 25, 2004).
16. Business Process Notation, (Draft 0.1), Business Process Management Initiative, 2003. Available at

http://www.bmi.org (accessed June 24, 2004).
17. R. Normann, Reframing Business: When the Map Changes the Landscape (John Wiley and Sons, Ltd., 2001).
18. APQC Process Classification Framework. Available at http://www.apqc.org/portal (accessed June 25, 2004).
19. Th. W. Malone, K. Crowston, and G. A. Herman Eds., Organizing Business Knowledge: The MIT Process

Handbook (MIT Press, 2003).
20. P. Loucopoulos, The S3 (Strategy-Service-Support) framework for business process modelling, in: Proceed-

ings of CAiSE’03 Workshops, in connection with The 15th Conference on Advanced Information Sys-
tems Engineering, edited by J. Eder, R. Mittermeir, and B. Pernici (University Maribor Press, Klagen-
furt/Velden, Austria, June 16–20, 2003), pp. 378–382.

21. R. Woitsch and D. Karagiannis, Process-oriented knowledge management systems based on KM-services:
The PROMOTE approach, in: The Practical Aspects of Knowledge Management, Proceedings of the

414 M. KIRIKOVA AND J. MAKNA

4th International Conference, edited by D. Karagiannis and U. Reimer (Springer, Vienna, Austria,
December 2002), pp. 398–412.

22. The 11 Most Important Features to Look For in a BPR tool, Popkin Software & Systems; http://www.
popkin.com (accessed June 25, 2004).

23. J. Stirna, Choosing Strategy for Enterprise Modelling Tool Acquisition, Department of Computer and Sys-
tems Sciences, Stockholm University and Royal Institute of Technology, Report Series No. 99–102,
1999.

24. W. J. Orlikowski, CASE tools as organisational change: Investigating incremental and radical changes in
systems development, Management Information Systems Quarterly 17(3) (1993).

25. M. Kirikova, Modelling the boundaries of workspace: A business process perspective, in: Information Mod-
elling and Knowledge Bases XIII, edited by H. Kangassalo, H. Jaakkola, E. Kawaguchi, and T. Welzer
(IOS Press, Ohmsha, Amsterdam, Berlin, Oxford, Tokyo, Washington, DC, 2002), pp. 266–278.

26. F-R. Lin, M-Ch. Yang, and Y-H. Pai, A generic Structure for business process modeling, Business Process
Management Journal 8(1), 19–41 (2002).

27. E. Söderström, B. Andersson, P. Johannesson, E. Perjons, B. Wangler, Towards A framework for comparing
process modelling languages, in: The Fourteenth International Conference on Advanced Information
Systems Engineering (CAiSE02, Toronto, Springer LNCS, 2002).

28. K. Kosanke, Comparision of Modelling Methodologies, 1996. Available at http://cimosa.cnt.pl/Docs/
cmm.htm (accessed June 25, 2004).

29. ADONIS – the business process management tool. Available at http://boc-eu.com/index.html (accessed June
25, 2004).

30. J. R. Anderson, Cognitive Psychology and Its Implications (Freeman and Champy, 1995).
31. D. Apshvalka and J. Grundspenkis, Making organisations to act more intelligentlyin the framework of or-

ganisational knowledge management system, in: Scientific Proceedings of Riga Technical University
on Computer Science, Vol. 17 (RTU, Riga, 2003), pp. 72–82.

32. A. Persson, and J. Stirna, Creating an organisational memory through integration of enterprise modelling,
patterns and hypermedia: The hyperknowledge approach, in: Information Systems Development: Ad-
vances in Methodologies, Components, and Management, edited by M. Kirikova, J. Grundspenkis,
W. Wojtkowski, W. G. Wojtkowski, S.Wrycza, and J. Zupancic (Kluwer Academic/Plenum Publishers,
2002), pp. 181–192.

33. M. Kirikova, Facilitating comprehension of normative documents by graphical representations, in: Practical
Aspects of Knowledge Management, edited by D. Karagiannis and U. Reimer (Springer Verlag, Berlin
Heidelberg, 2002), pp. 369–376.

34. M. Kirikova and J. Vanags, A systemic approach for managing normative acts: a business modelling perspec-
tive, in: Transactions in International Information Systems: Systems Analysis and Development Theory
and Practice, edited by A. Nowicki and J. Unold (Wroclaw University of Economics, Wroclaw, 2001),
pp. 39–58.

35. M. Kirikova, Conversion of inventions into requirements for computer based information systems, in: Scien-
tific Proceedings of Riga Technical University, Series: Computer Science, Applied Computer Systems
– 4th Thematic Issue (RTU, Riga, 2003), pp. 55–61.

36. K. Slavinska, Introduction of ERP system. Engineer thesis (Riga Technical University, 2003) (in Latvian).
37. O. Nikiforova and M. Kirikova, Two-hemisphere model driven approach: engineering based software devel-

opment, in: The proceedings of the 16th Conference on Advanced Information Systems Engineering,
(CAiSE’2004, Riga Latvia, June 7–11, 2004) (to be published).

38. ArcStyler MDA-Business Transformer Modelling Style Guide for ARIS, Interactive Objects, 2002.
39. M. Kirikova, Business Modelling and Use Cases in Requirements Engineering, in: Information Modelling

and Knowledge Bases XII, edited by H. Jaakkola, H. Kangassalo, and E. Kawaguchi (IOS Press,
Ohmsha, Amsterdam, Berlin, Oxford, Tokyo, Washington, DC) pp. 410–420.

40. G. Sparks, The Business Process Model, Enterprise Architect, 2000. Available at http://www.sparxsystems.
com.au (accessed June 25, 2004).

41. Sc. W. Ambler, It’s “Use the Simplest Tool” not “Use Simple Tools”. Available at http://www.agilemodeling.
com/essays/simpleTools.htm (accessed June 25, 2004).

42. M. Kirikova, Bridging the educational gap between requirements holders and requirements engineers, in:
Proceedings of the 4th IEEE Internacional Baltic Workshop on Databases and information Systems,
Vol. 2, edited by A. Caplinskas (Technika, Vilnius, 2000), pp. 35–46.

DOES THE PERCEIVED QUALITY OF AN
ELECTRONIC GROCERY STORE EXPLAIN

THE BUYING BEHAVIOR OF ITS CUSTOMERS?
An exploratory field study

Osmo Kurkela and Juhani Iivari∗

1. INTRODUCTION

Grocery shopping has been suggested as one potential application area for e-commerce
(Kutz, 1998). Yet, groceries are one of the most difficult areas of trade for e-commerce, be-
cause they are local, the physical delivery aspect is critical, an average purchase basket
consists of many items and the value-to-weight ratio of purchases is low (Heikkilä et al.,
1998; Raijas and Tuunainen, 2001). On the other hand, groceries form the largest section of
retailing, shopping is frequent, buying patterns are fairly stable, and the shopping behavior
of most customers is more or less habitual and automatic, being based on earlier experi-
ences (Raijas and Tuunainen, 2001). Assuming that grocery shopping is quite routine, it
probably does not have the same enjoyment aspect (Dawson et al., 1990) as shopping in
fashion boutiques, electronics shops, or antique bookstores, for example. Therefore there is
a great potential for electronic grocery stores (Raijas and Tuunainen, 2001). Nevertheless,
Geuens et al. (2003) found that Belgian consumers are still very conservative as far as their
grocery shopping is concerned, although they do not like it. Grewal et al. (2004) also re-
port that despite a prominent start, home grocery deliveries now appear to have somewhat
fizzled out. All these factors make online groceries intellectually an interesting application
area for e-commerce, although perhaps not economic successes.

The purpose of this paper is to analyze the real buying behavior of electronic grocery
store customers, and especially the impact of perceived quality of a grocery store on this
behavior. Electronic grocery shopping may be interpreted quite widely as a facility en-
abling consumers to order groceries from home electronically (by phone, fax or Internet)

∗ Osmo Kurkela, Oulu Polytechnic, Raahe Institute of Computer Engineering and Business Rantakatu 5A, P.O.
Box 82, FIN-92101 Raahe, Finland, osmo.kurkela@ratol.fi. Juhani Iivari, Department of Information Process-
ing Science, University of Oulu, P.O. Box 3000, 90014 Oulun yliopisto, Finland, juhani.iivari@oulu.fi.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 415

416 O. KURKELA AND J. IIVARI

and to obtain subsequent delivery to their home (Verhoef and Langerak, 2001). This paper
applies the concept in a more specific meaning to refer to electronic grocery shopping us-
ing the Internet. On the other hand, we do not require delivery to the customer’s home, as
a customer may also pick the products up from the store. The paper is an exploratory field
study. The results are based on experiences with one electronic grocery store launched in
a major city in Finland.

2. PREVIOUS RESEARCH

Since electronic grocery shopping on the Internet forms quite a new phenomenon, it
is understandable that there is not much empirical research available on it (Verhoef and
Langerak, 2001), especially from the customer’s viewpoint. Most articles on the topic are
descriptive by nature (Heikkilä et al., 1998; Ahola, 1999; Heikkila et al., 1999; Ahola et
al., 2000; Morganosky and Cude, 2000; Oinas-Kukkonen, 2000; Palmer et al., 2000; Raijas
and Tuunainen, 2001; Rohm and Swaminathan, 2004).

There is a dearth of more theoretically oriented studies of electronic grocery shopping.
Henderson et al. (1998) investigated the association between a number of variables (per-
ceived usefulness, perceived enjoyment, peer-group norms, usability, perceived shopping
experience) on the intention to use such a system in the future, and found only perceived
enjoyment and peer-group norms to be significant predictors of this intention. Verhoef
and Langerak (2001) examined (1) the relationship between three (dis)advantages of elec-
tronic grocery shopping (i.e. physical effort, time pressure and shopping enjoyment), as
compared with traditional in-store shopping, and consumers’ perceptions of innovation
characteristics (i.e. relative advantage, compatibility, and complexity), and (2) the relation-
ship between perceptions of innovation characteristics and consumers’ intentions to adopt
electronic grocery shopping. They found physical effort and time pressure to have a sig-
nificant effect on the relative advantage and time pressure to affect compatibility. Further,
all three innovation characteristics significantly affected the intention to adopt electronic
grocery shopping. Childers et al. (2001), in their analysis of attitudes towards online shop-
ping in the case of groceries, found perceived usefulness, ease of use and enjoyment to be
significant predictors of this attitude. Furthermore, navigation, convenience, and the sub-
stitutability of the electronic environment for personal examination of the products were
found to be important predictors of the three antecedents of attitudes.

3. THEORETICAL BACKGROUND AND RESEARCH MODEL

There is no generally accepted measure of the quality of an electronic grocery store,
although there are an increasing number of validated instruments for measuring the quality
of a website (Agarwall and Venkatesh, 2002; Aladwani, 2002; Muylle, 2003). All these
instruments reflect only the viewpoint of a website user, however, not of a consumer of the
products and services sold through the website. Our basic assumption is that the decision
to use or not use a website for shopping does not depend on the quality of the website alone
but also on the quality of the products and services sold through it.

PERCEIVED QUALITY OF AN ELECTRONIC STORE AND BUYING BEHAVIOR 417

3.1. The Concept of the Quality of a Grocery Store

At the time we initiated the study reported in this paper, none of the above instruments
had been published. To start with, we decided to consider an electronic grocery store as an
IT artifact and its use as an innovation as far as the customer is concerned. These views
led us to focus on previous research into the quality of information systems (DeLone and
McLean, 1992), characteristics of innovations (Moore and Benbasat, 1991; Rogers, 1995)
and more indirectly the Technology Acceptance Model (TAM) (Davis, 1989; Davis et al.,
1989).

DeLone and MacLean (1992) propose a framework for identifying six success mea-
sures: system quality, information quality, use, user satisfaction, individual impact and or-
ganizational impact. Because our focus lies in electronic grocery stores, which are mainly
B2C commerce, we did not consider organizational impact/effectiveness as relevant here.∗
We therefore focus only on system quality, information quality, user satisfaction and in-
dividual impact as perceived by customers.† Our assumption is that the technical aspects
of system quality are not of interest to customers, and thus we focus only on the usability
aspect of system quality, and more specifically on perceived ease of use (Davis, 1989).

In the case of user (information) satisfaction, we decided to apply the concept liberally
to capture satisfaction with a number of dimensions of an electronic grocery store. A list of
quite conventional aspects of grocery stores (product assortment, quality of fresh products,
prices, service, presentation of products, opening times) was complemented by more spe-
cific aspects of electronic trading (method of payment, Internet use, safety and privacy).
Many of these dimensions have also been reported as relevant in the context of electronic
grocery stores (Henderson et al., 1998; Raijas and Tuunainen, 2001.)

DeLone and MacLean (1992) characterize individual impact as “an indication that an
information system has given a user a better understanding of the decision context, has
improved his or her decision-making productivity, has produced a change in user activity,
or has changed the decision maker’s perception of the importance or usefulness of the in-
formation system” (p. 69). Davis (1989) defines perceived usefulness in quite a analogous
way: “the degree to which a person believes that using a particular system would enhance
his or her job performance can be interpreted as users’ beliefs or expectations about the
individual impact of the system, focusing specifically on the impact on individual job per-
formance.”(??)

If an innovation is interpreted as “an idea, practice, or object that is perceived as new
by an individual or other unit of adoption” (Rogers, 1995, p. 11), electronic grocery stores
in the current stage of their diffusion can be considered an innovation as far as their cus-
tomers are concerned. Based on the DOI literature, we decided to focus on relative advan-
tage (perceived usefulness) and complexity (perceived ease of use). Even though poten-
tially relevant to the adoption of (IT) innovations, we did not consider the other innovation
characteristics to describe the quality of an electronic grocery store as such. More specifi-

∗ One could, of course, have considered the impact of the family as a kind of organization to which most cus-
tomers belong.

† We exclude use here because we consider it a dependent variable possibly affected by the quality of the elec-
tronic grocery store rather as an aspect of its quality.

418 O. KURKELA AND J. IIVARI

cally, we excluded compatibility, because it is unclear whether this should be evaluated in
terms of traditional grocery shopping or in terms of the electronic way of doing it.

To sum up, both the literature on IS quality and the literature on innovation character-
istics led us to identify perceived usefulness and perceived ease of use, as defined in TAM,
as relevant aspects of the perceived quality of an electronic store. This was complemented
with perceived satisfaction, extended to cover the quality of the products and services, for
the case of a grocery store.

3.2. The Research Model

The model employed for the present research is depicted in Figure 1. In addition to
the perceived quality of an electronic grocery store, it identifies a number of household and
customer characteristics as control variables which may affect the adoption of an online
grocery store. The adoption units in the present study are individual consumers. Rogers
views adoption events as dichotomous decisions that do not take into consideration the
extent of the adoption. Cooper and Zmud (1990) introduce the concept of “infusion” to
address the problem of the extent of adoption. They interpret infusion of the product as the
extent to which the innovation is applied in terms of its fullest potential.

In view of the novelty of electronic grocery stores, we decided to consider a customer’s
buying behavior as an indicator of adoption and its infusion. One can distinguish two as-
pects in customers’ buying behavior: buying frequency and the average sum spent. Even
though these can be multiplied together to give the total sum spent, we will keep them as
separate indicators of buying behavior, because it is unclear whether they are positively or
negatively correlated with each other or for practical purposes uncorrelated. It may also be
that the frequency of shopping in an electronic grocery store and the average sum spent are
affected by different factors.

Figure 1. The research model explaining electronic grocery shopping behavior.

PERCEIVED QUALITY OF AN ELECTRONIC STORE AND BUYING BEHAVIOR 419

As explained above, DOI theory (e.g. Rogers, 1995; Torkzadeh and Klein, 1980) and
its application to electronic grocery stores (Verhoef and Langerak, 2001) are suggestive
of innovation characteristics, most notably relative advantage (perceived usefulness) and
complexity (perceived ease of use), and compatibility, all of which affect the adoption of
an innovation. This theory leads to four hypotheses:∗

H1a The perceived usefulness of an electronic grocery store is positively associated
with buying frequency.

H1b The perceived usefulness an electronic grocery store is positively associated with
the average sum spent.

H2a The perceived ease of use an electronic grocery store is positively associated with
buying frequency.

H2b The perceived ease of use an electronic grocery store is positively associated with
the average sum spent.

These hypotheses are also partly supported by the Technology Acceptance Model
(TAM), which was developed to predict the adoption (use) of IT innovations (Davis, 1989;
Davis et al., 1989). One should note, however, that the purpose of the present study is not
to test TAM, even though there is some overlap because of its overlap with DOI theory
(Moore and Benbasat, 1991).

Our hypotheses concerning the association between perceived satisfaction with an
electronic grocery store and customer shopping behavior are based on research into cus-
tomer satisfaction in marketing, where it is assumed to affect the likelihood of repeated
purchasing of a product or service. The meta-analysis of customer satisfaction by Szyman-
ski and Henard (2001) reports a positive relationship between the two.

H3a Perceived satisfaction with an electronic grocery store is positively associated
with buying frequency.

H3b Perceived satisfaction with an electronic grocery store is positively associated
with the average sum spent.

To test the possible impact of the perceived quality of an electronic grocery store on
customers’ shopping behavior it is necessary to control other variables that could poten-
tially affect this behavior. Income and family size are clearly such variables at the house-
hold level (Morganosky and Cude, 2000; Raijas and Tuunainen, 2001), and age, sex and
position are also potentially relevant at the individual level (Morganosky and Cude, 2000;
Raijas and Tuunainen, 2001). We also included personal innovativeness (Agarwal and
Prased, 1998) and computer playfulness (Webster and Martochhio, 1992).

∗ We referred above to the problem that it is unclear whether compatibility should be evaluated in terms of
traditional way of grocery shopping or in terms of electronic way doing it. The short-form instrument for
compatibility proposed by Moore and Benbasat (1991) includes items such as “Using a XXX is compatible
with all aspects of my work”, “I think that using XXX fits well with the way I like to work” and “Using XXX
fits into my work style”. If we substitute “shopping” for “work” in the items, it is unclear especially in the case
of the first and the last item whether the referent should be grocery shopping in the traditional way or using
an electronic option. As a consequnce it is unclear whether compatibility should be hypothesized to affect the
shopping behavior positively or negatively.

420 O. KURKELA AND J. IIVARI

4. THE RESEARCH METHOD

4.1. The Field Study

The model of Figure 1 was tested in a field study analyzing the use of an electronic
grocery store (EGS) in a major Finnish city. The choice of one organization controls for
the possible confounding effects of organizational level variables such as institutional con-
straints and infrastructure arrangements, which may have an influence on individual adop-
tion and acceptance, making it more likely that micro-level effects will be detected (Kara-
hanna et al., 1999).

Data about the independent variables in Figure 1 were collected using a questionnaire
survey. The first online survey, administrated in November and December 1999, was an-
swered by a total of 56 customers, 30% of the total active customer base of the EGS. Of
these, 15 answered through the Internet and 41 by mail. The second online survey, admin-
istrated in two phases, in April and May 2001 and November and December 2001, elicited
50 replies, giving a total number of 106. Participation was voluntary, of course, and people
were assured that their individual replies would be treated as confidential. All the customers
had prior experiences of the EGS, which had been initiated as a value-added service for an
existing store and was operated as a retail outlet for one of the major wholesale companies
in Finland. To purchase online, a customer has to have the wholesaler’s membership card.
The charge for home delivery was 13.46 Euro, and the cost of picking the goods up from
the store was 6.73 Euro.

4.2. Measurement of the Variables

Perceived quality of the electronic grocery store

Perceived ease of use was measured on a Likert scale, using six items modified from
Davis (1989). The reliability of the scale was 0.87. Perceived usefulness was similarly mea-
sured using six items modified from Davis (1989), the reliability of the scale being 0.81.

The customer’s satisfaction with the electronic shopping was measured with eleven
items, with factor analysis by the principal components method with varimax rotation to
reduce the original number of variables to a smaller set. This gave four factors:

1. Satisfaction with safety, information privacy, and network use.
2. Satisfaction with methods of payment, presentation of products, and opening

times.
3. Satisfaction with the fresh of products, service, and delivery.
4. Satisfaction with assortment and prices.

The measures for satisfaction and its four factors are formative (see Section 4.3), which
means that reliability measures such as Cronbach alpha are not meaningful in this case.

Buying behavior

We had access to data on the actual buying behavior of the EGS customers covering
the period from 20.11.1999 to 20.2.2002, which made it possible to analyze their frequency
of shopping, average sums spent and total sums spent. We used data for a six-month period
to represent buying behavior during each round of the survey.

PERCEIVED QUALITY OF AN ELECTRONIC STORE AND BUYING BEHAVIOR 421

Control variables

Family income, size of the household, and respondent’s age, position and sex were
measured by one item. Computer experience was measured in terms of skills in word
processing and spreadsheet use, e-mail, and electronic banking through the Internet.

The measure of personal innovativeness was adopted from Agarwal and Prased (1998),
who define this construct in the domain of information technology as “the willingness of an
individual to try out a new information technology”. The reliability of the four-item mea-
sure was 0.88. The measure of playfulness was adopted from Werbster and Martochhio
(1992), adapting it to playfulness with the World Wide Web (WWW) rather than micro-
computers in general. The reliability of the scale was 0.90.

4.3. Data Analysis

The hypothesized relationships among the study variables depicted in Figure 1 were
tested by the PLS method, which is particularly well suited for predictive applications and
theory building (Chin and Newsted, 1999). It does not imply parametric assumptions of
multivariate normal distribution, and the sample size can be small, the minimum being ten
times the number of items in the most complex construct in the model (Chin, 1998; Gefen
et al., 2000).

PLS recognizes two components of a causal model: a measurement model and a struc-
tural model. A structural model consists of the unobservable, latent constructs and the the-
oretical relationships among them. Testing this includes estimating the path coefficients,
which indicate the strengths of the relationships between the independent and dependent
variables. Furthermore, for each construct in a structural model, there is a related measure-
ment model which links the latent construct in the diagram with a set of observed items.

PLS distinguishes two types of measures (Chin, 1998): reflective indicators and for-
mative indicators. Reflective indicators measure the same latent variable. Good reflective
indicators should be highly correlated, as implied by Cronbach alpha. Formative indicators
are not necessarily highly correlated, but instead they are viewed as cause variables that
provide the conditions under which the latent variables they are connected with are formed
(Chin, 1998). Computer experience and satisfaction (factors 1–4) are formative measures in
our model, whereas perceived ease of use, perceived usefulness, playfulness and personal
innovativeness are reflective measures.

More specifically, a molar approach (Bagozzi, 1985; Chin and Gopal, 1995) was
adopted to test the model in Figure 1. Total satisfaction was considered a second order
concept influenced by four factors of satisfaction (see Figure 2). To measure total satisfac-
tion, the original eleven items referring to satisfaction were used.

5. RESULTS

5.1. Measurement Model

The model of Figure 1 was tested using PSL-Graph, version 03.00 software. To test
the measurement model, we examined (1) individual item loadings, (2) internal consistency
(reliability of measures), (3) convergent validity, and (4) discriminant validity.

422 O. KURKELA AND J. IIVARI

Figure 2. Results of PLS (Partial Least Square) structural analyses.

Of the 48 item loadings, only 22 had absolute values above the threshold of 0.7. Of the
26 violations, eleven concerned total satisfaction, five computer playfulness, two personal
innovativeness, two software experience, one perceived usefulness, three satisfaction 2,
one satisfaction 3, and one satisfaction 4. Many of these 15 violations were close to 0.70,
so that only eight had loadings lower than 0.65. The internal consistencies of all the reflec-
tive measures clearly exceeded the cut-off value of 0.70. Convergent validity is considered
adequate when the average variance extracted is 0.50 or more, and this condition was sat-
isfied with four exceptions: total satisfaction (average variance extracted 0.30), computer
playfulness (0.38), computer experience (0.44) and satisfaction 2 (0.47). For satisfactory
discriminant validity, the average variance shared between a construct and its measures
should be greater than the variance shared by the construct and other constructs in the
model (Chin 1998). Four violations were discovered (between total satisfaction and the
four factors of satisfaction).

5.2. Structural Model

The tests performed on the structural models gave the results depicted in Figure 2. The
bootstrap resampling technique (500 resamples) was used to determine the significance of
the paths within the structural model.

PERCEIVED QUALITY OF AN ELECTRONIC STORE AND BUYING BEHAVIOR 423

As shown in Figure 2, perceived usefulness is not a significant predictor either of
buying frequency or of the average sum spent. Perceived ease of use, on the other hand, is
a significant predictor of buying frequency (β = 0.25, p ≤ 0.05) and an almost significant
predictor of the average sum spent (β = 0.21, p ≤ 0.10). Total satisfaction with electronic
grocery shopping is a significant predictor of buying frequency (β = −0.31, p ≤ 0.01),
but surprisingly the relationship is negative. On the other hand, satisfaction does not have
any significant impact on the average sum spent.

Satisfaction consists of four factors: satisfaction with safety, information privacy, and
network use (satisfaction1) (β = 0.45, p ≤ 0.001), satisfaction with methods of payment,
presentation of products, and opening times (satisfaction 2) (β = 0.28, p ≤ 0.001) and
satisfaction with fresh products, service, and delivery (satisfaction 3) (β = 0.37, p ≤
0.001) and satisfaction with assortment and prices (satisfaction 4) (β = 0.28, p ≤ 0.001).

Among the control variables, personal innovativeness is an almost significant predic-
tor of buying frequency (β = −0.35, p ≤ 0.10), but not of the average sum spent, as also
is computer playfulness (β = 0.27, p ≤ 0.10 for buying frequency). Computer experience
has no significant influence on either indicator of buying behavior, while age has a signifi-
cant influence on the average sum spent (β = 0.15, p ≤ 0.05), but not on buying frequency.
Position has a significant impact on the average sum spent (β = −0.17, p ≤ 0.05), and
an almost significant influence on buying frequency (β = 0.15, p ≤ 0.10), whereas family
size has a significant influence on buying frequency (β = 0.23, p ≤ 0.01), but not on the
average sum spent. Income has only an almost significant influence on buying frequency
(β = 0.13, p ≤ 0.10). Finally, survey year has a significant association with the average
sum spent (β = −0.18, p ≤ 0.05).

Overall, the model explains a considerable portion of the variance in buying frequency
(34.9%), but only a minor portion of that in the average sum spent (14.9%).

6. DISCUSSION

The findings are partly as expected and partly surprising. Of the six hypotheses pro-
posed in Section 3.2, the data supported only hypothesis H2a. Contrary to our expectations,
perceived usefulness did not predict customers’ buying behavior, although perceived ease
of use did predict buying frequency and to a lesser extent the average sum spent. This sug-
gests that those who perceive an electronic grocery store to be easier to use are apt to use
it more frequently and also to buy slightly more.

Quite surprisingly, a marked negative association existed between total satisfaction
and buying frequency, the likely explanation for which is the reciprocal interdependence
between satisfaction and use (DeLone and MacLean, 1992). While satisfaction influences
use (buying behavior), it is also influenced by the buying behavior experience. In our case
it seems that those who shopped more in the electronic grocery store in question became
more dissatisfied. The explanation for this may be the novelty of electronic grocery shop-
ping for customers, which may underline the influence of buying behavior on satisfaction
rather than vice versa. In fact, the EGS studied here had opened just before our field study
was initiated. To test this we revised the model of Figure 2 to include all eleven dimen-
sions of satisfaction as dependent variables, with buying behavior and the average sum
spent as their predictors. The analysis showed that satisfaction with product presentation

424 O. KURKELA AND J. IIVARI

was significantly dependent on buying frequency (β = −0.17, p ≤ 0.05) and satisfaction
with service almost significantly so (β = −0.16, p ≤ 0.10). These negative associations
can be explained by increased dissatisfaction with product presentation and service among
more frequent customers of ESG. The former finding is consistent with the problem of
finding products and information experienced in two electronic grocery stores, as reported
by Raijas and Tuunainen (2001).

On the other hand, satisfaction with the assortment of goods, satisfaction with open-
ing times and satisfaction with safety were positively dependent on the average sum spent
(β = 0.11, p ≤ 0.05, β = 0.14, p ≤ 0.001, β = 0.15, p ≤ 0.05, respectively) and sat-
isfaction with the freshness of the products and product presentation almost significantly
so (β = 0.10, β = 0.15, p ≤ 0.10 on both cases). The positive associations between the
average sum spent and satisfaction with the assortment and satisfaction with the freshness
of the products are easy to understand, while the satisfaction with opening times may re-
flect convenience shopping. Morganosky and Cude (2000) report that over 70% of grocery
consumers shopping online report convenience and saving of time as their primary reason
for this preference.

The above positive associations can also be interpreted, however, as suggesting that
satisfaction with these dimensions explains the average sum spent. Unfortunately, our data
(n = 106) do not allow a more complete testing of the model (so that some individual
dimensions of satisfaction were independent variables explaining buying behavior while
others were dependent on it). Thus our results concerning the relationship between satis-
faction and buying behavior are not conclusive.

The fact that perceived usefulness was found to be a poor predictor of customers’
buying behavior is consonant with the finding of Henderson et al. (1998) that perceived
usefulnesss did not emerge as a significant predictor of intention to use of an electronic
supermarket, but contradicts Childers et al. (2001), who found perceived usefulness to be
a significant predictor of attitude. The weak significance of perceived usefulness is also in
line with Gefen and Straub (2000), who found this factor to be a significant predictor of
intended purchasing behavior in their free simulation experiment of online shopping for
books. This study differs, however, in the sense that behavior was measured in objective
terms rather than as an intention to behave, as in Gefen and Straub (2000), or as self-
reported behavior, as is common in TAM research (see Straub et al., 1995). On the other
hand, perceived ease of use was a significant predictor of buying frequency and an almost
significant predictor of the average sum spent. This is in line with Childers et al. (2001),
who found perceived ease of use to be a significant predictor of attitude.

Of the control variables, family size was found to affect the frequency of shopping in
an electronic grocery store more than family income. Perhaps surprisingly, position was
a significant, but negative predictor of the average buying spent, i.e. those in a higher
position tended to buy less. On the other hand, they used the facility almost significantly
more frequently. Age was a positive predictor of average buying behavior.

In view of the novelty of electronic grocery stores and the finding of Raijas and Tuu-
nainen (2001) that users are more willing to try something new than non-users, it is surpris-
ing that personal innovativeness had an almost significant negative association with buying
frequency. On the other hand, the influence of computer playfulness on buying frequency
was almost significantly positive.

PERCEIVED QUALITY OF AN ELECTRONIC STORE AND BUYING BEHAVIOR 425

7. FINAL COMMENTS

This study has clear practical implications for practitioners responsible for the further
development of the electronic grocery store concept. Firstly, one should pay proper atten-
tion to the perceived ease of use of an online electronic store, as this seems to promote
the acceptance in terms of buying frequency and the average sum spent. The results also
suggest that more attention should be paid to the reasons for satisfaction or dissatisfaction
with grocery stores. Even though it may be that those who bought things more frequently
became dissatisfied with the system, it is likely, or at least possible, that this dissatisfaction
may influence customers’ buying behavior in the future.

The study has its limitations. It focused only on one electronic grocery store, which
has the benefit that many potentially extraneous variables were controlled, but at the same
time limits the generalizability of the results. The number of respondents (106) was also
low, which means that one must interpret the statistical results with care. The low number
of respondents is explained by the fact that the electronic grocery store in question was
very new, having just been launched. Thus the customers included are ‘early adopters’ in
the sense of Rogers (1995), and it is an open question to what extent the results can be
generalized to later adopters. It may also be that these early adopters’ buying behavior has
not stabilized. Our data also suffered from certain validity problems.

The above findings clearly justify continued research. As pointed out above, the re-
lationship between satisfaction and buying behavior clearly requires additional research.
Research should also be extended to cover a larger number of electronic grocery stores,
in the form of either focused studies of single electronic grocery stores, as here, or cross
sectional surveys. In both cases it would be useful if the studies were comparable with each
other. There is also a need for longitudinal studies of customers’ acceptance of electronic
grocery stores.

REFERENCES

Agarwal, R., and Prased, J., 1998, A conceptual and operational definition of personal innovativeness in the
domain of information technology, Information Systems Research 9(2):204–215.

Agarwal, R., and Venkatesh, V., 2002, Assessing a firm’s Web presence: A heuristic evaluation for the measure-
ment of usability, Information Systems Research 13(2):168–186.

Ahola, H., 1999, Marketing in www context – A case study of a pilot web-based supermarket, Twelfth Interna-
tional Bled Electronic Commerce Conference, Bled, Slovenia, June 7–9.

Ahola, H., Oinas-Kukkonen, H., and Koivumäki, T., 2000, Customer delivered value in a Web-based supermarket,
Proceedings of the the 33rd Hawaii International Conference on Systems Sciences.

Aladwani, A. M., 2002, The development of two tools for measuring the easiness and usefulness of transactional
Web sites, European Journal of information Systems 11(3):223–234.

Childers, T. L., Carr, C. L., Peck, J., and Carson, S., 2001, Hedonic and utilitarian motivations for online retail
shopping behavior, Journal of Retailing 77:511–535.

Chin, W. W., 1998, The Partial Least Squares approach to structural equation modelling, in: Modern Methods for
Business Research, G. A. Marcoulides, ed., Lawrence Erlbaum Associated, Mahwah, NJ, pp. 295–336.

Chin, W. W., and Gopal, A., 1995, Adoption intention in GSS: Relative importance of beliefs, The Data Base for
Advances in Information Systems 26(2&3):42–63.

Chin, W. W., and Newsted, P. R., 1999, Structural Equation Modeling analysis with Small Samples Using Partial
Least Squares, in: Statistical Strategies for Small Sample Research, R. Hoyle, ed., Sage Publications, pp.
307–341.

426 O. KURKELA AND J. IIVARI

Cooper, R. B., and Zmud, R. W., 1990, Information technology implementation research: A technological diffu-
sion approach, Management Science 36(2):123–139.

Davis, F. D., 1989, Perceived Usefulness, Perceived ease of use and acceptance of information technology, MIS
Quarterly 13(3):319–340.

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R., 1989, User acceptance of computer technology: A comparison
of two theoretical models, Management Science 35(8):982–1003.

DeLone, W. H., and McLean, E. R., 1992, Information systems success: the quest for the dependent variable,
Information Systems Research 3(1):60–95.

Gefen, D., and Straub, D., 2000, The relative importance of perceived ease of use in IS adoption: A study of
e-commerce adoption, Journal of Association for Information Systems 1(8).

Gefen, D., Karhanna, E., and Straub, D., 2003, Trust and TAM in online shopping: An integrated model, MIS
Quarterly 27(1):51–90.

Geuens, M., Brengman, M., and S’Jegers, R., 2003, Food retailing, now and in the future. A consumer perspective,
Journal of Retailing and Consumer Services 10:241–251.

Grewal, D., Iyer, G. R., and Levy, M., 2004, Internet retailing: enablers, limiters and market consequences, Jour-
nal of Business Research 57(7):703–713.

Hart, C., Doherty, N., and Ellis-Chadwick, F., 2000, Retailer adoption of the Internet, Implications for retail
marketing, European Journal of Marketing 34(8):954–974.

Heikkilä, J., Kallio, J., Saarinen, T., and Tuunainen, V. K., 1998, Analysis of expectations on electronic grocery
shopping for potential customer segments, Australian Journal of Information Systems 6:56–69.

Heikkilä, J., Kallio, J., Saarinen, T., and Tuunainen, V. K., 1999, EC of groceries for elderly and disabled; a
comparison of alternative service models, Information Technology & People 12(4):389–402.

Henderson, R., Rickwood, D., and Roberts, P., 1998, The beta test of an electronic supermarket, Interacting with
Computers 10:385–399.

Karahanna, E., Straub, D. W., and Chervany, N. L., 1999, Information technology adoption across time: A cross-
sectional comparison of pre-adoption and post-adoption beliefs, MIS Quarterly 23(2):183–213.

Kutz, K., 1998, On-line grocery shopping on track for rapid growth, Andersen Consulting Newsletter, January
20, Chicago.

Moore, G. C., and Benbasat, I., 1991, Development of an instrument to measure the perceptions of adopting
information technology innovation, Information Systems Research 2(3):192–222.

Morganosky, M. A., and Cude, B. J., 2000, Consumer response to online grocery shopping, International Journal
of Retail & Distribution Management 28(1):17–26.

Muylle, S., Moenart, R., and Despontin, M., 2004, The conceptualization and empirical validation of web site
user satisfaction, Information & Management 41(5):543–560.

Oinas-Kukkonen H., 2000, Balancing the vendor and consumer requirements for electronic shopping systems,
InformationTechnology & Management 1:73–84.

Palmer J., Kallio, J., Saarinen, T., Tinnila, M., and Tuunainen, V. K., 2000, Online grocery shopping around the
world: Examples of key business models, Communications of Association for Information Systems 4(3).

Raijas, A., and Tuunainen, V. K., 2001, Critical factors in electronic grocery shopping, Int. Rev. of Retail, Distri-
bution and Consumer Research 11(3):255–265.

Rogers, E. M., 1995, Diffusion on Innovation, Fourth edition, Free Press New York.
Rohm, A. J., and Swaminathan, V., 2004, A typology of online shoppers based on shopping motivations, Journal

of Business Research 57(7):748–757.
Straub, D., Limayem, M., and Karahanna-Evaristo, E., 1995, Measuring systems usage: Implications for IS theory

testing, Management Science 41(8):1328–1342.
Szymanski, D. M., and Henard, D. H., 2001, Customer satisfaction: A meta-analysis of the empirical evidence,

Journal of Academy of Marketing Science 29(1):16–35.
Verhoef, P. C., and Langerak, F., 2001, Possible determinants of consumers’ adoption of electronic grocery shop-

ping in the Netherlands, Journal of Retailing and Consumer Services 8:275–285.
Webster, J., and Martocchio, J. J., 1992, Microcomputer playfulness: Development of a measure with workplace

implications, MIS Quarterly 16(2):201–224.

ONTOLOGY-BASED DECISION SUPPORT SYSTEM
FOR CRIME INVESTIGATION PROCESSES

Dale Dzemydiene and Egle Kazemikaitiene∗

1. INTRODUCTION

The characteristics of complex and dynamic crime investigation domain require new
ways of information extraction and knowledge representation. The crime analysis infor-
mation system, based on ontology, ensures the proper application of the structural model
of crime information, determines the main rules, how to acquire the important forensic and
crime investigation information about crime from the primary sources.

The goal of developing a decision support system (DSS) is to act “helpfully” in terms
of reliably reproducing the cognitive behaviour of crime investigators demands thoroughly
considered concepts, principles, and crime scenarios.

We can classify the problems arising in the investigation of a crime into two main
groups: the problems of a purely criminal nature and those associated with the criminal law,
penal process, organization, and criminology. One can solve the first group of problems by
employing the crime analysis information, while for the problems of the other group we
need information on the criminal law, penal process and the like, that would be significant
for the crime investigation.

The crime analysis information, first of all, is data that pattern the criminal event and
its investigation.1, 5, 7, 18 Naturally, the data that serve for revealing the criminal offence are
of great importance as well.

The target of creating an advisory information system in order to render an opportunity
for the investigator of using the auxiliary and consultative information is connected with a
lot of complex technological problems. The requirement posed to the crime analysis infor-
mation system, possessing the primary investigation information, must render an opportu-
nity to present inquiries to other required information systems, to receive their replies and,
based on them, to provide already processed further information, versions of the investiga-

∗ Dale Dzemydiene, Law University of Lithuania, Ateities str. 20, LT-08303 Vilnius, Lithuania; Institute of Math-
ematics and Informatics, Akademijos 4, LT-08303 Vilnius, Lithuania, daledz@ktl.mii.lt. Egle Kazemikaitiene,
Law University of Lithuania, Ateities str. 20, LT-08303 Vilnius, Lithuania, eglek@ltu.lt.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 427

428 D. DZEMYDIENE AND E. KAZEMIKAITIENE

tion course and possible ways of decision.6 In his turn, the investigator, basing on already
processed information and on his own logical thought, would make a proper decision.

Crime registration is a very significant stage in the development of crime investigation
practice, i.e., criminal records, automated and partially automated recording, card files, col-
lections, and databases.11, 13 However, the systems of a recording nature are not sufficient
in providing complicated information supply for crime investigation.11 It would be reason-
able to have information on the crime scene observing practice of different crime types,
i.e., knowledge of the crime scene investigation tactics and strategies of various types of
crimes and their peculiarities, where to look for traces, what investigation plan to make up,
and what problems to solve.5, 12 One more peculiarity as to the information acquisition on
the crime scene observation is the place from which the investigator could send a request
to the crime analysis system.

Solution of the second group problems is no less important when building a crime
analysis system. For instance, after receiving a report or application on the event, the in-
vestigator must judge whether there are any criminal indications. Only such an information
system that contains information with evident criminal indications could be of use to him.
There are, e.g., particular signs of violence or other body injuries typical of various cases
of violence. Each crime bears signs typical of this kind of crime that ought to be related in
the crime analysis information system.

Another task for the investigator is the proper qualification of a criminal act. Therefore
the investigator should have access to the corresponding information, i.e., information on
the criminal law: penal laws, their comments and explanations, court practice.

In the analysis of the components of intellectual information systems, it is important
to consider how to represent crime investigation knowledge and by what methods to build
decision preparation systems. To this end, an attempt is made to describe the sense of
application of these methods, by pointing out the decision-making problems, creating the
crime investigation ontology.

The main structural requirements for developing the ontology-based crime analysis
information system are considered.

2. RELATED WORKS

There are a number of projects currently developed in areas, as diverse as psychology,
medicine, crime analysis and computing, which focus on the analysis and management of
images with some support for language engineering techniques. A large volume of data
related to the modus operandi (MO) is being collected. The force linked intelligence sys-
tem FLINTS9 combines forensic and physical evidential “hits” in order to display links
between criminals and the evidence, and produces a profile of offenders and of crimes
committed. Such systems as IMPRESS, FLINTS, LOCARD and imaging workflow sys-
tems can all be used as systems for building the profile of a habitual criminal.12, 9, 16 There
are evidence tracking systems that deal with the movement of crime-related exhibits (Lo-
card Evidence Tracking System) from the crime scene through to the court; this tracking
is again performed through a class description, much like that used by freight handling
organizations.1, 15

ONTOLOGY-BASED DSS FOR CRIME INVESTIGATION PROCESSES 429

A workflow system should be able to process and fuse together the impression evi-
dence in the two modalities: free text descriptions and images. Given a large volume of
impression evidence, it is important for such a system to learn to fuse the different items of
impression evidence in a coherent whole. There are problems related to the variance in the
ways other than Police Forces describe and image a scene of crime and indeed there are
variations within a large Force. Nevertheless, there are similarities in descriptions as mani-
fested by terminology, reflecting the conceptual structure of forensic science and criminol-
ogy, on the one hand, and the specialized nature of the images of impressions.15, 16, 5 There
is a need to have a holistic view of the impression evidence: different types of evidence and
two different modalities. Training of forensic scientists and officers should reflect this. An
intelligent workflow system for impression evidence, that pro-actively fuses, and learns to
fuse, descriptions and images, will require an active cooperation between the end-users
(the Police Forces), the academic researchers in information extraction, in text and image
mining, and in Grid technologies, and software vendors specialized in working with the
Police Forces.

One of the important research problems is the use of manually created ontology and
thesauri. The IMPRESS project will benefit from the lessons learned in these projects on
the management of image repositories and will inform them in return about image-text
interactions and how adaptive learning systems can be beneficial.12 The research work
undertaken already in building image management systems that beneficially use texts col-
lateral to the image has been documented.18 The key problem of inter-indexer variability
has not been extensively discussed.8 Multiple classifier systems have been used to deal
with properties of an individual image (colours, shapes, texture) and there are some results
on relating images to sound.18

3. KNOWLEDGE REPRESENTATION TECHNIQUES USED IN THE DECISION
SUPPORT SYSTEM FOR CRIME INVESTIGATION PROCESSES

3.1. An Approach for Integrating Ontology into the Scenario Generation Algorithm

The development of application ontology helps to create the framework and thus to en-
sure the collection, accumulation, storage, treatment, and transmission, in a proper form,
of important investigation information, which establishes conditions to make optimal de-
cisions in the investigation of crimes.

The integration of ontology, meta-modelling, and crime pattern recognition is very
important in this DSS. We use the model-based and the case-based reasoning techniques,
derived from the existing technology of compositional modelling, and integrate reasoning
about evidences based on ontology.4

Scenarios are modelled as the causes of evidences and they are inferred based on the
evidences they may have produced.

The goal of the DSS is to find a set of possible alternatives of crime causes follow-
ing from scenarios that support the entire set of available evidence. This set of possible
alternatives of crime modus operandi can be defined as:

AC = {a ∈ A | ∃s ∈ S, (∀c ∈ C, (S ⇒ c)) ∧ (S ⇒ a)},

430 D. DZEMYDIENE AND E. KAZEMIKAITIENE

where AC is the set of all possible alternatives of crime modus operandi (e.g., suicide, ac-
cident, or murder), S is the set of all consistent crime scenarios, C is the set of all collected
pieces of crime evidence.

The methodology of implementing the decision support system is based on the created
ontology.

Ontology refers to engineering artefacts, constituted by a specific vocabulary used to
describe a certain reality, plus a set of explicit assumptions regarding the intended meaning
of the vocabulary worlds.10 We must consider the language L with the vocabulary V , and
I : V → D∪R as a function assigning the elements of D to constant symbols of V , and the
elements of R to predicate symbols of V. The role of ontology can be considered as a set of
logical axioms designed to account for the intended meaning of vocabulary. In general, it is
not easy to find the right set of axioms. Ontology may be informal, for example, specified
by a catalogue of types that are definitions stated in the natural language, or formal, for
example, specified by axioms and definitions stated in the formal language.3, 17

The applied ontology of the crime investigation subject area is created by making use
of a unified modelling language (UML), applying object-oriented designing methods,2 and
it is translated into the XML language.

The creation and implementation of ontology enable us to systematize the collected
facts, to evaluate structures of knowledge.10 Creation of ontology is an interactive process.
The methodologies proposed for ontology development are: M.Uschold’s methodology,
M.Grüninger’s and M.S.Fox’s (TOVE) methodology; KACTUS approach, On-To-Know-
ledge (OTK) methodology.14

An example of description of the object class diagram for revealing the criminal char-
acter of crime by UML is presented in Figure 1.

The description of such schemas are translated into XML, XMI language.

Figure 1. Example of the object class diagram of the crime character in UML.

ONTOLOGY-BASED DSS FOR CRIME INVESTIGATION PROCESSES 431

While considering the examples of ontology development,3, 10, 14, 17 we can classify
opportunities of developing different kinds of ontology according to their level of general-
ity:

• Top-level ontology describes very general concepts, such as space, time, matter,
objects, etc., which are independent of a particular problem or domain;

• Domain ontology and task ontology describe the vocabulary related to the gene-
ric domain (like law, medicine) or generic task or activity (like forensic process,
diagnosis), by specializing the terms introduced in the top-level ontology.

• Application ontology describes concepts depending both on a particular domain
and task, which are often specializations of both the related ontology. These con-
cepts often correspond to the roles played by domain entities while performing a
certain activity.

The crime analysis information system should supply qualitative processed informa-
tion for the investigator and help to make decisions on all important points of investigation:
to produce versions, to choose the tactics and strategy of investigation, etc. Because of that
the crime analysis information system becomes an instrument for crime investigation in
practice.

3.2. Description of Forensic Evidence Investigation Processes

The scenarios of revealing the forensic evidence are different and depend on the
type of crime. We choose the type of crime against a person’s life to illustrate the rep-
resentation of the scenario and collaboration activities of forensic evidence investigation
processes.

The main processes are revealed:

• The scene of crime is observed without touching anything.
• A group of investigators inspect the surroundings of the crime event, by fixing all

the possible traces from the outlying areas to the centre (inspection of fingerprints,
cigarette-butts, blood, etc.) – this is the stage of a primary observation process.

• A corpse in the centre and its examination (a doctor examines the body, diagnoses
the cause of death by the signs of violence, he proves it to be not a suicide), and
the time of murder by the death marks, the site (the corpse could be transferred).

• The investigator examines the body and clothes in order to identify the person,
sex, fingerprints, blood, saliva, sperm or other traces on the body or clothes.

After the all-round inspection/examination everything is fixed by taking pictures and
drawing up the report.

An example of the sequence diagram is presented in Figure 2.
According to the primary information some versions are raised and a further plan of

investigation is drawn up. This is a first important decision for further actions.
The group of investigators must reveal all the possible versions, which are: suicide,

premeditated murder, and manslaughter, and propose the decision.
The maintenance of crime investigation information is a complicated system that can

be described by the following specific features:

432 D. DZEMYDIENE AND E. KAZEMIKAITIENE

Figure 2. Sequence diagram of the forensic evidence investigation process.

• The aim of the crime analysis information system is to help the investigator to
quickly and effectively investigate a crime, by doing different hard jobs, and to
create presumptions for purposive investigation;

• The creation of a crime analysis information system is based on the recommen-
dations of criminality and other sciences, aimed mainly at the investigation and
prevention of crime;

ONTOLOGY-BASED DSS FOR CRIME INVESTIGATION PROCESSES 433

• The crime analysis information system has to be regulated;
• The information has to be accessible just for a limited count of users to ensure the

security of it, so the crime analysis information system is a system of limited use;
• The treatment of information in the crime analysis information system has to

conform to the purposes of crime investigation;
• The optimisation of information processes is realized by their automation and

technological implementation.

The automation of information processes is realized by a strict implementation of
necessary procedures that include:

• Determination of type, object and character of information used in the crime in-
vestigation process;

• Analysis of investigation information in order to determine disadvantages of in-
formation supplying as well as possible automation tendencies of investigator’s
work;

• Design of the crime analysis information system
• Control of the crime analysis information system and its the improvement.

The crime analysis information system should secure the component integrity and
could operate as an integral system. Consequently, the requirements posed to it are those
typical of such a system:

• Independent of individual components, quality is a typical feature of the crime
analysis information system of a special purpose and kind, and it may not be
reduced only to the features of elements that compose the system;

• Qualitative features of the crime analysis system depend on the qualitative fea-
tures of the elements that compose it;

• There is a close connection among the elements of the crime analysis informa-
tion system. These are so close that a change in one component of the system
stimulates changes in other components or sometimes even in the whole sys-
tem;

• The correct order of the constituent elements as well as of the links among them
characterizes the crime analysis information system as an integral system. This is
mostly evident in the structure and organization of the system;

Just like any other integral system, the crime analysis information system cannot exist
being isolated, without any link with the exterior world. The crime analysis information
system interacts with the real world and other information systems. It is a dynamic and
developing information system.

The subject area considered by us could be limited up to the consideration of crime
investigation as an ontological point of view based on building of the exterior world model.

Criminality information should describe the circumstances of the crime event, the
mechanism of crime, and particular regularities of modus operandi. The facts about crim-
inals, traces and evidence, and about modus operandi and versions make the basis for
creating the crime analysis information system.

The important knowledge in the crime investigation is knowledge of crime investiga-
tion methods, criminal procedure, and other knowledge of special scientific methods and

434 D. DZEMYDIENE AND E. KAZEMIKAITIENE

Figure 3. Example of the use case diagram of the investigation stages of crime evidence information.

tactics for investigation. Investigators and judges take part in the knowledge process, the
essence of which is a reconstruction of the crime event by the evidence and traces left in
the surroundings. These traces are fixed and recognized, that for unknown reasons become
evidences.

The creation, removal, and transformation of evidence information take place step by
step and reflect multi-stage and structured causative connections that describe the role of
actors in different criminal activities and use-cases (Figure 3).

Major data flows are considered by separating a criminal event as a process, and mod-
els of data flows as well as of the processes transforming them are constructed.

The main algorithm of our decision support system is presented in Figure 4. It shows
the integration of basic investigation processes and case-based reasoning mechanisms ap-
plied in our DSS. The components of this algorithm are the databases of solved crimes
cases that are helpful in such a reasoning mechanism.

The investigation of criminal event could be detailed as follows:

• Establishment of the sources of the investigated case;
• Extraction of information on the investigated event from the sources;
• Implementation of particular circumstances of the investigated event;

ONTOLOGY-BASED DSS FOR CRIME INVESTIGATION PROCESSES 435

Figure 4. The algorithm of the main processes of model-based and case-based reasoning for pre-trial crime
investigation.

• Development of a complete information system and determination of the actual
structure of the investigated event.

Thus, all the activities connected with the investigation of crime are aimed at the final
result – to define the structure (pattern, model) of a criminal event.

Pre-trial crime investigation is based on crime investigation science knowledge about
the crime investigation, planning, investigation situations, versions, etc. Here information

436 D. DZEMYDIENE AND E. KAZEMIKAITIENE

Figure 5. An example of class diagram of forensic evidence.

on archives of penal crimes as well as statistical information on criminology databases is
of great importance.

The ontology of crime analysis information first of all is the reflection of a crime and
its investigation; information which describes the circumstances of a crime, its mechanism
and particular regularities of crime committing, information on criminals, traces as well
as modus operandi (Figure 5), versions, and knowledge about the methods of crime in-
vestigation, penal procedure, and other methodological and tactical recommendations of
criminality and forensic science.

4. GENERATION OF CRIME MODUS OPERANDI ALTERNATIVES
ACCORDING TO ONTOLOGY

According to the crime classification in the penal code (for example in Lithuania∗),
there are: crimes against the humanity (genocide, etc.), crimes against person’s life (mur-
der, etc.), crimes against property (thefts, material injury, etc.), economic crimes (burglary,
etc.), – in total all about two hundred different types of crime (Figure 6 illustrates hierarchy
of the main types of crimes). In its own turn, the creation of information on different types
of crime should be based on the crime character and its elements.5, 13

Crime analysis information should be dynamic, complex, operative, true, trustful,
available, safe, ergonomic, and scientific. The sources of criminality information could
be material and immaterial objects that are connected with the circumstances of the crime
event and contain the information on these circumstances.

The available evidence supports every alternative of crime modus operandi that fol-
lows from a plausible scenario. The rules are constructed by the ontology presented in the

∗ Lithuanian Penal Code, 2000 09 26 d. Act of Law No. VIII-1968. – 99–329 articles.

ONTOLOGY-BASED DSS FOR CRIME INVESTIGATION PROCESSES 437

Figure 6. The example of crime classification.

previous examples, and the scenario space is revealed:

C1 = {violence injuries(p), ballistic report of shoot mechanism(p), bullets and
cartridges(p), blood traces analyses(p) ⇒ diagnosis(murder(p))}.

C2 = {medical report of occasional death(p), lack of collagen(p), accidental
blood vessel rupture(p)) ⇒ diagnosis(accidental death(p))}.

In a possible world described by crime event environment C1, murder(p) is true, and
in the one described by C2, accidental death(p) is true.

The knowledge base of the DSS is developed by aforementioned rules. The develop-
ment of application ontology helps to create the framework and thus to ensure the collec-
tion, accumulation, storage, treatment, and transmission, in a proper form, of important
investigation information, which establishes conditions to make optimal decisions in the
investigation of crimes.

5. CONCLUSIONS

The main advantage of the approach presented here is a possibility to integrate ontol-
ogy into the scenario space generation algorithm. The knowledge representation methods

438 D. DZEMYDIENE AND E. KAZEMIKAITIENE

play an important role in solving decision-making problems for the development of an
advisory system in crime investigation processes. The approach for developing a decision
support system is based on model-based and case-based reasoning techniques and use cases
of crime investigations. The decision support system allows combinations of crime events
and states that produce a given set of evidence from the knowledge base and ontology,
helpful in generating scenario fragments from inconsistent situations. The proper crime
investigation depends on the quality of the advisory crime analysis information system
based on ontology, converting the first outside and inside facts in to criminality analysis
processes, rendering opportunities of optimal decision making for the investigator. The
main purpose of such a decision support system is supplying of information on the crime
investigation activity in the crime analysis. The methodology for development of the deci-
sion support system relies upon the case-based reasoning mechanism and cases of use of
crime investigations.

REFERENCES

1. K. Ahmad, B. Vrusias, and M. Tariq, Cooperative neutral networks and integrated classifications, Proc. 2002
Int. Joint Conf. On Neutral Networks (IEEE Press, Piscataway, 2002).

2. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide (Addison Wesley,
1999).

3. A. Čaplinskas, A. Lupeikienė, and O. Vasilecas, The role of ontologies in reusing domain and enterprise
engineering assets, Informatica 14(4), 455–470 (2003).

4. J. Keppens and Q. Shen, On compositional modelling, Knowledge Engineering Review (16), 157–200 (2001).
5. D. Dzemydiene, E. Kazemikaitiene, and R. Petrauskas, Knowledge representation in advisory information

system of crime investigation domain, in: Databases and Information Systems II, edited by Hele-Mai
Haav and Ahto Kalja (Kluwer Academic Publishers, 2002), pp. 135–148.

6. D. Dzemydiene and V. Rudzkiene, Data analysis strategy for revealing multivariate structures in social-
economic data warehouses, Informatica 14(4), 471–486 (2003).

7. D. Dzemydiene and V. Rudzkiene, Multiple regression analysis of crime pattern warehouse for decision
support, Lecture Notes in Computer Science 2453, in: Database and Expert Systems Applications,
edited by A. Hameurlain, R. Cicchetti, and R. Traunmuller (Springer, 2002), pp. 249–258.

8. J. P. Eakins and M. E. Graham, Content-based Image Retrieval: A Report to the JISC Technology Applica-
tions Programme (Image Data Research Institute Newcastle, Northumbria, 1999).

9. Force Linked Intelligence System – FLINTS – Linking Police Work with Science and Technology;
http://www.west-midlands.police.uk/flints/background.htm.

10. N. Guarino, Formal Ontology and Information Systems, in: Formal Ontology in Information Systems. Pro-
ceedings of FOIS’98, edited by N. Guarino (IOS Press, Italy, Amsterdam, 1998), pp. 3–15.

11. B. Hebenton and T. Terry, Criminal Records (Brookfield, USA, 1993).
12. IMPRESS – IMPRession Evidence and Serial crime profiling System; www.computing.surrey.ac.uk/ai/

impress/full.html.
13. G. L. Kovacich and W. Boni, Hig Technology- Crime Investigator’s Handbook: Working in the Global Infor-

mation Environment (Butterwoth-Heinemann, 2000), pp. 115–136.
14. S. Maskeliūnas, Ontological engineering: common approaches and visualisation capabilities, Informatica

11(1), 41–48 (2000).
15. K. Pastra, H. Saggion, and Y. Wilks, Intelligent indexing of crime-scene photographs, IEEE Intelligent Sys-

tems, Special Issue on “Advances In Natural Language Processing” 18(1), 55–61 (2003).
16. F. Roli and J. Kittler, eds., Multiple Classifier Systems: Proceedings (LNCS), Third International Workshop,

MSC 2002 (Cagliari, Italy, June 24–26, 2002).
17. J. F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations

(Brooks/Cole, Thomson Learning, Pacific Grove, CA, 2000).
18. R. K. Srihari and Z. Zhang, Show & Tell: a semi-automated image annotation system, IEEE Multi Media

7(3), 61–71 (2000).

VARIATION IN STUDENTS’ CONCEPTIONS OF
OBJECT-ORIENTED INFORMATION SYSTEM

DEVELOPMENT

Ilona Box and Raymond Lister∗

1. INTRODUCTION

CRUD (create, read, update, delete) analysis in object-oriented information system
development (OOISD) is recommended as a means to improve the quality of the resulting
system.1–9 Box10 went further by stating that it also improved students’ learning of OOISD.
She stated, based on anecdotal evidence, that “the earlier [students] can detect errors of
omission the more likely they are to succeed at “good” analysis and design; the more
confident they feel about learning and doing OOISD and the better their object thinking”.

If OOISD students did attempt CRUD analysis in the manner presented by Box &
Ferguson,9 early, during analysis, would Box’s statement, in part or whole, be supported?
In the first instance, would it be possible to detect the conceptions students have about
OOISD by examining students’ CRUD matrices? In this paper, we explore the question of
what are the variations in the conceptions constituted in CRUD matrices that are an out-
come of CRUD analysis after the development of high-level use cases and the initial class
diagram. We use a phenomenographic research approach to constitute the variation in con-
ceptions. Our results are categories describing what types of errors the students make in the
CRUD matrices. Based on 57 student assignments, we identify three categories represent-
ing various types of errors made by students. The categories of description, the outcome
space of the research, contribute to the ISD community by providing a taxonomy of er-
rors to inform teaching practice of OOISD and gives modest conditional support to Box’s
statement.

1.1. Phenomenography

Phenomenography is a research approach focusing on the qualitatively different ways
people experience, understand, perceive, or conceptualise a phenomenon.11 The under-
pinning philosophy is that there are a limited number of qualitative ways of experiencing

∗ Both authors, University of Technology, PO Box 123, Broadway, NSW 2007. Ilona Box, also University of
Western Sydney, Locked Bag 1797, PENRITH SOUTH DC, NSW 1797, ilona@cit.uws.edu.au.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 439

440 I. BOX AND R. LISTER

phenomena. Phenomenographers usually collect their data by recording and transcribing
interviews with a small number of interviewees. The transcripts are analysed to identify
one or more dimensions of variation; a dimension of variation is a set of categories some-
how related, e.g. linearly or hierarchically, with a small number of categories in the set.
Since phenomenographers wish to capture the variation in experiences, and not quantify
the popularity of each experience (though this can be done in follow-up work), they can
work with small numbers of interviewees.

Bruce12 has presented a synopsis of phenomenography in information technology re-
search. Booth13 conducted the seminal phenomenographic work in computing, “what does
it mean and what does it take to learn to program?”. Also in 1992, Gerber, Buzer, Worth
and Bruce asked educators and researchers of geographical information systems (GIS)
their views and experience of GIS.12 Academics’, students’, and practitioners’ concepts of
information systems have also been explored.14 Cope’s15 later study identified students’
different ways of seeing information systems, providing insights into how students’ ways
of seeing differs from the views of experts in the field. Bruce notes, “The differences identi-
fied are educationally critical”. Other studies in the information technology discipline pub-
lished in recent years include: Berglund16 on the understanding of computer networking
protocols; McDonald17 on the nature and acquisition of algorithm understanding; Klaus
and Gable12 on the understanding by senior managers of knowledge management in the
context of enterprise systems; Stewart and Klaus12 on the experience of the business-IT
relationship. Other areas of research underway are learning to program and learning about
computer networking and data communications;12 and how students, who take their first
programming course, understand objects and classes.18

These works are leading the research in computing using phenomenographic studies.
Bruce12 states education research like this is critical to the design of effective professional
education, and of some importance to information technology educators.

In this paper, we report upon our own phenomenographic study, to investigate the
qualitatively different understandings students have of OOISD as constituted in students’
CRUD matrices.

2. METHOD

Our data came from one source, 57 assignments completed by students as partial fulfil-
ment of the first OOISD subject in an undergraduate computing degree. The assignments
are work not collected by students at the end of semester and represent the five grades
awarded for this assessment task. The assignment was an optional assessment tasks. Stu-
dents chose to do the assignment to try for a credit or distinction grade.

The assignment was based on a case study (Appendix A) and required the students
to correct and complete 12 high-level use cases, draw a class diagram, and do a CRUD
analysis among a number of other tasks. The students were explicitly instructed to do the
CRUD analysis before finalising their high-level use cases and class diagram and to follow
the software development method as described in Box & Ferguson 9 Templates of the
CRUD matrices, as discussed in Box & Ferguson, are shown in Appendix B. As well as
the discussion provided in the text, the students received instruction and practice in the use
of the CRUD matrices.

VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED IS DEVELOPMENT 441

The CRUD matrices from the assignments were analysed in the phenomenographic
style. Our focus for analysis was drawn to the errors the students had made in the CRUD
matrices. The analysis was an iterative process. We did not begin with the categories; we
formed the categories from what we found in the data. The types of errors were identified
and then the set of CRUD matrices from each assignment were placed into one category or
between categories. The categories were revised. The placing of assignments and revision
of categories was iterated until we reached a consensus of what were the categories and
the relationships between the categories. We only added a category when we could identify
CRUD matrices in support of that category. The outcome space is the qualitative descrip-
tion of each category. The qualitative descriptions are of the predominant types of errors in
a category and descriptive exemplars of how that error manifested in the CRUD matrices
in the assignments.

It is important to understand that a single assignment is not designated to a single
category. Students naturally have several conceptions about OOISD, although they may
understand some conceptions better than others. Therefore, one assignment may fall across
more than one of the following categories.

3. RESULTS

From the data, we identified three categories. The categories were constituted as ag-
gregations of the types of errors (or lack thereof) we found in the CRUD matrices the
students created.

3.1. Fragmented and Unstructured Conceptions

The first category is fragmented and unstructured conceptions. Here, it is difficult to
identify conceptions that are correct. There are many conceptions that are incorrect. Often,
one or more conceptions are in contradiction or conflict with other conceptions. We regard
this as the less powerful understanding of OOISD. The various types of errors found in the
CRUD matrices and which constitute this category are:

1) Object-oriented principles (encapsulation, data abstraction, inheritance):
a) Identifying a class that only represents a chunk of data in the system. For exam-
ple, an abstract class called Data [Assignment 6], a persistent class called Records
with the attribute Unit Outlines [Assignment 7], a persistent class called Record
[Assignment 45].
b) Including a class name as an attribute in another class. For example, in the
CRUD attribute matrix for the class Unit Outline, unitCoordinator is listed as an
attribute, Outline-Coordinator is listed in the CRUD Association matrix, and Unit
Coordinator is listed in the CRUD class matrix [Assignment 8].

2) Persistence (identifying persistent and transient objects, and abstract classes):
a) Classes at the same level or specialisation in an inheritance structure are indis-
criminately identified as persistent, transient, or abstract. For example, the classes
listed in the CRUD class matrix: Unit Coordinator, Team leader, Administrator,
and Head of School (as specialisations of person) are identified as persistent, tran-
sient, abstract, and abstract respectively [Assignment 1].

442 I. BOX AND R. LISTER

b) Classes with objects that come into existence as part of the new system are
identified as persistent; classes with objects that exist before the new system is
built are identified as abstract. For example the classes: Discipline team, Student,
Team Leader, Unit coordinator, and Unit exist in other software systems and were
identified as abstract. The classes: Outline, Summative assessment, and Terms and
choices do not exist in other software systems, are considered “new” classes and
are labelled persistent [Assignment 7].
c) Classes are not identified as persistent, transient or abstract. For example, the
classes: Unit Outline, Unit Coordinator, Team Leader, University, and Adminis-
trator are listed in the CRUD class matrix and the “P” column is left blank [As-
signment 8].
d) Classes that are roles or actors are classified as persistent; classes that represent
things are classified as transient. For example, the classes: Team leader and Coor-
dinator are typed as persistent; the classes: Unit outline and Calculate summative
assessment are typed as transient [Assignment 3].

3) Traceability (among CRUD matrices, and between use cases or the class diagram
and CRUD matrices):
a) The number of classes shown in the class diagram is not the same number listed
in the CRUD class matrix. For example, the class diagram contains 11 classes and
the CRUD class matrix lists only five classes, [Assignment 3], the class diagram
contains seven classes and in the CRUD class matrix 49 classes are listed [As-
signment 6].
b) The number of associations shown in the class diagram is not the same number
listed in the CRUD association matrix. For example, the class diagram contains
10 associations and the CRUD association matrix lists only six [Assignment 1].
c) The names of the use cases in the CRUD matrices are not the same as in the
use case diagram or high-level use cases. For example, the use cases: Create unit
outline, Add new team leader, Calculate summative assessment, and Record sum-
mative assessment, are shown in the use case diagram and high-level use cases;
in the CRUD class matrix the use cases are listed as: A Unit outline, New team
leader, and Calculate/record Summative assessment [Assignment 16].
d) The identification of classes is inconsistent between matrices. For example,
in the CRUD class matrix classes are identified as: Unit Coordinator and Unit
Outline, and in the CRUD association matrix the classes are identified as: Coor-
dinator, Outline, and UnitOutline [Assignment 8].
e) The attributes in the class in the class diagram are not the attributes listed in
the CRUD attribute matrix for the class. For example, the class Unit outline has
the attributes: coarse title, course ID, and semester in the class diagram; in the
CRUD attribute matrix the attributes listed are: Name, Idnumber, Address, and
Phone number [Assignment 3].
f) Only some of the attributes in the class diagram for a class are listed in the
CRUD attribute matrix for the class. For example, the class Unit Outline in the
class diagram has the attributes: Title Page, Main Page, and Summative Assess-
ment; in the CRUD attribute matrix for the class the attributes are: Titlepage, Main
Heading, Unit Number, Unit Name, and Summative assessment [Assignment 4].

VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED IS DEVELOPMENT 443

g) The use cases identified in the CRUD class matrix to create, read, update, or
destroy are not listed in the CRUD attribute matrix where they would be expected.
For example, in the CRUD class matrix, the class Unit Outline is created during
the use case Create Unit Outline; in the CRUD attribute matrix for the class Unit
Outline all the attributes are initialised at creation by the use case Define Outline
[Assignment 8].

4) Notation conventions (the notation of class, association, attribute, and use case
names):
a) Little or no consistency between the notation for the names of classes, attributes
and/or use cases between the class diagram, use case diagram, or high-level use
cases, and the CRUD matrices. For example, five out of six class names in the
class diagram has each word in title case, and in the CRUD class matrix, the four
classes listed are written in sentence case [Assignment 21].
b) Little or no conformity to the notation for the names of classes, attributes,
and/or use cases stipulated in the software process. For example, in the process
described by Box & Ferguson, which conforms to UML version 1.4, class names
are written in upper camel case (e.g. UnitOutline), attribute names are written in
lower camel case (e.g. unitNumber), and use cases are written in sentence case
(e.g. Create unit outline).

5) Process (the functions the system needs to perform):
a) For the classes that can be matched to people, a description or N/A rather than
the use case is entered in the CRUD class matrix. For example, in the CRUD
class matrix, the class Unit Coordinator has for create Unit Outline, has for read
N/A, has for update Make changes in unit outline, and has for delete Delete data
from unit outline; the class Team Leader has for create N/A, has for read Read the
unit outline create by unit coordinator, has for update Approval unit outline and
update it, and has for delete Send data to unit coordinator for delete data from
unit outline [Assignment 17].

6) Design (the representation of design decisions relating to the identification of
classes, associations, attributes, and use cases in CRUD matrices):
a) Identifying more than one use case that performs the same function. For exam-
ple, objects in the class Unit Outline are read during the use case Read unit out-
line; objects in the class Archive are read during the use case Access unit outline
[Assignment 1]. b) Classes and use cases identified using the same nomenclature.
For example, in the CRUD class matrix the class is named Calculate summative
assessment and the use case to create objects in this class is named Calculate
assessment [Assignment 3], in the CRUD association matrix the associations are
identified as Approve unit outline, Modify unit outline, and Submit unit outline
[Assignment 21].
c) The attributes do not belong to objects in the class in a CRUD attribute matrix.
For example, the class unit outline has the attributes: Name, Idnumber, Address,
and Phone number [Assignment 3].
d) Identifying and naming individual parts in whole-part associations when the
parts have common attributes. For example, listing in the CRUD class matrix
the classes AssumedKnowledge, ClassHours, Component, Content, Cover, Cov-

444 I. BOX AND R. LISTER

erPage, Disabilities, Exclusion, Introduction, LearningSkillsUnit, Malpractice,
Method, Note, OutOfClassHours, Practice, Prerequisite, Presentation, Recom-
mendedText, References, StaticNote, StudentLearningOutcome, and Summative-
Assessment as classes that have objects created during the Create unit outline use
case [Assignment 6].
e) Identifying separate classes for the same data. For example, Outline and Records
[Assignment 7], Unit Outline and Archive [Assignment 5].
f) Classes and associations are identified as separate due to the timing or sequence
of events. For example, the class Unit outline is created during the Create unit out-
line use case, the class Approval is created during the Submit unit outline use case,
and the Approval-ApprovalResult association is created during the Approve unit
outline use case [Assignment 15].

3.2. Conceptions About Process Override Conceptions About Objects

Here, conceptions about what the system needs to do override conceptions about
object-orientation. Where the processing of the system and the CRUD analysis are aligned
the CRUD matrices are correct. There are fewer errors than in the previous category. The
various types of errors (or lack thereof) found in the CRUD matrices and which constitute
this category are:

1) Object-oriented principles (encapsulation, data abstraction, inheritance):
a) The majority of needed classes are listed, however, the understanding of object-
oriented principles lacks the awareness to separate data appropriately. For exam-
ple, the class UnitOutline is not separated into classes of Unit and UnitOutline
[Assignment 2], the class Unit Outline is duplicated as the class Template [As-
signment 13], the class Unit is listed, though struck out, in the CRUD class matrix
and does not appear in the class diagram [Assignment 46].
b) There is little, if any, use of inheritance.

2) Persistence (identifying persistent and transient objects, and abstract classes):
a) The class that is a role or actor that could be seen as outside the system is
classified as abstract; all other classes are correctly classified as persistent. For
example, only the class Administrator is typed as abstract [Assignment 43], only
the class User is identified as abstract [Assignment 46].
b) Incorrect identification of persistence is rare.

3) Traceability (among CRUD matrices, and between use cases or the class diagram
and CRUD matrices):
a) The trace errors are minor inconsistencies. For example, for the minority of
classes in the class diagram the order of the attributes is not the same as the order
of the attributes in the corresponding CRUD attribute matrix for these classes
[Assignment 2], the class in the class diagram is named Explanations and in the
CRUD class matrix is listed as Explanation [Assignment 13].

4) Notation conventions (the notation of class, association, attribute, and use case
names):
a) Consistency between the notation for the names of classes, attributes and/or
use cases between the class diagram, use case diagram, or high-level use cases,

VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED IS DEVELOPMENT 445

and the CRUD matrices is good though some errors still occur. For example, the
use of abbreviations in the use case name, such as, Calculate sum. assess. total
[Assignment 42].
b) Conformity to the notation for the names of classes, attributes and/or use cases
stipulated in the software process is good though some errors still occur. For
example, attribute names are written in upper camel case [Assignment 2], class
names and attribute names include spaces between words [Assignment 13].

5) Process (the functions the system needs to perform):
a) For classes representing actors, the use cases chosen to complete the CRUD
class matrix are those with which the actors are associated in the use case diagram.
For example, the class Administrator has for create, read, update, and destroy the
use case Administer users [Assignment 2].
b) The class is being considered in terms of its part in the process rather than the
objects belonging to the class. For example, the class Team Leader has for create
Add new unit coordinator, and for read Approve unit outline [Assignment 37].
c) The identification of the class is a step in the process rather than one to which
objects would belong. For example, the classes Approval and Submit [Assignment
2], Calculation and Submission [Assignment 43], Report [Assignment 47], and
Submission [Assignment 50].

6) Design (the representation of design decisions relating to the identification of
classes, associations, attributes, and use cases in CRUD matrices):
a) The choice of a particular use case is not in keeping with many of the other
use cases chosen in the CRUD matrices. For example, the class Summative as-
sessment has for create Calculate sum. assess. total, and has for read Create unit
outline, the class Unit Outline has for create Create unit outline, and has for read
Approve unit outline [Assignment 42].
b) Only a few classes are identified beyond the initial, easily identified set of
classes. For example, the initial, easily identified, set of classes includes: Admin-
istrator, TeamLeader, UnitCoordinator, UnitOutline, DisciplinedTeam, and Sum-
mativeAssessment, beyond this set the classes listed in CRUD matrices are: Help,
School, School Archive [Assignment 46], Explanatory Document [Assignment
50], Unit, Unit Offering, and Campus [Assignment 19].

3.3. Conceptions of Design Decisions Appropriate Within the Object-Oriented
Paradigm

This category shows the more powerful understanding of OOISD. The types of errors
are predominantly about incorrect or weak design choices. The various types of errors (or
lack thereof) found in the CRUD matrices and which constitute this category are:

1) Object-oriented principles (encapsulation, data abstraction, inheritance):
a) There is more and accurate use of inheritance. For example, the classes Forma-
tiveAssessment and SummativeAssessment inherit from the class Assessment, and
the classes Administrator, TeamLeader, and UnitCoordinator inherited from the
class Person [Assignment 24].

446 I. BOX AND R. LISTER

2) Persistence (identifying persistent and transient objects, and abstract classes):
a) Incorrect identification of persistence is rare. For example, the classes Assess-
ment and Person are correctly, and the only classes, identified as abstract classes
[Assignment 24].

3) Traceability (among CRUD matrices, and between use cases or the class diagram
and CRUD matrices):
a) Trace errors do not occur.

4) Notation conventions (the notation of class, association, attribute, and use case
names):
a) Consistency between the notation for the names of classes, attributes and/or
use cases between the class diagram, use case diagram, or high-level use cases,
and the CRUD matrices is good though some errors still occur. For example, the
use of abbreviations in the use case name, such as, Calculate sum. assess. total
[Assignment 42].
b) Conformity to the notation for the names of classes, attributes and/or use cases
stipulated in the software process is good though some errors still occur. For
example, attribute names are written in upper camel case [Assignment 2], class
names and attribute names include spaces between words [Assignment 13].

5) Process (the functions the system needs to perform):
a) The object-oriented paradigm is at the fore. The processes performed by the
system are presented as use cases that determine the creation, reading, updating,
and destruction of objects within classes.

6) Design (the representation of design decisions relating to the identification of
classes, associations, attributes, and use cases in CRUD matrices):
a) Indications of consideration of the consequences of making design decisions.
For example, the notes: Should TeamLeader and UnitCoordinator objects be de-
stroyed, if they contain information on which session they apply to? [Assignment
24] and Summative assessment is part of the unit outline and cannot be destroyed
[Assignment 9].
b) An awareness that use cases have a limit to the functions for which each is
responsible. For example, the case study provided 12 use cases; in a CRUD class
matrix listing 19 classes, seven Create/Class cells, two Read/Class cells, 10 Up-
date/Class cells, and 14 Destroy/Class cells were not assigned one of the 12 pro-
vided use cases. [Assignment 36].
c) The identification of a singleton object. For example, the note A single Unit
Outline Handler instance must be created when the system is installed. . . should
never be destroyed [Assignment 10].
d) Objects that are associated as actors to a use case need be read. For example,
objects in the class Team Leader are read during the use case Approve outline
[Assignment 12].

4. DISCUSSION

In considering these results, we need to keep in mind two mistakes that can arise
from a misunderstanding of phenomenography. First, phenomenography is a qualitative

VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED IS DEVELOPMENT 447

method of research, not quantitative. Hence we draw no conclusions about the number of
assignments that fall into any of the above categories or the frequency with which students
fit into a category. To make such conclusions would require significantly more data and a
different research approach. The aim of phenomenographic research is to capture diversity.
Second, the categories do not represent a single assignment. Typically, if an individual is
shown the categories generated from phenomenographic research, they will identify with
more than one position. There may be some positions to which they identify very strongly,
and some positions to which they do not identify at all, but it is rare for a person to identify
with only one category.

The assignments provided 57 separate sources of data, which is a relatively high num-
ber of sources for a phenomenographic study. Phenomenographers often continue to collect
data until they believe they have reached “saturation”. That is, they collect data and analyse
it concurrently, ceasing to collect data when they have several consecutive interviews that
do not lead to the identification of new categories. From our 57 sources, we do not claim to
have reached saturation because the assignments were those not collected by students even
though the assignments span the range of grades awarded. However, it was felt that within
this data set the categories are a reasonable outcome space, i.e. categories of description of
the variation in students’ conceptions of OOISD constituted in aggregations of the types of
errors or lack thereof made in CRUD matrices.

Examining more CRUD matrices in more assignments may add more categories, but
is unlikely to invalidate the categories we have identified in this paper. Students chose
to do the assignment to try for a credit or distinction grade. All students were required
to attempt a final exam of 60 multiple-choice questions for a pass grade. The students
whose assignments were used as the data set for this phenomenographic study received
scores for the final exam ranging from 20 to 46, where 19 was the lowest score and 52 the
highest for all students. The assignments are therefore a reasonable representation of the
diversity of CRUD matrices in assignments. However, the study could benefit from follow-
up work such as interviews where students are questioned about their understandings while
undergoing the experience of doing a CRUD analysis.

Phenomenographers do not necessarily identify a unique set of categories from the
same data. For example, if Cope15 examined our data set, he may find evidence for the
same categories he identified in his study of students’ different ways of seeing information
systems. Or if Eckerdal18 were to examine our data set, she may find evidence for the same
categories she identified in her first major study of students understanding of the concepts
object and class. The categories identified in any study are to some extent dependent on
the intent of the phenomenographer. Our intent was to identify the types of errors students
made, and we chose our categories accordingly.

If phenomenographers do not necessarily identify a unique set of categories from the
same data, is phenomenographic work therefore reliable and valid? Phenomenographic
work can be considered valid and reliable in the following sense. If two people were given
the description of the focus of the study, some categories, and some quotes from data,
those people would usually place the quotes into the same categories. The readers can
determine for themselves whether they would place most of the above examples into the
same categories as those into which the authors have placed them.

448 I. BOX AND R. LISTER

In constituting our categories, we wanted to focus on the CRUD matrices in an as-
signment that also contained high-level use case descriptions, a use case diagram, and a
class diagram. An analysis of these models could reveal different categories or dimensions
of variation in students’ conceptions of OOISD. We acknowledge this, but we regard it as
separate to our concern. By focusing on the CRUD matrices and limiting our consideration
of the other models to their relationship with the CRUD matrices, we identified a taxon-
omy of errors to inform teaching practice of OOISD. If the way OOISD is taught can be
informed by this study, then a taxonomy of errors adds value to the Box & Ferguson CRUD
analysis method.

For one of the authors, an unexpected insight to emerge from this study is the potential
for CRUD analysis to be used as the first instrument for teaching OOISD. Until this study,
the author had not intuited or reasoned about this possibility. We believe that it is possible
to identify students’ conceptions of OOISD by providing OO analysis models, asking the
students to complete a CRUD analysis, and then design interventions to correct the stu-
dents’ conceptions of OOISD. This falls in line with the arguments of teaching students
to read program code before writing program code. We would be asking students to read
OO analysis models, complete CRUD matrices as a demonstration of their understanding
of the models, before asking them to create OO analysis models.

5. CONCLUSIONS

It was asserted that CRUD matrices improve students learning of OOISD (Box, 2003).
We doubt that CRUD matrices, of themselves, can improve students learning of OOISD.
However, students do have varying conceptions about OOISD. We conducted a phenom-
enographic study that identified three categories of students conceptions about OOISD con-
stituted as aggregations of types of errors or lack thereof made in CRUD matrices. From
an analysis of 57 data sources, the categories are: fragmented and unstructured concep-
tions, conceptions about process override conceptions about objects, conceptions of design
decisions appropriate within the object-oriented paradigm. These categories are probably
not an exhaustive list, but we believe that further data gathering will not invalidate these
categories.

These categories can be used to inform the teacher of students’ affinities with the cat-
egories, from strongest to weakest. We believe that the teaching and learning of OOISD
can be improved with the early use of CRUD matrices and at the same time informing stu-
dents of the taxonomy of errors. Then introducing interventions to help make the students
conceptions of OOISD more powerful. Our hope is that educators will use the categories
we have identified to make explicit to students the errors that are known to occur if their
understanding of OOISD is weak.

Beyond CRUD matrices, this paper demonstrates how phenomenography can be used
as a tool for constituting categories of students’ understandings of ISD. It can be used to
define least powerful to most powerful understandings, before deciding on subject design
or during the formative evaluation of subject design. We found the effort of analysing
our data led to a reflection, or summative evaluation, of the subject design. By the time
we finished the analysis, we saw merit in the information revealed in the categories, not
just the more powerful category to which we had ascribed the most value. Indeed, we

VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED IS DEVELOPMENT 449

found variations of which we were not fully aware prior to this study. Beginning with a
phenomenographic study may therefore lead to a more comprehensive approach to subject
design in general.

REFERENCES

1. E. Gottesdiener, OO Methodologies: Process and Product Patterns, Component Strategies 1(5) (1998).
2. J. Satzinger, R. Jackson, and S. Burd, Systems Analysis and Design in a Changing World, 2nd ed. (Course

Technology, Boston, MA, USA, 2002).
3. L. A. Maciaszek, Requirements Analysis and System Design: Developing Information Systems with UML

(Addison-Wesley, Harlow, England, 2001).
4. D. W. Brown, An Introduction to Object-Oriented Analysis, Objects, and UML in Plain English, 2nd ed.

(John Wiley & Sons, 2002).
5. A. Dennis, B. H. Wixom, and D. Tegarden, Systems Analysis and Design: An Object-oriented Approach with

UML (John Wiley & Sons, Inc., 2002).
6. D. Brandon, Jr., CRUD matrices for detailed object oriented design, The Journal of Computing in Small

Colleges 18(2), 306–322 (2002).
7. F. Armour and G. Miller, Advanced Use Case Modelling: Software Systems (Addison-Wesley, 2001).
8. AMS, AMS best practices use cases: Advanced use case modeling (AMS, 2003).
9. I. Box and J. Ferguson, Object Oriented Software Development: Step by Step (Pearson Education, Sydney,

2002).
10. I. Box, Old Trick, New Dogs: Learning to use CRUD matrices early in object-oriented information sys-

tem development, in: Constructing the Infrastructure for the Knowledge Economy: Methods & Tools,
Theory & Practice, Twelfth International Conference On Information Systems Development, Editor
(Kluwer, Melbourne, 2003).

11. F. Marton, Phenomenography-a research approach to investigating different understandings of reality, Jour-
nal of Thought 21(3), 28–49 (1986).

12. C. Bruce, Phenomenography in the Centre for Information Technology Innovation (CITI), in: Current Issues
in Phenomenography Symposium (Canberra, Australia, 2002).

13. S. Booth, Learning to program: A phenomenographic perspective (Dissertation abstract) (1992).
14. C. Cope, P. Horan, and M. Garner, Conceptions of an Information System and Their Use in Teaching about

IS, Informing Science 1(1), 9–22 (1997).
15. C. Cope, Educationally critical aspects of the experience of learning about the concept of information sys-

tems (La Trobe University, Melbourne, 2000).
16. A. Berglund, On the Understanding of Computer Network Protocols, in: Department of Information Tech-

nology (Uppsala University, Uppsala, 2002), p. 76.
17. P. McDonald, The nature and acquisition of algorithm understanding: a phenomenographic investigation, in:

Current Issues in Phenomenography Symposium (Canberra, Australia, 2002).
18. A. Eckerdal, Resources for Learning Object-oriented Programming (SIGCSE 2003 Doctoral Consortium,

2003).

APPENDIX A: UNIT OUTLINE CREATION AND
APPROVAL CASE STUDY

Students were provided with a detailed description of the following case study and
the assignment requirements, which included CRUD matrices as described by Box and
Ferguson.9 (A unit is synonymous with subject, course, or paper.)

This study is about the creation and approval of unit outlines within a school of computing and IT (SCIT).
The system includes the creation of outlines by unit coordinators, the approval of the outlines by team leaders,
and the creation of reports by administration staff.

Currently, the unit coordinator of each unit writes the unit outline, usually based on the previous version,
rarely from scratch. After a team review, the team leader approves the outline, indicated by signing the cover page,

450 I. BOX AND R. LISTER

and forwards it to the administration. The outline is made available online and archived in the SCIT’s records.
The current system is segregated and requires too much manual intervention. The desired system should reduce
the time to enter and maintain outlines and derive reports.

An outline needs to be created each time a unit is delivered and to standards specified by the school and
university. All outlines must have a consistent layout. An outline contains information that is the same for all
outlines for a semester and information that varies from unit to unit, such as the content and learning objec-
tives. The outline will start with a title page and contain sections such as: prerequisites, exclusions, assumed
knowledge, introduction, student learning outcomes, content, delivery mode, practices of the school concerning
assessment, method of assessment, clauses regarding academic malpractice, disabilities, and the learning skills
unit, the recommended text and readings, unit coordinator, lecturer, and tutor contact details. The user interface
needs to behave in such a way, as much as possible, so the coordinator can select options. The following limited
set of high-level use cases were provided for correction and completion by the students.
Use case: Approve unit outline
Category: Core
Actors: Team Leader
Trace: <enter the traces to the business func-
tions>
Description: This use case begins when a Team Leader
chooses to approve a unit outline. The authority of the
Team Leader is verified and the unit outline is marked
as approved. On completion, the team leader and unit
coordinator are notified of the approval, the unit outline
is made available to the students and a copy is kept in
the school archive.

Use case: Calculate summative assessment total
Category: Core
Actors: Team Leader
Trace: <enter the traces to the business func-
tions> Included by: Record summative assessment
Description: This use case begins when a unit coordi-
nator has completed the entry of all summative assess-
ment. The summative assessment total is calculated by
adding together the value of each summative assess-
ment. On completion, the summative assessment total
is shown onscreen.
Notes: The summative assessment total must
equal 100.

Use case: Record summative assessment
Category: Core
Actors: Team Leader
Trace: <enter the traces to the business func-
tions> Includes: Calculate summative assessment total
Description: This use case begins when a unit coor-
dinator commences the entry of a summative assess-
ment. The summative assessment details are recorded.
On completion, the unit coordinator verifies that all
summative assessment is complete.

Use case: Add new unit coordinator
Category: Core
Actors:
Trace: <enter the traces to the business func-
tions> Extend from: Create unit outline, Administer
users
Description: This use case begins when... The use
case ends when... .

Use case: Modify existing unit coordinator
Category: Core
Actors:

Trace: <enter the traces to the business func-
tions> Extend from: Create unit outline, Administer
users
Description: This use case begins when... The use
case ends when... .

Use case: Create unit outline
Category: Core
Actors:
Trace: <enter the traces to the business func-
tions> Includes: Record summative assessment
Description: This use case begins when... The use
case ends when... .

Use case: Provide explanation
Category:
Actors:
Trace: <enter the traces to the business func-
tions> Extend from: Create unit outline
Description: This use case begins when... The use
case ends when... .
Notes: Explanations of terminology and
choices available when creating the unit outline.

Use case: Add new team leader
Category:
Actors:
Trace: <enter the traces to the business func-
tions> Extend from: Administer users
Description: This use case begins when... The use
case ends when... .

Use case: Modify existing team leader
Category:
Actors:
Trace: <enter the traces to the business func-
tions> Extend from: Administer users
Description: This use case begins when... The use
case ends when... .

Use case: Administer users
Category: Core
Actors: Administrator
Trace: <enter the traces to the business func-
tions> Extends to:
Description: This use case begins when... The use
case ends when... .

Use case: Modify unit outline
Category:
Actors:

VARIATION IN STUDENTS’ CONCEPTIONS OF OBJECT-ORIENTED IS DEVELOPMENT 451

Trace: <enter the traces to the business func-
tions>
Description: This use case begins when... The use
case ends when... .

Use case: Submit unit outline
Category: Core
Actors:

Trace: <enter the traces to the business func-
tions> Extend from: Create unit outline, Administer
users
Description: This use case begins when... The use
case ends when... .
Notes: A unit coordinator must indicate that the
unit outline is ready for the team leader’s approval.

APPENDIX B: TEMPLATES FOR THE CRUD MATRICES

The following templates for the CRUD matrices are reproduced from Box and Fergu-
son (2002, p. 122, 123 & 124)

Figure 1. CRUD class matrix format from Box & Ferguson, 2002, p. 122.

Figure 2. CRUD association matrix format from Box and Ferguson, 2002, p. 123.

Figure 3. CRUD attribute matrix format from Box & Ferguson, 2002, p. 124.

END-USER COMPUTING IN BANKING INDUSTRY
A case study of a large Slovenian bank

Janko Hriberšek, Borut Werber, and Joze Zupancic∗

1. INTRODUCTION

The term “end-user computing” (EUC) refers to people developing software applica-
tions for themselves or for others even they are not trained MIS professionals (Kreie et al.,
2000). When compared to organizational computing, EUC has the tendency to be closely
related to individual user tasks and motivations. For example, a financial analyst can create
a spreadsheet to analyse and graph discrepancies between budget and actual performance
numbers. A project manager can develop a small database to track the progress of the
project and employee assignments.

Many user can not wait any more that the IS department produces some of the needed
applications, in particular small applications to support their decision making, and develop
the required systems by themselves. So, they can also avoid the delays and the time con-
suming procedures needed to obtain formal approval and funding for systems developed
by the IS department. Often, users prefer to analyse data stored in corporate database in
their own way. In this case the IS department can provide a facility for them to copy data
from the database into a spreadsheet, and refresh it on demand.

From the start in the late 1970, EUC developed tremendously. Now, end-user devel-
opment of applications forms a significant part of organizational systems development,
and the ability to develop small applications is often a part of job requirements for many
positions. EUC can also be considered as one of the emerging IT management practices
that are changing the roles and responsibilities of IS specialists (Martinsons and Cheung,
2001).

Because EUC has changed considerably in the last few years, authors of a widely
used text book on EUC, Regan and O’Connor (2000), suggested a new term, “end-user
information systems” (EUIS) instead of end user computing. Edberg and Bowman (1996)

∗ Janko Hriberšek, Nova Ljubljanska banka d.d., Trg republike 2, 1520 Ljubljana, Slovenia. Borut Werber and
Joze Zupancic, University of Maribor, School of Organizational Science, 4000 Kranj, Slovenia.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 453

454 J. HRIBERŠEK ET AL.

suggested the term “user-developed applications” (UDA). In most of the current literature,
the term end-user computing (EUC) is still used.

Our study presents the results of an empirical investigation of EUC in the major bank
in Slovenia, with emphasis on end-user support. The goal of the investigation was to iden-
tify and evaluate key factors of successful end-user support, in particular factors related
to skills and knowledge needed for successful use of computers. Directions for further
development of users’ knowledge and skills are discussed in the paper.

2. MANAGEMENT AND SUPPORT OF EUC

It is difficult to estimate the entire contribution of end user developed applications
to the corporate information system. A study from 13 years ago (Zupancic and Leskovar,
1991) showed that – according to the estimates of IS managers – the contribution of EUC
to corporate IS was on average 10%: professional IS staff would need 10% more time
to develop all the applications that have been developed by end users. Most likely, the
contribution was even higher, since IS managers lacked a comprehensive overview of end-
user activities. Several recent investigations indicate that in many companies up to 50% of
the total IS budget is used for EUC (for example McGill, 2002).

Since end-users usually lack technical knowledge regarding software and hardware,
they require adequate management and support to realize the productivity gains of EUC.
Review of literature reveals that the following three forms of end user support are com-
monly found in most large organizations:

The Information Centre (IC). The basic goal of an IC is to help users help themselves.
An important task of the IC is to maintain balance between support and control. The ser-
vices offered by the IC can be grouped into the following six categories (Govindarajulu
and Reithel, 1998):

• Hardware support (demonstration and standardization of hardware, outlining for-
mal procedures for getting hardware approved, support of telecommunication
hardware, . . .)

• Software support (assisting with application maintenance, variety of software
supported, outlining formal procedures for getting software approved, support
telecommunication software, . . .)

• Data support (assisting users in locating data, assisting with data transfer, provid-
ing backup, recovery and archiving, facilitating data sharing among users, main-
taining subject data bases, . . .)

• Functional support (assisting in problem specification, designing the application,
assisting in choosing techniques, developing applications with users, generating
prototypes, . . .)

• Training and education
• Other (help desk, hot-line telephone assistance, literature, . . .)

Local MIS staff. These staff members exclusively support the users of a specific depart-
ment and typically report to their functional department manager. Most routine IC func-
tions are often assigned to local MIS staff, while ICs are mainly responsible for standard-
ization, communication technology training, and data backup and recovery.

END-USER COMPUTING IN BANKING INDUSTRY 455

Informal support: Users generally seem to maintain an informal network for their
support needs. The main sources of informal support are peers, friends/colleagues, and
lead users – users who have more experience in and knowledge of IT than other users.

Many studies demonstrated that users are different and require different types and
forms of education and training and different support when using various programming
tools. Considerable difference was found in the needs for support and among departments
in the same company. According to Speier and Brown (1997) the level and sophistication of
EUC depends on (1) the attitude of the department manager towards EUC, (2) perception
of EUC risks by the department manager, and (3) departmental EUC policy.

Several studies address the organization and management of users’ support (e. g. Win-
ter et al., 1997; Speier and Brown, 1997; Govindarajulu and Reithel, 1998; Govindarajulu
et al., 2000; Govindarajulu 2002). Questionnaires were developed to measure the support
from different sources, such as IC, local MIS staff, IT vendors and informal support, to in-
vestigate why users prefer a particular form of support over the others. The investigations
showed following most important factors that impact the attitude of users towards different
forms of support:

• Level of support the user received in the area of user’s interest
• The proximity of the support
• Quality of the support staff
• Quality of user-developed applications

According to Govindarajulu et al., (2000) users preferred the support in advice of local
MIS staff, their next choice was the IC, while informal forms of support were ranked the
lowest. The following factors might impact the selection:

• Local support is easily accessible
• Local MIS staff deals with a relative small number of users, so they can devote

more time and attention to the users
• Local MIS staff is familiar with the departmental business process and related

problems.

The benefits that have been claimed for end user development of applications include
better access to information and improved quality of information, leading to improved
employee productivity and performance. However, realization of these benefits may be put
at risk because information produced by user developed applications may be incorrect and
applications may be poorly tested and poorly maintained (McGill, 2002).

Many recent studies address the quality of end-user developed applications. There are
considerable differences between the system quality assessments by end-users develop-
ers and independent expert assessors. In particular, users with little experience may er-
roneously consider the applications they develop to be of high quality (McGill 2002).
Training in system analysis and design methods was suggested to improve the applica-
tion quality (Kreie et al., 2000). Because spreadsheets are the most commonly used tool
for end-user development, many studies focus on the system quality of spreadsheets devel-
oped by end-users. McGill and Klobas (2004) investigated the role of spreadsheet knowl-
edge in the successful use of spreadsheet applications. They demonstrated that spreadsheet
knowledge not only influences the quality of the system being developed, but also acts di-

456 J. HRIBERŠEK ET AL.

rectly upon individual impact of the application: successful use of spreadsheet applications
appears to require sufficient knowledge to understand and, if necessary, to alter the user-
developed spreadsheet application. Other studies (e.g. Morison et al., 2002; Kruck et al.,
2003) found that electronic spreadsheet models to enhance decision making frequently
contain errors that have significant negative effects on the ultimate quality of the decisions.
An experimental study with 152 students who developed a simple spreadsheet (Panko and
Sprague, 1998) showed that 35% of the spreadsheets (and 2% of cells) contained at least
one error. By testing and inspecting the code users mostly were not able to detect the er-
rors that may considerably impact the quality of the decisions. Therefore, Teo and Tan
(1999) suggested that education and training of users should more emphasise the design-
ing, testing and maintaining the spreadsheets than the various functions and possibilities
offered by spreadsheets. The study (Kruck et al., 2003) suggests that training in cognitive
skills and logical reasoning may help the users to develop better spreadsheets with less
errors.

The list format appears to be the more natural way of representing data for people
unfamiliar with dealing with abstractions of data and logical relationship between them.
The study (Hobbs and Pigott, 2001) presents two case studies in which the first stage of
a data base development process was completed entirely by the end user, making use of
their own understanding of the dataset, the problem domain and tools that were familiar
to them. An IT expert then facilitated the conversion of the dataset to relational database,
with participation of end users throughout the process. So, the end users were able to see
the concepts of database design emerge naturally from a problem that was already familiar
to them, and to understand their importance in a practical manner.

3. THE INVESTIGATION

Our investigation, focusing on UEC support, was carried out in the largest bank in
Slovenia, Nova Ljubljanjska banka d.d. (NLB). Nearly the entire business process in the
bank is supported by computer systems, and most of the approximately 4000 employees
use computers. Because most of the employees are involved in various forms of data and
information analysis, we expected that many users will be have the propensity to develop
their own applications that may support them in decision making and keeping their records.
To justify the investment into HW and SW installed on the PCs, the available tools should
be used efficiently and effectively. The goal of the investigation was to identify and evaluate
key success factors of end-user support, in particular how users gain skills and knowledge
needed for successful use of computing tools.

We developed a questionnaire based on the one used by Govindarajulu and Reithel
(1998). The basic 6 groups of questions related to forms of support were left unchanged.
We added questions that reflected the specifics of the business environment, to gain some
additional insight into EUC in the bank, and identify needs for additional education and
training of the users. Respondents rated the listed items on scale 1 to 7 where 1 denoted
“not adequate” (or “not interesting”, “not important”, . . .), and 7 indicated “very adequate”
(or “very interesting”, “very important”, . . .). They were also asked add comments to each
group of questions. Among the key success factors of end-user support we focused on the
following three forms of support:

END-USER COMPUTING IN BANKING INDUSTRY 457

• Information centre (called also “PC-team”, and included a “help desk”)
• Locals MIS staff responsible for the PCs (called also PC caretakers)
• Informal forms of support (friends, colleagues, relatives . . .).

A limited number of selected respondents reviewed the initial version of questionnaire
and suggested several improvements. Data for the needs of our investigation was collected
from employees that were the most likely developers of end user applications: (1) depart-
ment and branch managers, (2) business analysts, (3) employees responsible for the or-
ganization and evaluation of business processes, and (4) sales personnel (commercialists).
Based on an analysis of managerial and professional work assignments, we developed a
list of 24 job titles, and a list of employees holding these job titles. All IS professionals in-
volved in the development of corporate IS were eliminated from the list. The questionnaire
was mailed to the remaining 496 employees.

The questionnaire was mailed to potential respondents in November 2001, and 97 of
them were returned by the specified due date. After a detailed examination of responses,
three questionnaires were eliminated because answers to some of the key questions were
missing, yielding a 19.6% response rate. This is comparable to similar investigations pub-
lished in the literature. Data from the remaining 94 (19.0%) questionnaires was analysed
using the statistical package SPSS for Windows.

4. OVERVIEW OF THE RESULTS

About 75% of the employees of NLB are women; their portion among respondents was
67%. The average age of the respondents was somewhat less than the overall average age
of the employees: 41.5% of them were between 31 and 40 years old, and 31.9% between
41 and 50. They have been using a computer from 2 to 23 years; the average was 10.6
years.

The users rated the complexity of applications that they developed on average by 2.47
(standard deviation 1.57) on scale 1 to 7, where 1 denoted “very simple”, and 7 “very
complex”. This self-assessment indicates that users developed rather simple systems. The
self-assessment of their computing skills was relatively high: they average rating on scale
1 to 7 was 4.0 (standard deviation 1.1)

Respondents rated the adequacy of the three forms of support (IC, local MIS staff, and
informal) related to:

• Hardware (3 questions)
• Software (3 questions)
• IT purchase (4 questions)
• Data bases (5 questions)
• Quality of the support (6 questions)
• Application development (5 questions).

Table 1 presents a summary of their responses. Differences in average ratings of the
three forms of support were relatively small, but it is evident that respondents rated infor-
mal support in most of the categories the highest, and support from the IC the lowest. The
same ranking applies also to the overall quality of support.

458 J. HRIBERŠEK ET AL.

Table 1. Average ratings of the three forms of support by category of support

For most of the categories hardware support (demonstration of HW, standardisation
of HW, use of telecommunication technology . . .) local MIS staff was rated as the most
adequate, while standardization of HW was mostly considered to be the responsibility of
the IC. Some respondents commented that the opportunities IC support is often not used
enough, particularly when dealing with telecommunication technology, which is relatively
complex and unfamiliar to most of the users.

The differences in ratings of the three forms of software support (SW maintenance, di-
versity of SW, use of communication SW . . .) were even lower than for hardware support,
while the informal support was still rated the highest.

Only less than a half of the respondents answered the questions related to purchase
support (selection and purchase of SW and HW, assistance in obtaining approval for the
purchase . . .), and the responses indicate that users gave priority local MIS staff and in-
formal support. The likely reason for the missing responses is that the bank standardised
most of the HW and SW. When a user needs a computer, a workstation with all the stan-
dard software – purchased and in-house developed – is installed and delivered to his or her
desk. There were only a few advanced users among the respondents who needed more so-
phisticated and sometime untypical SW and/or HW, and used the support of vendors when
selecting and installing this kind of technology. Most the employees didn’t need special
programming tools, and will most likely never need tools such as ARIS, SPSS, or Rational
Rose that are used only by small groups of users. This type of software can be ordered and
installed only on the request by a specific user.

Data related support (locating data, backup, recovery and archiving, maintaining sub-
ject data bases . . .) was used only by about a half of respondents. Again they rated the
informal support the highest. Not many users used informal support, but those who used
this form of support rated it high.

Ratings of the application development support (definition of the problem, program
design, choice of the programming technique, prototype development . . .) were in general
lower than the ratings for other categories of support, and the ranking of the three forms of
support was the same as for other categories.

Quality of the support (computing and business knowledge, ability to deliver support,
communications skills, attitude towards the user . . .): respondents emphasised the quality
of informal support, although we expected that the local MIS staff would be able to provide
the best support for the local users. A possible explanation for this is that respondents rely
more on their own networks than on services offered by the bank.

END-USER COMPUTING IN BANKING INDUSTRY 459

Table 2. Average ratings of the quality of different aspects of support

† Completeness, usability and importance of the information.
‡ Basic and advanced training in computing and data transfer.
§ Supporting the user when they searched for an information on the internet.
∗∗ The rating 1 indicates “never” and 7 “very frequently”.

Table 3. Average ranks of the sources knowledge needed for application development

Table 4. Perceived needs for additional education and training

In addition to six groups of questions from the questionnaire used in (Govindarajulu
and Reithel, 1998) we asked the respondents questions related to the quality of the support.
Responses are summarized in Table 2.

Table 3 presents the average ranks of different sources of knowledge: a list of the
seven sources was included in the questionnaire and respondents were asked to rank them
by importance, where 1 indicated the least important and 7 the most important source.

Respondents were also asked to indicate tools and subjects where they needed addi-
tional education and training. Table 4 presents the average ratings: 1 denotes “not inter-
ested”, and 7 “highly interested”.

460 J. HRIBERŠEK ET AL.

Because spreadsheets are the most widespread EUC programming tool in the bank, it
is not surprising that users expressed the highest interest for additional knowledge on this
subject. On the other hand, application and data base development methods and application
testing which are essential for the quality of user-developed application (e. g. Kreie et al.
2000; McGill, 2002) ranked the lowest.

Often, some users spend a considerable amount of time for application development,
which may result in lack of time for their regular assignments. Therefore, respondents were
asked to rate the impact of their EUC system development activities on their professional
work. Rating 1 denoted, “my professional work is not affected at all”, and 7 denoted,
“EUC strongly hinders my professional work”. The average rating was 2.02, indicating
only a minor negative impact on the regular work.

5. DISCUSSION

The investigation showed that users – application developers in NLB – prefered infor-
mal sources of support to the local MIS staff and the IC. The only exceptions were some
specific areas, such as HW standardization, and approval of HW and SW purchases, where
respondents rated the IC higher than the other two forms of support. Despite of the pos-
sibilities offered by the bank (IC, local MIS staff) users in most cases still favoured the
informal sources of support. A detailed examination of the responses revealed that they
used informal sources less frequently as the other two sources of support, but they rated
them very high. The local MIS support was rated lower than the informal support. When
the respondents were asked the question: “Which of the support sources would you rec-
ommend your co-workers?” they favoured local MIS staff (average rating 5.51) over the
informal sources (4.87) and the IC (4.62).

A possible explanation for such attitude of the users towards different forms of support
is that IC represents a remote support, which cannot help the users with their professional
work, and only takes care of the functioning of the IS. Local MIS staff is familiar with the
business processes and related problems in the departments, and are therefore rated higher,
while emotional relations with friends, acquaintances and relatives may impact the rating
of informal sources of support. On the other hand, IC is overloaded with administrative
tasks such as recording users’ problems and forwarding them to experts from the relevant
subject area, which extends the response time to user’s request. A computer application
that would enable users to enter their problems into the system would save time to the staff
of the “help desk” and allow them to focus more on users’ problems and needs.

Unlike in our investigation, users in the study (Govindarajulu and Reithel, 1998), car-
ried out in large companies in the USA, rated the support by the local MIS staff the highest,
followed by the IC and informal support. This difference may indicate a lack of organized
help factors: instead turning to professional employees, users are seeking help from people
who are closest to them. Possible reasons for such behaviour are (1) lack of local MIS
staff, (2) insufficient knowledge and skills of local MIS staff, and (3) lack of “formal help
seeking” culture.

Ratings of the support quality (Table 2) do not indicate a shortage local MIS staff,
because their availability was rated higher than the availability of informal support, and
users were more satisfied with the local MIS staff support than with informal support. This

END-USER COMPUTING IN BANKING INDUSTRY 461

indicates also that they did not perceive a lack of knowledge on the side of local MIS staff.
A case study of a large manufacturing company in Slovenia from 13 years ago (Zupancic,
1993) showed the same as our study: the most important source of support for users was
informal, colleagues, friends, acquaintances and literature. This supports the assumption
of the lack of “formal help seeking” culture. A wider investigation would be necessary to
reject or accept this assumption.

6. CONCLUSION

Adequate user support is essential for successful development of EUC, to fully ex-
ploit the potentials of EUC. Because EUC is based on non-professional programmers, the
probability of mistakes and malfunctions in user-developed applications is relatively high.
Increased level of computing knowledge and skills, resulting from adequate training of po-
tential users – application developers, and different forms of user support can maximize
the advantages of EUC and minimize its risks.

Based on the results of our investigation, we suggest the following measures to the
management of NLB:

• Strengthen the role and redefine the function of the IC, so that it will be able to
provide quick responses to concrete questions from the users, as basic precondi-
tion for successful development of EUC

• Provide a variety of training courses for PC tools
• Prepare additional training based on the wishes and interests of users (Table 4)
• Increase the level of knowledge and skills not only in using the PC tools, but also

in application and data base design and application testing, particularly for the
advanced users

• Develop training focusing on improvement of the quality of end user developed
applications, particularly spreadsheets as the most common EUC tool.

• Consider the development and implementation of distance training for basic train-
ing, particularly to cover the topics that many end user programmers are interested
in, such as spreadsheet development and testing

• Implement computer application that would enable users to enter their HW and
SW related problems without directly contacting the support staff.

The study could be expanded by considering a broader range of support factors: in ad-
dition to the three form of support, user groups, and SW and HW suppliers should be also
considered. Several organizations from the banking and financial sector and other organi-
zations should be included, so that the conclusions from the study could be generalized to
the financial and banking industry in Slovenia.

Another aspect that might require further investigation is the quality of user devel-
oped applications, in particular spreadsheets. Like most other organizations, NLB relies
on the users’ (authors’) subjective judgement of the quality and correctness of the spread-
sheets and other applications. Several investigations (e.g. McGill, 2002; Teo and Tan, 1999)
demonstrated that users are mostly not able to detect errors in spreadsheets by testing and
inspecting the code. Therefore a policy of testing and documenting user developed applica-
tion should be established that would consider several elements of quality, as suggested for

462 J. HRIBERŠEK ET AL.

example in (McGill, 2002). An investigation of weaknesses errors in user developed ap-
plication may help to define this policy and identify areas and directions where additional
training of the users would be necessary.

Our study showed that most users were developing rather simple applications, which
indicates that they probably do not fully exploit the computing potential available on their
desktops. A goal of such study could be to identify the forms of management and support
that would encourage more extensive use of computing equipment and help the users to
maximize the productivity gains of EUC.

REFERENCES

Edberg, D. T., and Browman, B. J., 1996, User-developed applications: An empirical study of application quality
and developer productivity, Journal of Management Information Systems 13(1):167.

Govindarajulu, C., Reithel, B. J., and Sethi, V., 2000, A model of end user attitudes and intentions toward alter-
native source of support, Information & Management 37:77.

Govindarajulu, C., and Reithel, B. J., 1998, Beyond the information centre: An instrument to measure end-user
computing support from multiple sources, Information & Management 33:241.

Hobbs, V. J., and Pigott, D. J., 2001, Facilitating end user database development by working with users’ natural
representations of data, in: Managing Information Technology in a Global Economy: IRMA International
Conference, M. Khosrowpour, ed., Idea Group Publishing, Hershey, PA, pp. 650–656.

Kruck, K. E., Maher J. J., and Barkhi R., 2003, Framework for cognitive skill acquisition and spreadsheet training,
Journal of End User Computing 15(3):20.

Kreie, J., Cronan P. T., Pendley, J., and Renwick, J. S., 2000, Application development by end-users: Can quality
be improved? Decision Support Systems 29:143.

Martinsons, M. G., and Cheung C., 2001, The impact of emerging practices on IS specialists: Perceptions, atti-
tudes and role changes in Hong Kong, Information & Management 38:167.

McGill, J. T., 2002, User developed applications: Can end users assess quality? Journal of End User Computing
14(3):1.

McGill, T. J., and Klobas, J. E., 2004, The role of spreadsheet knowledge in user-developed application success,
Decision Support Systems, article in press available online at www.sciencedirect.com (April, 30, 2004).

Morrison, M., Morrison, J., Melrose, J., and Wilson, E. V., 2002, A visual code inspection approach to reduce
spreadsheet linking errors, Journal of End User Computing 14(3):51.

Panko, R. R., and Sprague, R. H., Jr., 1998, Hitting the wall: Errors in developing code and inspecting a ‘simple’
spreadsheet model, Decision Support Systems 22:337.

Regan, E., and O’Connor, B., 2000, End-user Information Systems: Implementing Individual and Work Group
Technologies, Prentice Hall, New York.

Speier, C., and Brown, C. V., 1997, Differences in end-user computing support and control across user depart-
ments, Information & Management 32:85.

Teo, T. H. S., and Tan, M., 1999, Spreadsheet development and ‘what if’ analysis; quantitative versus qualitative
errors, Accounting, Management & Information Technology 9:141.

Winter, S. J., Chudoba, K. M., and Gutek, B. A., 1997, Misplaced resources? Factors associated with computer
literacy among end-users, Information & Management 32:29.

Zupancic, J., and Leskovar, R., 1991, An analysis of key issues in information systems development, in: Proceed-
ings of the 13th international Conference on Information Technology Interfaces, Cavtat, Croatia, June, pp.
3–8.

Zupancic, J., 1993, End-user computing: A case study, in: Proceedings of the United Kingdom Systems Society
Conference on Systems Science: Addressing Global Issues, F. A. Stowell, D. West, and J. G. Howell, eds.,
Plenum Press, New York, pp. 499–504.

WORKING WITH ALTERNATIVE DEVELOPMENT
LIFE CYCLES: A MULTIPROJECT EXPERIMENT

Darren Dalcher, Oddur Benediktsson, and Helgi Thorbergsson∗

1. MOTIVATION

Should the Waterfall model be dropped in favour of more modern approaches such as
incremental development and eXtreme Programming? Many developers appear to show a
preference for such modern approaches but there appears to be very little non-anecdotal
data that substantiates such choices. IS, software development and software engineering
books discuss the alternatives but offer little in the way of direct comparison and explicit
metrics that address the impacts on the product, project and people.

The classic Waterfall model was refined in the early 1970s to cope with the larger
and more demanding software projects characterised by a growing level of complexity.
It was heavily influenced by early attempts to introduce structure into the programming
process1–7 and therefore offers a systematic development process leading to the orderly
definition of artefacts. Many adaptations and adjustments have been made to the model
leading to a variety of representations. Recent evidence suggests that it is still used exten-
sively in many software development projects.8–13 However, the proliferation of alterna-
tive models now offers a wide choice of perspectives and philosophies for development.
Chief among them are incremental approaches,14, 15 evolutionary approaches,16 and more
recently, Extreme Programming and agile methods.17–19 Extreme Programming is often
viewed as a lightweight methodology focused on the delivery of business value in small
fully integrated releases that pass tests defined by the clients. Reduced focus on documen-
tation and control allows development teams to produce more creative solutions leading to
greater satisfaction all around.

Given the benefits of Extreme Programming in terms of creativity, value delivery and
higher satisfaction levels, it is not surprising that many managers and developers have
adopted such practices. To date however, there is not much information on the direct com-
parisons between the different approaches in terms of the quality, functionality and scope

∗ Oddur Benediktsson and Helgi Thorbergsson, University of Iceland, Dunhaga 5, IS-107, Reykjavik, Iceland.
Darren Dalcher, Software Forensics Centre, Middlesex University, Trent Park, Bramley Road, London N14
4YZ, UK.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 463

464 D. DALCHER ET AL.

of the resulting products. Nor is there much information regarding the likely impact on the
project, the intermediary products and the development team.

The aim of this work was to investigate the impacts of different approaches. Fifteen
teams working on comparable applications made use of four development approaches rang-
ing from a sequential, via incremental and evolutionary development to Extreme Program-
ming. The resulting data on the relative merits, attributes and features of the products,
the time spent in each stage and the measures of requirements, design and programming
outputs provide a start towards understanding the impact of selecting a programming and
management approach and towards making informed decisions about which one to apply
under different circumstances.

2. BACKGROUND

The skillset focusing on the life cycle of IS projects is critical to both understanding
and practising sound development and management. Indeed life cycles are prominently
featured within the Bodies of Knowledge of many different disciplines (including the PM-
BoK, SWEBOK and APM BOK).20–22 A life cycle represents a path from the origin to
completion of a venture. Phases group together directly related sequences and types of
activities to facilitate visibility and control thus enabling the completion of the venture.
The project life cycle thus acts as a framework focusing on the allocation of resources, the
integration of activities, the support of timely decision making, the reduction of risk and
the provision of control mechanisms. The benefits of using a life cycle approach identified
by23 include attaining visibility, providing a framework for co-ordinating and managing,
managing uncertainty, and providing a common and shared vocabulary.

However the divergent choice in approaches leads to a dilemma when it comes to
selecting the most suitable approach for a project. At the beginning of every project the
manger is expected to commit to a development approach. This is often driven by past
experience or other projects that are, or have been, undertaken by the organisation. In prac-
tice, little work has been conducted in this area and it is unusual to find studies comparing
empirical result (with very few notable exceptions e.g. specification vs. prototyping).24, 25

Typical approaches include sequential, incremental, evolutionary and agile approa-
ches. Each is likely to be better suited to a particular scenario and environment and to result
in certain impacts on the overall effort and the developed products. These approaches as
discussed in23 are highlighted below.

Sequential Approaches. Sequential approaches refer to the completion of the work
within one monolithic cycle leading to the delivery of a system.10 Projects are thus se-
quenced into a set of steps that are completed serially typically spanning determination of
user needs to validation of its achievement. Progress is carried out in linear fashion enabling
the passing of control and information to the next phase when pre-defined milestones are
reached and accomplished.

Incremental Approaches. Incremental approaches emphasise phased development
by offering a series of linked mini-projects (referred to as increments, releases or ver-
sions).15, 18, 26, 27 Work on different parts and phases, is allowed to overlap throughout the
use of multiple mini-cycles running in parallel. Each mini-cycle adds functionality and

WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES 465

capability. The approach is underpinned by the assumption that it is possible to isolate
meaningful subsets that can be developed, tested and implemented independently.

Evolutionary Approaches. Evolutionary approaches16, 28 recognise the great degree
of uncertainty embedded in certain projects and allow developers and managers to execute
partial versions of the project while learning and acquiring additional information. Evolu-
tionary projects are defined in a limited sense allowing a limited amount of work to take
place before making subsequent major decisions.

Agile Approaches. Agile development has proved itself as a creative and responsive
effort to address users’ needs focused on the requirement to deliver relevant working busi-
ness applications quicker and more cheaply.17–19 The application is typically delivered in
incremental (or evolutionary or iterative) fashion. Agile development approaches are con-
cerned with maintaining user involvement29 through the application of design teams and
special workshops. Projects tend to be small and limited to short delivery periods to en-
sure rapid completion. The management strategy relies on the imposition of timeboxing,
strict delivery to target which dictates the scoping, the selection of functionality and the
adjustments to meet the deadlines.30

Each approach appears to have clear benefits, at least from a theoretical perspective.
Project managers are expected to select the most suitable approach to maximise the chances
of successfully delivering a product that will address the client’s needs and prove to be both
useful and usable. The choice should clearly relate to the relative merits of each approach.
However, not enough is known about the impact of each approach and very little compara-
tive studies that can of the relative merits have been conducted. Real data is needed in order
to facilitate comparisons between the approaches. Indeed, such measurements are likely to
lead to better informed choices in preference to the adoption of fads. The rest of the paper
describes the experiment, reviews the results, frames them and draws the resulting conclu-
sions.

3. THE EXPERIMENT

The experiment was designed to investigate the impact of a development approach
on the product and its attributes. It involved 55 developers in fifteen teams developing
comparable products from the same domain. The objectives of the experiments were to
investigate the differences in resource utilisation and efficiency between the 15 solutions.

The product to be developed was an interactive package centred on a database system
for home or family usage with an appropriate web-based user interface. The basic scope
definitions of the projects were prepared in advance to ensure relative equality in terms of
complexity and difficulty. Each product was slightly different using a different set of users.
Users were consulted through the process, reviewed the system and came up with useful
comments. Having fifteen distinct projects (as opposed to multiple versions of the same
project) reduced the likelihood of plagiarised solutions across the different groups.

All groups were asked to use JAVA and J2EE for transaction processing. Most used
Sun public domain server tools for the deployment of J2EE and the Cloudscape database.
A small number of the groups used JBoss server, MySQL database system and Borland
tools. Regardless of the platform they selected the groups were instructed to experiment

466 D. DALCHER ET AL.

their way through the technology with little formal help. The result of the effort was a
working product that can be viewed as working usability or technology prototypes.

No preferences regarding the project, team or overall approach were accommodated.
This is largely representative of real-life project environments. The 55 developers were
randomly allocated to groups each consisting of three or four developers. Each project title
(with its general definition) was also randomly allocated to a group. Finally, in order to
remove any bias, each group was also allocated a random development life cycle (from a
set of four).

The set of software development methods included one representative from each class
of approaches. The V-model (VM) (see for example31 or IEEE830) was used as an example
of a Waterfall-type sequential approach. The Incremental Model (IM) and the Evolution-
ary Model (EM) were explained in advance and used in accordance with the description
in31. The agile approaches were represented by Extreme Programming (XP) as defined by
Beck.19

The experiment took place in 2003 as part of a full year, two semester project. All
participants were Computer Science majors in the final year of their programme at the
University of Iceland. Students had lectures twice a week and had one project meeting a
week. Each method was designated an expert leader (method champion) from the faculty.

Data was collected regularly to ensure all stages of the processes were covered. Stu-
dents were encouraged to keep logbooks to record measures and faults. Measures were
checked and confirmed by the relevant method champion to ensure accuracy and correct-
ness. Students understood that the grades were not linked to time and error measurements
recorded in their logs and therefore had no reason to misrepresent activities or events. They
were further encouraged to record data and events as they happened rather than resort to
memory.

4. RESULTS

4.1. Time Spent on the Project

Table 1 shows the effort data as reported by the groups. Time spent was measured in
hours and divided into the seven general activities giving an overall total. The total was
converted into Project Months (PM) at 152 hours per PM. The groups are ordered by the
development model used – V-model (VM), Evolutionary Model (EM), Incremental Model
(IM), and Extreme Programming (XP). Sub-averages are given for each group as well as
the over all average (OAve) and the over all distribution of time per activity.

One of the Incremental groups spent 8.4 PM (1275 hours) on the project. This group is
taken to be a statistical outlier as their result is out of line with other groups and the overall
time availability and is therefore dropped from the tables below. (Rationale: The value of
8.4 PM is well above the likely maximum of 6.6 PM as computed by the rule of thumb:
median + 1.5Interquartile Range.)

The V-model projects took longest with an average of 748 hours, followed by XP,
Evolutionary, and Incremental (see32). The longest time spent by a group, 919 hours, be-
longs to a V-model group whilst the shortest period, 372.5 hours, was experienced by an
XP group. The requirements activity was demanding for the V-model, Evolutionary and

WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES 467

Table 1. Effort in hours by activity

Incremental teams but was less so for the XP teams. A similar trend was identified during
the design activity. Programming was led by the V-model teams, as was the Reviews activ-
ity, while integration and testing was led by the XP groups. Repair was also led by the XP
teams.

4.2. Requirements Output

The requirements output (Table 2) was assessed in terms of the number of pages,
words, lines, Use Cases, screens, Database diagrams, DB tables and data items in DB.

The Incremental model resulted in a leading average output of 3262 words. XP in
contrast averaged 542 words. Similar trends were observed for pages and lines, but in both
of these the V-model just managed to overtake the Incremental model. The number of
screens was dominated by XP with 17.7, followed by Evolutionary with 11, V-model with
6.8 and Incremental with 4.5. It should be noted that the XP groups did not design Use cases
but made up Stories. The Stories were counted as Use cases. Overall, the V-model appears
to have necessitated the most time, to have used the most words and correspondingly to
have provided the fewest diagrams (i.e. a picture is still worth a thousand words).

4.3. Design Output

Design output (Table 3) was evaluated in terms of the number of design diagrams
produced including; architecture, class, sequence, state, and other diagrams.

As the number of diagrams is relatively small it is easier to focus on the total. The
number of diagrams per group ranges between 1 and 22. The group producing 22 diagrams

468 D. DALCHER ET AL.

Table 2. Metrics for requirements and database

was utilising the V-model, while an XP group was responsible for the single diagram (com-
pared to other XP groups with 2). The average for the Incremental groups is 15.7 diagrams,
the V-model 12.8, Evolutionary 8.5 and XP 1.7. XP teams clearly produce fewer diagrams
during the design stage compared with the V-model and Incremental development.

4.4. Final Product

The product size (Table 4) was measured in terms of Java classes and the number of
lines of code. Lines of code include lines produced in JAVA, JSP, XML and any other
languages.

The number of JAVA classes varies between 7 and 50. XP teams averaged 27.7 classes,
compared with Evolutionary with 26.8, Incremental with 20.7 and V-model with 8.5.

In terms of Java lines of code, the XP teams delivered an average of 4836 compared
with 1032–1803 LOC from the other teams. The picture is mirrored in terms of XML lines
of code. The comparison of the total lines of codes produced a striking result as the XP
model teams delivered significantly more lines of code than any one else. The 3.5:1 range in
product size between XP and the V-model is remarkable, considering that all teams worked
on essentially similar projects. The results would suggest that XP has a higher productivity
rate in terms of the size of the delivered product. It is worth noting that the V-model teams
spent a lot of time and effort on the requirements specification and the design activities.
The V-model requires sequential progression so that technology is only addressed during
the implementation stage. As a result they did not start experimenting with the technology

WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES 469

Table 3. Design metrics

until very late in the project. They were then forced to go back and modify the design thus
affecting their overall time allocation.

Quality was assessed following ISO9126 measures and focusing on the five areas of
Functionality, Reliability, Usability, Efficiency and Maintainability. The resulting differ-
ences are not significant enough to discuss in this paper, save to point out that for main-
tainability, the leading average was provided by the V-model with 8.9, followed by Evolu-
tionary with 7.9, XP 7.7 and Incremental with 7.3.

Each team was meant to collect defect data and classify it into 7 types of defects ac-
cording to the Orthogonal Defect Classification (ODC) scheme.33, 34 This data is known
to be heterogeneous and inconsistent and will therefore be ignored in the main. It is use-
ful however to note that the V-model dominated most categories of defects resulting in an
average of at least double the defect rate produced by other groups. Finally, the most com-
prehensive solutions, resulting in the highest level of satisfaction from the users, were
provided by the XP teams.

5. CONCLUSIONS, OBSERVATIONS AND LIMITATIONS

The results of this experiment provide some useful quantitative information on the
relative merits of different development methods and on the impact they can have on dif-
ferent activities. The experiment conducted here is viewed as a first step towards providing
a clearer understanding of the issues related to the choice of development approaches. The

470 D. DALCHER ET AL.

Table 4. Performance metrics: Classes and lines of code

results can be sensitive to the performance of individuals within groups and to the synergy
created within any group. Indeed, one group included a number of accomplished program-
mers working for the Iceland Telephone company and a bank. Nonetheless, the results
are significant in highlighting trends and providing a comparison between the different
approaches.

5.1. Time Spent on Project

Figure 1 depicts the distribution of effort spent by the four categories of groups. De-
spite the fact that all projects addressed comparable problems, V-model projects took some-
what longer than the other projects. The other three models fell within 10% of each other.
In terms of the significance of the results, XP only consumed a minor proportion of the
effort during the requirements and design activities compared to the other models. It is
interesting to note that XP teams took the lead in terms of hours spent in testing and code
correction. The effort of the Waterfall teams dominated the requirements, design and even
the programming activities. Integration and testing required relatively little effort from the
Waterfall (and incremental) teams, presumably due to the level of detailed planning and
additional time spent during the earlier activities of requirements and design, possibly also
indicating earlier discovery of errors.10, 37

In terms of all projects, the activities of requirements and design were each responsible
for 9% of the overall time spent. In XP however, requirements accounted for 2.7% and de-
sign for 4.4%. Overall, programming was responsible for 31% of the time, integration and

WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES 471

Figure 1. Average effort distribution by activity.

testing 9%, reviewing 7%, repair 10% and other activities for 26% of the time. Activities
not directly considered as part of the life cycle (‘other’) still accounted for over a quarter
of the time and must therefore be planned for. This is roughly in line with industrial rules
of thumb for additional (and non-technical) activities. Note however that the time spent
on ‘other’ activities by V-model teams was on average double the time spent by the other
teams.

Excluding the non-technical activities produces an overall profile for all teams of 12%
for requirements, 12% for design (against an expectation of 20%), 41% coding, 12% in-
tegration and testing, 9% review and 13.5% for repair. Indeed, one could argue that about
a third of the technical effort was dedicated to quality activities including testing, integra-
tion, review and repair, which is roughly in line with the typical rule of thumb for quality
activities. The early definition activities of requirements and design thus seem to add up to
just under a quarter of the overall development effort. Overall, the figures are still slightly
high in terms of coding (cf.36, 15%), and marginally low in terms of design.

Figure 1 also reveals the familiar shape of a Rayleigh curve (with significant coding
humps) for each of the four model types.37 It is worth noting the slight drop between the
requirements and design efforts in both the incremental and the evolutionary methods due
to some of the preparatory work being completed upfront.

It is also interesting to compare the relative positioning of the XP model curve as
the curve starts at much lower point for the early activities (representing less expended
effort during these activities) but then rises to the maximum level of effort during the cod-
ing activity thus representing the steepest climb rate out of the four models presented.
This supports the reported focus of XP and other agile methods on delivering useful
code and spending less upfront effort through the avoidance of exhaustive analysis and
documentation.19, 29 It is also interesting to note the higher level of integration and testing
effort that goes into XP. The lighter effort upfront, combined with the heavier loading in
terms of coding, integration and testing make for a Rayleigh curve with a much steeper
diagonal tilt.

The results seem to confirm the notion that XP requires less effort during the initial
stages, in particular during the requirements activity. Repair activities in XP consumed
more resources than in the incremental and evolutionary models. In closing it is also sig-

472 D. DALCHER ET AL.

nificant to note that ‘other’ activities were responsible for consuming significantly fewer
hours in XP, than they did in the V-model.

5.2. Requirements and Design Outputs

The V-model and the incremental model produced a significant amount pf pages,
words and lines of requirements. The Evolutionary method was not far behind. XP pro-
duced less than a quarter of the number of pages, roughly a sixth of the number of words
and between a seventh to an eighth of the lines of specification produced by the V-model
and the Incremental model. In other words, XP results in significantly less pages of re-
quirements and in less words being used to describe these requirements.

XP produced significantly more screens than the other methods. In terms of Use Cases
both the V-model and XP teams produced significantly less Use Cases than the Incremental
and Evolutionary teams. XP produced in average less than two design diagrams compared
with almost 16 produced by the Evolutionary and 13 by the V-model.

5.3. Product Size and Productivity

XP produced 3.5 times more lines of code than the V-type model, 2.7 times the LOC
produced by the Incremental model, and 2.2 times more code than the Evolutionary teams.
This significant trend is also reflected in terms of the number of LOC produced in Java and
XML.

Another way of viewing the product size is through the classification of size categories
provided by Boehm35 and by Fairley.38 Both asserted that a small product is in the range
of 1–2K LOC. While Boehm suggested that a typical intermediate/medium product is the
range of 8–32K LOC, Fairley adjusted the range to 5–50K LOC. The XP groups are the
only teams to have produced products that would clearly qualify as medium-sized products
according to both criteria. Significantly, these products were also viewed as the most com-
prehensive and the most satisfactory products. Given the same amount of time, XP teams
were thus able to build on the feedback from small and frequent releases, resulting in an
intermediate/medium product (compared to the smaller products delivered by the other
teams). The ability to involve users coupled with regular delivery seems to have resulted
in additional useful functionality and a greater level of acceptance and satisfaction thus
making the resulting product more valuable.

XP teams displayed 4.8 times more productivity in LOC/PM than the V-model teams,
2.8 more than the Incremental teams and 2.3 more than the Evolutionary teams. So the dif-
ference in productivity is more pronounced than that observed for product size. The picture
is repeated for the derived function of number of pages of LOC. The average productiv-
ity is 1077 LOC/PM with XP dominating with an average of 2262 LOC/PM. Industrial
productivity is often taken to be in the range of 200 to 500 LOC/PM. With the exception
of the V-model, all methods averaged above the upper range of the expected productivity
level. However, XP clearly offered outstanding productivity. The average productivity is
also computed at 5.5 classes/PM (with the V-model clearly trailing with 1.7 classes/PM).
Kan39 reports productivity in C++ and Smalltalk projects in the range 2.8 to 6 classes/PM.
With the exception of the V-model teams, all models offered average performance at or
above the top end of the productivity figure put forward by Kan. All V-model teams per-

WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES 473

formed at or below the lower limit of Kan’s range (in fact only one V-model team was
within the range with the other three performing clearly below it).

5.4. The Experiment

The experiment yielded valuable results. The teams delivered working prototypes (not
final quality products). The technology used may have played a role. The teams using
Sun public domain server tools and Cloudscape were working with tools that were not
fully mature products. The few teams utilised the JBoss server, MySQL and Borland tools
which are more mature and seemed to work better.

The need to experiment with technology proved time-consuming for some of the
groups. This became an issue for the V-type model teams as the experimentation was
delayed until after the requirements were fully understood and specified and the design
was stable. The impact of exploring the technology meant that these teams were forced
to re-assess some of their design solutions in line with their emerging understanding the
technical environment. Indeed, this touches on the relationship (and intertwining) between
design and implementation environment and the need to integrate the two.40 The discus-
sion of a problem is often enhanced by the consideration of design and implementation
concerns. The constraints imposed on a solution by later stages need to be acknowledged
and addressed to reduce the conflicts that will need to be resolved at a later stage. Methods
that create functional barriers and that do not allow a relationship, albeit rudimentary to
the notion of the solution may thus play a part in delaying essential interactions thereby
arresting progress and requiring subsequent rework cycles to rectify the effects of the sep-
aration.

5.5. Limitations

The experiment involved 15 teams working on comparable projects utilising four dif-
ferent models. As a result the sample size for each model is three to four groups (in line with
other known experiments in this area using two, three or four groups in each category).24, 25

Despite the limited number of data points the experiment offers a quantitative investigation
of the extent to which the development approach affects the outcome of a project and an
experimental comparison of the different software development life cycles and methods.
The empirical findings are therefore viewed as a systematic interpretation offered as part
of a more comprehensive study, rather than as conclusive answers.

Employing students as developers offers many benefits to all parties. Most signifi-
cantly, it enables students to interact with real development tasks, to gain experience in
teamwork and to work on non-trivial problems from beginning to end thus embracing the
entire life cycle. From the point of view of the experiment, it enables direct experimenta-
tion in the development of similar or comparable products through the use of alternative
methods and approaches. However, this also implies that the experiment was conducted in
educational settings, rather than an industrial environment. Consequently, certain aspects
of the environment which are normally associated with XP practices, such as sustainable
pace, on-site customer, continuous communication and open workspace may have been
slightly compromised. On the other hand the definition of the work and its relevant context
meant that participants were stakeholders themselves. It is impossible to surmise whether

474 D. DALCHER ET AL.

the XP results would have been even more pronounced under the full conditions recom-
mended as best practice for XP development.

5.6. Concluding Comments

Selecting the most suitable method is contingent on the context and participants. The
direct comparison between the four approaches offers an interesting way of quantifying the
relative impacts of the various approaches on the product. Whilst incremental and evolu-
tionary approaches have been offered as improvements to sequential approaches, the added
comparison with XP is instructive. XP is currently offered as a lightweight alternative to
the sequential notion. The direct comparison between the four approaches therefore pro-
vides a quantitative basis for beginning to consider the impact of the different approaches
thus bridging the gap between the descriptions of the different life cycles and the need
to make an educated choice based on the likely impact of the approach. The comparison
yields interesting results and comparative measures (e.g. V-model teams and XP teams
produced significantly less Use Cases than incremental or Evolutionary teams).

In the experiment XP teams produced solutions that encompassed additional function-
ality. Indeed, in terms of significant results, their products can be characterised as consist-
ing of the largest number of screens and the most lines of code. In terms of the process,
they can be said to have spent the least time on requirements and consequently to have
produced the least number of pages of requirements. They also generated significantly less
diagrams. Early work on how programmers spend their time seemed to indicate that a very
small proportion of time (13–15%) is spent on programming tasks.38 Methodologies like
XP attempt to overcome that by optimizing the time available for programming (i.e. min-
imal documentation) resulting in enhanced output (more code and more screens) that is
delivered more rapidly.

Experience: The student experience was evaluated by way of a survey conducted at
the end of the final semester that looked at the results. Most students working in Incremen-
tal, Evolutionary and XP teams were content with their model. Intriguingly, ALL students
in groups utilizing the V-model indicated a strong preference towards using a different
model to the one they were allocated and were therefore less satisfied with the process.

5.7. Future Work

It is intended to continue with the experiments and the group projects. The lessons
learned from the first year of the experiment will result in a number of small changes:

• Following the strong preference against the use of a sequential model the groups
will be allowed to choose their development model. It will be interesting to see
how many of the teams will select some form of agile methods.

• The suite of tools selected will be based on mature and more unified technology.
Groups will be instructed to use Eclipse platform-based Java and J2EE with in-
tegrated use of Ant, CVS, JUnit, and MySQL based on the JBoss server. An OO
metrics plug-in for Eclipse will also be utilised.

• To ensure that all teams deliver useful products there will be firm dates for deliv-
ering partial increments (two in the first semester, three in the second)

WORKING WITH ALTERNATIVE DEVELOPMENT LIFE CYCLES 475

It is clear that the large number of variables makes a simple decision about the ‘ideal
method’ and the appropriate set of tools difficult, if not impossible. The different metrics
reveal that each method has relative strengths and advantages that can be harnessed in spe-
cific situations. Experiments such as this make a significant contribution to understanding
the relative merits and their complex relationships. As the experiment is improved, and
hopefully repeated elsewhere, a clearer picture of the issues, merits and disadvantages is
likely to emerge and a deeper understanding of the role and application of each life cycle
method will hopefully ensue.

REFERENCES

1. R. G. Canning, Electronic Data Processing for Business and Industry (John Wiley, New York, 1956).
2. R. G. Canning, Installing Electronic Data Processing Systems (John Wiley, New York, 1957).
3. H. D. Bennington, Production of large computer programs, Annals of the History of Computing (4), 350–361

(1956) (5 Oct. 1983).
4. W. A. Hosier, Pitfalls and Safeguards in Real-Time Digital systems with Emphasis on Programming, IRE

Transactions on Engineering Management, pp. 91–115 (1961).
5. W. W. Royce, Managing the development of large software systems: Concepts and techniques, in: Proceed-

ings, IEEE WESCON (August 1970).
6. H. N. Laden and T. R. Gildersleeve, System Design for Computer Applications (John Wiley, New York,

1963).
7. L. A. Farr, Description of the Computer Program Implementation Process, SDC Technical Report, 1963.
8. C. J. Neill and P. A. Laplante, Requirements engineering: The state of the practice, IEEE Software 20(6),

40–45 (2003).
9. P. A. Laplante and C. J. Neill, The demise of the waterfall model is imminent and other urban myths, ACM

Queue 1(10), 10–15 (2004).
10. R. S. Pressman and D. Ince, Software Engineering: A Practitioner’s Approach, 5 ed. (McGraw-Hill, Maid-

enhead, 2000).
11. B. W. Chatters, Software Engineering: What do we know? in: FEAST 2000 (Imperial College, London, July

2000).
12. D. Dalcher, Towards continuous development, in: Information Systems Development, Advances in Method-

ologies, Components and Management, edited by M. Kirikova et al. (Kluwer, New York, 2002), pp. 53–
68.

13. M. A. Cusumano, et al., A Global Survey of Software Development Practices (MIT, Cambridge, Ma., 2003),
pp. 1–17.

14. H. D. Mills, Incremental software development, IBM Systems Journal 19(4), 415–420 (1980).
15. D. R. Graham, Incremental development and delivery for large software systems, IEEE Computer, pp. 1–9

(1992).
16. T. Gilb, Evolutionary development, ACM SIGSOFT Software Engineering Notes 6(2), 17 (1981).
17. A. Cockburn, Agile Software Development (Addison-Wesley, Boston, MA, 2002).
18. C. Laraman, Agile and Iterative Development: A Manager’s Guide (Addison-Wesley, Boston, MA, 2004).
19. K. Beck, Extreme Programming Explained: Embrace Change (Addison-Wesley, Boston, MA, 2000).
20. PMI, A Guide to the Project Management Body of Knowledge, 2000 ed. (Project Management Institute,

Newton Square, PA., 2000).
21. M. Dixon, APM Project Management Body of Knowledge, 4th ed. (Association for Project Management,

High Wycombe, 2000), p. 68.
22. P. Bourque and R. Dupuis, A Guide to the Software Engineering Body of Knowledge SWEBOK (IEEE Com-

puter Society, Los Alamitos, CA, 2001).
23. D. Dalcher, Life cycle design and management, in: Project Management Pathways: A Practitioner’s Guide,

edited by M. Stevens (APM Press, High Wycombe, 2002).
24. B. W. Boehm, T. E. Gray, and T. Seewaldt, Prototyping vs. specifying: a multiproject experiment, IEEE

Transactions on Software Engineering SE-10(3), 290–303 (1984).

476 D. DALCHER ET AL.

25. L. Mathiassen, T. Seewaldt, and J. Stage, Prototyping vs. specifying: principles and practices of a mixed
approach, Scandinavian Journal of Information Systems 7(1), 55–72 (1995).

26. H. D. Mills, Top-Down Programming in Large Systems, in: Debugging techniques in Large Systems, edited
by R. Ruskin (Prentice-Hall, Englewood Cliffs, New Jersey, 1971), p. 41–55.

27. C. Laraman, and V. R. Basili, Iterative and incremental development: A brief history, IEEE Computer 36(6),
47–56 (2003).

28. T. Gilb, Principles of Software Engineering Management (Addison Wesley, Wokingham, 1988).
29. A. Alliance, Agile Manifesto (The Agile Alliance, 2001).
30. J. Stapleton, DSDM Dynamic Systems Development Method (Addison-Wesley, 1997).
31. S. L. Pfleeger, Software Engineering: Theory and Practice, 2 ed. (Prentice-Hall, Upper Saddle River, New

Jersey, 2001).
32. O. Benediktsson and D. Dalcher, Effort estimation in incremental software development, IEE Proceedings

Software 150(6), 251–358 (2003).
33. R. Chillarege, et al., Orthogonal defect classification – a concept for in-process measurements, IEEE Trans-

actions on software Engineering 18(11), 943–956 (1992).
34. M. Butcher, H. Munro, and T. Kratschmer, Improving software testing via ODC: three case studies, IBM

Systems Journal 41(1), 31–44 (2002).
35. B. W. Boehm, Software Engineering Economics (Prentice Hall, Englewood Cliffs, 1981).
36. A. Macro and J. N. Buxton, The Craft of Software Engineering (Addison Wesley, Wokingham, 1987).
37. L. H. Putnam, A general empirical solution to the macro software sizing and estimating problem, IEEE

Transactions on Software Engineering SE-4(4), 345–361 (1978).
38. R. Fairley, Software Engineering Concepts (McGraw-Hill, New York, 1985).
39. S. H. Kan, Metrics and Models in Software Quality Engineering (Addison-Wesley, Boston, 2003).
40. W. Swartout and R. Balzer, On the inevitable intertwining of specification and implementation, Communi-

cations of the ACM, pp. 438–440 (1982).

A MODEL FOR A METHOD ADAPTATION PROCESS

Mehmet N. Aydin, Frank Harmsen, Kees van Slooten, and
Robert A. Stegwee∗

1. INTRODUCTION

Despite the best endeavours both in the area of Information Systems Research and in
practice, effective use of method(logies) in Information Systems Development (ISD) stays
as an issue on both communities’ agendas. By an effective use of the method we mean con-
sidering ISD methods (ISDMs) as a means for problem-solving rather than as a constraint
on practitioners’ activities in work practices. Empirical findings indicate that information
system development (ISD) methods are often adapted to different project contexts since the
ways methods prescribe may not accommodate uniqueness of a project situation (Fitzger-
ald, Russo, and O’Kane, 2003).

In the 1980s and 1990s, rationales behind structured, brand-named conventional ISD
methods have been questioned as being IT-oriented, complex, and rigid, especially, in new
application domains (Cockburn, 2001). As opposed to conventional methods, Rapid Appli-
cation Development (RAD) methods appear to be a promising ISD approach that supports
work practice and fulfils practitioners’ needs (Martin, 1991). One can characterize these
methods as agile, business-, human-, process-oriented, and adaptive to different project
situation (Cockburn, 2001).

Tailoring a method requires several compromises and trade offs between a tailored
method and changes in a project situation. Clearly, project managers need guidance that
facilitates their decision-making process leading to a tailored method (Aydin and Harmsen,
2002). In response to such a need, this paper proposes a model. Namely, the proposed
model is aimed at facilitating project managers in adapting an ISD method to a project
situation. In the next section, we give basic information of existing method adaptation
approaches in method engineering in general and in situational method engineering in
particular. Afterwards, we introduce our model and elaborate its components in detail. In
Section 3 we instantiate the model for a RAD method (DSDM) with an illustrative project

∗ Mehmet N. Aydin, Kees van Slooten, and Robert A. Stegwee, University of Twente, Department of Business In-
formation Systems, School of Business, Public Administration & Technology, P.O. Box 217 7500 AE Enschede,
The Netherlands, m.n.aydin@utwente.nl, cvs@utwente.nl, r.a.stegwee@utwente.nl. Frank Harmsen and Robert
A. Stegwee, Cap Gemini, The Netherlands, frank.harmsen@capgemini.com, robert.stegwee@capgemini.com.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 477

478 M. N. AYDIN ET AL.

situation. The conclusion section emphasizes our follow-up research to be undertaken in
the near future.

2. INTRODUCING AN INTEGRATED ACTIVITY MODEL FOR METHOD
ADAPTATION

2.1. The Essence of Method Engineering

Method Engineering (Kumar and Welke, 1992; Brinkkemper, 1996; Hidding, 1997)
is the discipline to build project-specific information system development methods, called
situational or situated methods, from parts of existing methods, called method fragments.
Method Engineering includes route map configuration (Slooten and Brinkkemper, 1993),
aiming at tuning and extending method fragments to obtain a method. A route map can be
configured by considering the situation in which the resulting situated method will be ap-
plied and the success one wants to achieve with the situated method (Klooster, Brinkkem-
per, Harmsen, and Wijers, 1997). This so-called S3 model (Harmsen, Lubbers, and Wi-
jers, 1995) provides heuristics that guide method engineers in constructing and tailoring a
method.

An important aspect of Method Engineering is capturing and distributing knowledge
and experience of practitioners, in particular project managers, to improve tailored meth-
ods and the process to construct tailored methods (Rolland and Prakash, 1996; Jarke, Pohl,
Rolland, and Schmitt, 1994). Experience factory as a project-independent unit within an
organization has been proposed a way to capture and process project experiences of all kind
and to actively support the project by providing suitable experiences from the past projects
(Basili, Caldiera, and Rombach, 1994). In that respect a case-based approach is used as
a technique to employ accumulated project experiences for tailoring the software process
(Althoff, Birk, Greese von Wangenheim, and Tautz, 1998). Eliciting project characteristics,
combined with the required project success are identified as essential activities in such a
tailoring process (Henninger and Baumgarten, 2001). All these approaches to Method En-
gineering stress the importance of a sound decision-making process leading to a tailored
method. This decision-making process should be facilitated by knowledge support to im-
prove both the efficiency of the process itself and the effectiveness of the resulting situated
method.

2.2. Introducing an Integrated Activity Model

Our model, so-called an integrated activity model, is based on the configuration proce-
dure for a scenario (Slooten and Brinkkemper, 1993) and the process of situational method
engineering (Harmsen, Brinkkemper, and Oei, 1994).

Figure 1 depicts key activities needed to operationalize a method adaptation process.
As we shall explain later on, different ISD levels can be considered while tailoring a
method (Zachman, 1987). At the first level, usually called the project preparation level,
practitioners start with an intention that reflects business opportunities to be seized or prob-
lems to be solved.

A MODEL FOR A METHOD ADAPTATION PROCESS 479

Figure 1. An integrated activity model for a method adaptation process.

Several ideas, options emerge before the actual start of the project and they are refined
and formulated in terms of a project goal that includes the solution to be achieved in a rele-
vant scope. Scope may refer to boundaries of a solution in given context. Context refers to
the association of a situation and decisions made on it (Jarke et al., 1994). This level may
result in a ‘go or no go’ decision for a project. A ‘go’ decision is then followed by a prepa-
ration for the project kick-off. In our model understanding project context is a key theme in
the preparation phase of a project. A main purpose in this activity is to address business as-
pects of a project, to get into project surroundings and interact with a project environment
in which different parties are involved and various expectations exist. As we shall see later
on, in our sample RAD method (DSDM) this activity is placed in the pre-project phase.
Basically, this activity helps project managers to figure out business values behind the ser-
vice delivered, uncovering key financial issues, determining various architectures, such as
information architecture, process architecture. Notice that this activity might be sufficient
enough for a certain degree of clarity of a solution to be delivered. A solution develops
along with the interactions between the project organization and the target organization.

So far we have explained a number of activities providing inputs to a scenario con-
figuration activity. The configuration activity plays a central role in the model. With this
activity situation factors from the characterization, performance indicators from the goal
(Klooster et al., 1997), method fragments from the method base are used to configure a
‘goal-oriented situation-specific’ route map. In addition to mentioned inputs, intermediate
variables mediate the configuration in such a way that the levels of systems development
(Figure 1), the constraints derived from situations factors, the development strategy to be
applied and aspects of modeling to be used are providing a refinement for dominant situ-
ation factors and suitability of method fragments. A final remark in this activity is on the
use of project experiences for making better decisions.

480 M. N. AYDIN ET AL.

In principle, a critical decision-making process at the heart of S3 Model may re-
quire sound argumentation and critique of a choice of method fragments (Vahidov and
Elrod, 1999). In work practices, such a process incorporate heuristics, best practices, a
plenty of common sense, yet practitioners might be pragmatic while selecting appropriate
method fragments. Thus, configuration of a project scenario is an evolutionary and learn-
ing process. Several feedback loops are aimed at collecting project experiences. These are
learning from clarification and improvement of route maps, learning from an execution of
route map, evaluation of a realized solution by comparing with an intended solution, eval-
uation of specified route map execution with respect to predefined performance indicators.

3. ILLUSTRATION OF THE MODEL

3.1. DSDM as a Starting Point for Tailoring

DSDM (Dynamic Systems Development Method, 2000) is a method for RAD, Rapid
Application Development (Martin, 1991; Boehm, 1999). In the UK and in the Benelux,
DSDM, which is supported by a consortium of over 600 organizations, has become a
de-facto market standard. The method highly emphasizes the notions of suitability and
adaptability – DSDM is to a certain extent suitable for a project or organization and is
adaptable if not completely suitable. For the purpose of this research, we have considered
three components of DSDM: its underlying philosophy, its terminology and its essential
techniques (Figure 2). In practice, each of these components can be applied separately, and
subsets of the components can be applied on their own as well. DSDM framework sug-
gests a complete project approach including key phases, products and roles, which should
be customized according to a project situation. In this manner, DSDM is highly adaptable –
it is possible to use full-fledged DSDM, but individual techniques or just terminology are
still meaningful to be used.

3.1.1. Philosophy of DSDM

The underlying philosophy or way of thinking of DSDM is captured in nine prin-
ciples (Stapleton, 1997), stressing typical RAD features like iterative development, inte-

Figure 2. DSDM in a nutshell – three domains encapsulated in DSDM manual (adopted from (Aydin and Harm-
sen, 2002)).

A MODEL FOR A METHOD ADAPTATION PROCESS 481

grated testing, user involvement in the development team and fitness for business purpose
(DSDM, 2000).

3.1.2. Terminology of DSDM

DSDM has a lifecycle model of which the core consists of five phases each of which
delivers a number of products, of which characteristics and quality criteria are described in
the manual (DSDM, 2000). Moreover, roles and team structure are defined as well.

One can see a possible mapping between DSDM phases and typical ISD project lev-
els (Zachman, 1987). Although all levels are important for the model, this paper mainly
focuses on scope, partly object systems analysis and design level (OSAD). Slooten and
Brinkkemper (Slooten and Brinkkemper, 1993) relate models concerning at the business
model level in (Zachman, 1987) to OSAD level and similarly at the design model level
to information system analysis and design level (ISAD). More specifically, for the sake of
simplicity this paper will instantiate the integrated activity model for the feasibility study
phase and the business study phase in DSDM.

3.1.3. Techniques of DSDM

Important techniques of DSDM are timeboxing, facilitated workshops, prioritization
and prototyping. Timeboxing refers to setting a deadline by which a predefined objective
must be met, instead of describing when a task must be completed. MoSCoW, which is
abbreviation for must, should, could have and want to have but won’t have this round, is
a way to prioritize requirements of the system. Modeling techniques are not included in
DSDM, as they often are part of modeling tool sets, which are not part of the method.
However, suggestions for modeling techniques to be used are described.

3.1.4. Suitability of DSDM

DSDM clearly states in which situations DSDM is applicable, and in which situations
the method should be tailored. For this, an instrument called ‘suitability filter’ is included
in the manual. The filter considers the critical success factors for DSDM and characteristics
of projects that are especially effective for DSDM. Each potential project should be judged
individually using the filter. If the project provides a good match against the filter, then
DSDM can be considered the appropriate development approach. Inability to satisfy all of
the criteria results in modification of the method.

3.2. Illustration of the Model by Using DSDM for a Sample Project Context

We presume that a pre-project phase is completed and several tasks including suitabil-
ity of DSDM for the project, a preliminary route map based on DSDM method fragments
are done. An instrument called suitability filter is used to assess appropriateness of DSDM
for a project situation at hand. Basically, a number of questions are asked to figure out a
degree of matching between the pre-conditions of DSDM to be a method of choice, which
manifest themselves in principles of DSDM, and characteristics of the project along with
situation factors for which a comprehensive list of factors available in the literature (Hoef,
Harmsen, and Wijers, 1995; Slooten and Hodes, 1996; Klooster et al., 1997).

482 M. N. AYDIN ET AL.

Figure 3. Instantiation of the model with DSDM (Abbreviations- P: process, I: information, B: behaviour, O: or-
ganization, G: goal.

Now we will show how to use the suitability filter enacted with the proposed model
while tailoring DSDM at the feasibility and the business study level (Figure 3). The suit-
ability risk list consists of a number of questions and for each of them an answer is expected
as yes or no, comments for further explanations are encouraged, measures for controlling
(prevention and/or correction of negative impacts of situation factors) and working instruc-
tions are available.

Basically, the suitability risk list helps project coaches and project managers char-
acterizing the project so that they can make a better decision about which method frag-
ments could be most appropriate and contribute to a successful execution. We identify four
method fragment types that are building blocks for a route map. They are as follows.

• Process fragments include all details about activities, roles to be performed to
attain desired products. They show how products are going to be delivered

• Since DSDM is in favour of a product-oriented approach, product fragments are
essential in a route map. In that case, product fragment describes which products
are going to be delivered.

• Strategy fragments indicate in which way(s) and to what extent a method fragment
contributes to a certain aspect of situational method engineering.

• Technical fragments are including all job aids, tools, techniques to control and
support systems development and project management.

3.2.1. Selection of Product and Process Fragments

In Table 1 and 2 we show key product fragments and roles (process fragments) and a
number of indicators describing goals at the feasibility and business study level. A com-

A MODEL FOR A METHOD ADAPTATION PROCESS 483

Table 1. Examples of product and process fragments and some key indicators for goals at
the Feasibility Level in DSDM

Table 2. Examples of product and process fragments and some key indicators for goals at
the Feasibility Level in DSDMa

plete list of products and process fragments is available in the DSDM manual. Goal related
key indicators are also coming from DSDM. To give a flavour of how the goal drives se-
lection of product fragment consider the following example: suppose we choose the first
indicator in Table 1, i.e. ‘to indicate the scope of the solution and its impact (organizational
fitness) and outline the problem to be addressed by the new system’, then the product frag-
ment, ‘vision/scope/objectives model’ appears to be best suited to realize this goal. In that
case ‘executive sponsor and visionary’ (process fragment) might be considered as targeted
key roles for the acceptation of the chosen goal.

Now we shall simply illustrate how the modeling aspects can mediate the choice of
suitable fragments. First of all, we provide some basic information on these aspects. Five
modeling aspects can be distinguished (Slooten and Brinkkemper, 1993): Process (P) as-
pect refers to methods to model business process, activities and functions; Information
(I) aspect refers to methods to model business information analysing message and data
flows; Behaviour (B) aspect refers to methods to model business events and time; Organi-

484 M. N. AYDIN ET AL.

Figure 4. Visualization of the degree of importance of modeling aspects for the two levels in DSDM.

zation (O) aspect refers to methods to model structural and cultural aspects of the organiza-
tion; and finally Goal (G) aspect refers to methods for articulating and solving the problem
to reach certain organizational goals.

In Figure 4 we show a perceived degree of importance of each modeling aspect at
two levels in terms of ‘very high’, ‘high’, ‘medium’ and ‘low’ (DSDM, 2000). Now, lets
consider the first three indicators in Table 2 as the targeted indicators for the goal to be
achieved, then, according to DSDM, we may notice that the process and the organization
aspects of systems modeling could be more important than others. And, these two aspects
will mediate the selection of process and product fragments, i.e. we will choose those
fragments that can help us capturing such modeling activities. In summary, a degree of
importance of each modeling aspect helps us better understanding on what extent a method
fragment contributes to certain aspect of the situated method.

Now, we shall show how the suitability filter co-operates with the modeling aspects,
the goal indicators and selection of method fragments. To do this we will use an illustra-
tive project situation. For the sake of simplicity we will limit ourselves to two situational
factors: clarity and stability.

Clarity refers to what extent the goals, needs, and desires of users are clear and coher-
ent enabling a stable specification of functional requirements. Stability indicates to what
an extent goals, needs, and desires of users will not change over time enabling a stable
specification of functional requirements. Meanwhile, we assume that ‘fitness for business
purpose’ and ‘system acceptance’ are considered as being two key goal indicators at the
business study level (Table 1). At this stage project managers need to know which method
fragments should be selected so that tailoring DSDM (selecting required method frag-
ments) to a given situation and a given goal could be done appropriately. In our example
we know that a type and a degree of user involvement is one of dominant strategy frag-
ments that contributes to an achievement of predefined goal indicators (see Slooten and
Hodes, 1996 for this heuristic). There is still a set of options for this strategy fragment.
For instance, for the types of user involvement we have the following options provided by
DSDM: ambassador role who is representative of the entire community of users, visionary
role who has the high level view of the solution, and advisor role. The next step will be the
use of modeling aspects for product fragments. So, since we focus on ‘fitness for business
purpose’ and ‘system acceptance’-related goal indicators we might more focus on process

A MODEL FOR A METHOD ADAPTATION PROCESS 485

and goal modeling aspects at the business study level. This tells us that the ‘business area
definition’ is the key product to achieve predefined goal indicators in a given situation.

4. CONCLUSIONS

Our proposed model is aimed at supporting practitioners for a method adaptation
process. We should note that the proposed model employs key aspects of method engi-
neering and consider the engineering perspective as a reference domain. However, method
adaptation can also be elaborated from the viewpoint of what we call, the socio-orga-
nizational (Baskerville and Stage, 2001). This perspective appears to be concerned with
‘soft and ill-structured issues’ like culture and politics. Baskerville and Stage suggests
method adaptation process as a ‘complex socio-organizational phenomenon’. The mean-
ing of the method fragment in (Baskerville and Stage, 2001) is different from its meaning
in method engineering; it is not prescribed or coherent part of the method, it is rather
invented on-the-fly, emerging in the work setting. We believe that two perspectives on
method adaptation, i.e. the engineering perspective and socio-organizational perspective,
are complementary rather than conflicting. Indeed, the engineering perspective, that we use
in this paper, seems be to be useful for ‘well-structured’ method fragments for which we
give some examples from the sample method (DSDM) and the socio-organizational per-
spective appears to provide handy mechanism to understand ‘unstructured’ fragments that
deal with ill-structured issues. So, if we now consider our work from the engineering per-
spective, the proposed model seems to be useful for adapting ISD method. In this paper, for
the sake of simplicity we rather use simple examples. One can argue that illustrative exam-
ples for the activities and inputs for S3 are not very challenging, yet we use these examples
on the purpose of demonstrating how the model works. It is worth noting that this model
extends, integrates and explicates two approaches to a method adaptation process proposed
in method engineering. As we mentioned before the model might employ key aspects of
the socio-organizational perspective as well and needs to be studied in work practice. Actu-
ally, we are currently working on this issue and the preliminary findings appear to support
our model on the condition that the model should also accommodate unstructured method
fragments. Indeed, this is the follow-up research issue that we are working on and aiming
at testing our models in work practice.

REFERENCES

Aydin, M. N., and Harmsen, F., 2002, Making a method work for a project situation in the context of CMM, in:
Product Focused Software Process Improvement, M. Oivo and S. Komi-Sirviö, eds., Springer LNCS 2559,
pp. 158–171.

Althoff, K.-D., Birk, A., Greese von Wangenheim, C., and Tautz, C., 1998, Case-based reasoning for experimental
software engineering, in: Case-Based Reasoning Technology, M. Lenz et al., eds., Springer Verlag, pp. 235–
254.

Basili, V. R., Caldiera, G., and Rombach, H. D., 1994, Experience factory, in: Encyclopedia of Software Engi-
neering, J. J. Marciniak, ed., John Wiley & Sons, pp. 469–476.

Baskerville, R., and Stage, J., 2001, Accommodating emergent work practices: Ethnographic choice of method
fragments, in: Realigning Research and Practice in IS Development: The Social and Organizational Per-
spective, B. Fitzgerald, N. Russo, and J. DeGross, eds., Kluwer, New York, pp. 12–28.

Boehm, B. W., 1999, Making RAD work for your project, IEEE Computer 32(3):113–114.

486 M. N. AYDIN ET AL.

Brinkkemper, S., 1996, Method engineering: Engineering of information systems development methods and tools,
Information and Software Technology 38:275–280.

Cockburn, A., 2002, Agile Software Development, Reading Addison Wesley Longman, Massachusetts.
DSDM, 2000, Dynamic Systems Development Method Manual (June 1, 2000); http://www.dsdm.org.
Fitzgerald, B., Russo, N. L., and O’Kane, T., 2003, Software development method tailoring at Motorola, Com-

munications of the ACM 46(4):64–70.
Harmsen, F., Brinkkemper, S., and Oei, H., 1994, Situational method engineering for information systems project,

in: Methods and Associated Tools for the information Systems Life Cycle, T. W. Olle and A. A. Verrijn
Stuarts, eds., North-Holland, Amsterdam, pp. 169–194.

Harmsen, F., Lubbers, I., and Wijers, G., 1995, Success-driven selection of fragments for situational methods:
The S3 model, in: Proceedings of the Second International Workshop on Requirements Engineering Re-
quirements Engineering: Foundations of Software Quality, K. Pohl and P. Peters, eds., Aachener Beitrage
zur Informatik, Band 13, pp. 104–115.

Henninger, S., and Baumgarten, K., 2001, A Case-based approach to tailoring software processes, in: Proceedings
of the 4th International Conference on Case-Based Reasoning, D. W. Aha, I. Watson, and Q. Yang, eds.,
Springer, Lecture Notes in Artificial Intelligence, Canada, pp. 249–262.

Hidding, G. J., 1997, Reinventing methodology, Communications of the ACM 40(11):102–109.
Hoef, R. van de, Harmsen, F., and Wijers, G., 1995, Situation, scenario, and success, Memoranda Informatica

95–12, University of Twente, Enschede.
Jarke, M., Pohl, K., Rolland, C., and Schmitt, J. R., 1994, Experience-based method evaluation and improvement:

A process modeling approach, in: Methods and Associated Tools for the information Systems Life Cycle,
T. W. Olle and A. A. Verrijn Stuarts, eds., North-Holland, Amsterdam, pp. 169–194.

Klooster, M., Brinkkemper, S., Harmsen, F., and Wijers, G., 1997, Intranet facilitated knowledge management:
A Theory and tool for defining situational methods, in: Proceedings of the 9th International Conference
CAiSE’97, A. Olivé and J. A. Pastor, eds., Springer Verlag LNCS 1250, pp. 303–317.

Kumar, K., and Welke, R. J., 1992, Methodology engineering: A Proposal for situation-specific methodology
construction, in: Challenges and Strategies for Research in Systems Development, W. W. Cotterman and
J. A. Senn, eds., John Wiley & Sons, Chichester, pp. 258–269.

Martin, J., 1991, Rapid Application Development, Macmillan Publishing, New York.
Rolland, C., and Prakash, N., 1996, A proposal for context-specific method engineering, in: Method Engineering:

Principles of Method Construction and Tool Support, S. Brinkkemper, K. Lyytinen, and R. J. Welke, eds.,
Chapman & Hall, Atlanta, pp. 191–208.

Stapleton, J., 1997, Dynamic Systems Development Method – The Method in Practice, Addison-Wesley.
Vahidov, R., and Elrod, R., 1999, Incorporating critique and argumentation in DSS, Decision Suport Systems

26(3):249–258.
Van Slooten, C., and Brinkkemper, S., 1993, A Method engineering approach to information systems develop-

ment, in: Information System Development Process, N. C. Prakash, C. Rolland, and B. Pernici, eds., Elsevier
Science Publishers B.V., North Holland, pp. 167–186.

Van Slooten, C., and Hodes, B., 1996, Characterizing IS development projects, in: Method Engineering: Princi-
ples of Method Construction and Tool Support, S. Brinkkemper, K. Lyytinen, and R. J. Welke, eds., Chap-
man & Hall, Atlanta, pp. 29–44.

Zachman, J. A., 1987, A Framework for information architecture, IBM Systems Journal 26(3):276–292.

ON THE USE OF INFORMATION SYSTEMS
RESEARCH METHODS IN DATA MINING

Mykola Pechenizkiy, Seppo Puuronen, and Alexey Tsymbal∗

1. INTRODUCTION

Information systems are powerful instruments for organizational problem solving
through formal information processing (Lyytinen, 1987). Data mining (DM) and knowl-
edge discovery are intelligent tools that help to accumulate and process data and make use
of it (Fayyad, 1996). Data mining bridges many technical areas, including databases, statis-
tics, machine learning, and human-computer interaction. The set of data mining processes
used to extract and verify patterns in data is the core of the knowledge discovery process.
Numerous data mining techniques have recently been developed to extract knowledge from
large databases.

The area of data mining is historically more related to AI (Artificial Intelligence),
pattern recognition, statistical, and database communities, though we think there is no ob-
jective reason for that. And nowadays, although the field of data mining according to the
ACM classification system† for the computing field is a subject of database applications
(H.2.8) that in sequence related to database management (H.2) and to information systems
field (H.), there exists a gap between the data mining and information systems commu-
nities. Each of the two scientific communities publishes its own journals and books, and
organizes different conferences that rarely cover the same issues. This situation is not ben-
eficial since both communities share in common many similar problems being solved and
therefore are potentially helpful for each other.

In this paper (in Section 2) we consider some existing frameworks for data mining,
including database perspective and inductive databases approach, the reductionist statisti-
cal and probabilistic approaches, data compression approach, and constructive induction
approach. We consider their advantages and limitations analyzing what these approaches
account in the data mining research and what they do not.

∗ Mykola Pechenizkiy and Seppo Puuronen, Department of Computer Science and Information Systems, Uni-
versity of Jyväskylä, Jyväskylä, Finland. Alexey Tsymbal, Department of Computer Science, Trinity College
Dublin, Dublin, Ireland.

† See http://www.acm.org/class/1998/ccs98.html.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 487

488 M. PECHENIZKIY ET AL.

The study of research methods in information systems by Järvinen (1999) encour-
aged us to analyse connections and appropriateness of them to the area of data mining.
In Section 3 we are trying to view the data mining research as a continuous information
system development process. We refer to the traditional framework presented by Ives et al.
(1980) that is widely known and has been used in the classification of Information Systems
research literature. The framework is a synthesis of many other frameworks considered
before by other researchers and covers their main elements. For us this framework is more
substantial than the others since it also focuses on the development of information systems.

Ives et al. (1980) considers an information system (IS) in an organizational environ-
ment that is further surrounded by an external environment. According to the framework
an information system itself includes three environments: user environment, IS develop-
ment environment, and IS operations environment. Drawing an analogy to this framework
we consider a data mining system as a special kind of adaptive information system that
processes data and helps to make use of it. Adaptation in this context is important because
of the fact that the data mining system is often aimed to produce solutions to various real-
world problems, and not to a single problem. On the one hand, a data mining system is
equipped with a number of techniques to be applied for a problem at hand. From the other
hand there exist a number of different problems and current research has shown that no sin-
gle technique can dominate some other technique over all possible data-mining problems
(Wolpert and MacReady, 1996). Nevertheless, many empirical studies report that a tech-
nique or a group of techniques can perform significantly better than any other technique
on a certain data-mining problem or a group of problems (Kiang, 2003). Therefore view-
ing data mining research as a continuous and never-ending development process of a DM
system towards the efficient utilization of available DM techniques for solving a current
problem impacted by the dynamically changing environment is a well-motivated position.

In this paper we focus on the IS development process. We consider information sys-
tems development framework of Nunamaker (1990–91) adapted to data-mining systems
development. We discuss three basic groups of information systems research methods.
Namely, we consider theoretical, constructive and experimental approaches with regard
to Nunamaker’s framework in the context of data mining. We demonstrate how these ap-
proaches can be applied iteratively and/or in parallel for the development of an artefact –
a data-mining tool, and contribute to theory creation and theory testing. We conclude with
a brief summary and discussion of our further research in Section 4.

2. THEORETICAL FRAMEWORKS FOR DATA MINING

2.1. A Database Perspective and Inductive Databases

A database perspective on data mining and knowledge discovery was introduced in
Imielinski and Mannila (1996). The main postulate of their approach is: “there is no such
thing as discovery, it is all in the power of the query language”. That is, one can benefit from
viewing common data mining tasks not as dynamic operations constructing new pieces of
information, but as operations finding unknown (i.e. not found so far) but existing parts of
knowledge.

ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS IN DATA MINING 489

In Boulicaut et al. (1999) an inductive databases framework for the data mining and
knowledge discovery in databases (KDD) modeling was introduced. The basic idea here
is that data-mining task can be formulated as locating interesting sentences from a given
logic that are true in the database. Then discovering knowledge from data can be viewed as
querying the set of interesting sentences. Therefore the term “an inductive database” refers
to such a type of databases that contains not only the data but a theory about the data as
well (Boulicaut et al., 1999).

This approach has some logical connection to the idea of deductive databases, which
contain normal database content and additionally a set of rules for deriving new facts from
the facts already present in the database. This is a common inner data representation. For a
database user, all the facts derivable from the rules are presented, as they would have been
actually stored there. In a similar way, there is no need to have all the rules that are true
about the data stored in an inductive database. However, a user may imagine that all these
rules are there, although in reality, the rules are constructed on demand. The description of
an inductive database consists of a normal relational database structure with an additional
structure for performing generalizations. It is possible to design a query language that
works on inductive databases (Boulicaut et al., 1998). Usually, the result of a query on an
inductive database is an inductive database as well. Certainly, there might be a need to find
a solution about what should be presented to a user and when to stop the recursive rule
generation while querying. We refer an interested reader to the work of Boulicaut et al.
(1999).

2.2. The Reductionist Approach

In Mannila (2000) two simple approaches to the theory of data mining are analysed.
The first one is the reductionist approach of viewing data mining as statistics. Generally,
it is possible to consider the task of data mining from the statistical point of view, em-
phasizing the fact that DM techniques are applied to larger datasets than it is in statistics.
And in this situation the analysis of the appropriate statistics literature, where strong ana-
lytical background is accumulated, would solve most of the data mining problems. Many
data mining tasks naturally may be formulated in statistical terms, and many statistical
contributions may be used in data mining in a quite straightforward manner. The second
approach discussed by Mannila (2000) is a probabilistic approach. Generally, many data
mining tasks can be seen as the task of finding the underlying joint distribution of the
variables in the data. Good examples of this approach would be Bayesian network or a
hierarchical Bayesian model, which give a short and understandable representation of the
joint distribution. Data mining tasks dealing with clustering and/or classification fit eas-
ily into this approach. However, it should be admitted that data mining researchers with
computer science background typically have rather little education in statistics and this is a
reason to the fact that achievements from statistics are used not to such an extent as could
be possible.

A deeper consideration of data mining and statistics shows that the volume of the
data being analysed and different background of researchers are, probably, not the most
important ones that make the difference between the areas. Data mining is an applied
area of science and limitations in available computational resources is a big issue when

490 M. PECHENIZKIY ET AL.

applying results from statistics to data mining. The other important issue is that data min-
ing approaches emphasize database integration, simplicity of use, and understandability
of results. Last but not least Mannila (2000) points out that the theoretical framework of
statistics does not concern much about data analysis as a process that generally includes
data understanding, data preparation, data exploration, results evaluation, and visualisation
steps. However, there are persons (mainly with strong statistical background) who equate
DM to applied statistics, because many tasks of DM may be perfectly represented in terms
of statistics.

2.3. Data Compression Approach

A data compression approach to data mining can be stated in the following way: com-
press the dataset by finding some structure or knowledge for it, where knowledge is in-
terpreted as a representation that allows coding the data by using fewer amount of bits.
For example, the minimum description length (MDL) principle (Mehta et al., 1995) can
be used to select among different encodings accounting to both the complexity of a model
and its predictive accuracy.

Machine learning practitioners have used the MDL principle in different interpreta-
tions to recommend that even when a hypothesis is not the most empirically successful
among those available, it may be the one to be chosen if it is simple enough. The idea is in
trading between consistency with training examples and empirical adequacy by predictive
success as it is, for example, with accurate decision tree construction. Bensusan (2000)
connects this to another methodological issue, namely that theories should not be ad hoc
that is they should not overfit the examples used to build them. Simplicity is the remedy
for being ad hoc both in the recommendations of philosophy of science and in the practice
of machine learning.

The data compression approach has also connection with the rather old Occam’s razor
principle that was introduced in 14th century. The most commonly used formulation of this
principle in data mining is “when you have two competing models which make exactly the
same predictions, the one that is simpler is the better”.

Many (if not every) data mining techniques can be viewed in terms of the data com-
pression approach. For example, association rules and pruned decision trees can be viewed
as ways of providing compression of parts of the data. Clustering approaches can also be
considered as a way of compressing the dataset. There is a connection to Bayesian theory
for modelling the joint distribution – any compression scheme can be viewed as providing
a distribution on the set of possible instances of the data.

However, in order to produce a structure that would be comprehensible to the user, it
is necessary to select such compression method(s) that is (are) based on concepts that are
easy to understand.

2.4. Constructive Induction Approach

Constructive induction is a learning process that consists of two intertwined phases,
one of which is responsible for the construction of the “best” representation space and
the second concerns with generating hypothesis in the found space (Michalski and Wnek,
1993). Constructive induction methods are classified into three categories: data-driven (in-

ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS IN DATA MINING 491

formation from the training examples is used), hypothesis-driven (information from the
analysis of the form of intermediate hypothesis is used) and knowledge-driven (domain
knowledge provided by experts is used) methods. Any kind of induction strategy (im-
plying induction, abduction, analogies and other forms of non-truth preserving and non-
monotonic inferences) can be potentially used. However, the focus usually is on operating
higher-level data-concepts and theoretical terms rather than pure data. Michalski (1997)
considers constructive (expands the representation space by attribute generation) and de-
structive (contract the representational space by feature selection or feature abstraction)
operators that can be applied to produce a better representation space comparing to the
original one. In Bensusan (1999) it was shown that too many theoretical terms could im-
pair induction. This vindicates an old advise of the philosophy of science: avoid adding
unnecessary metaphysical baggage to a theory. Theoretical terms are often contrasted with
observational terms. It is generally accepted that the more data we have the better model
we can construct. However, this is not true for higher-level concepts that constitute a the-
ory.

Many data mining techniques that apply wrapper/filter approaches to combine feature
selection, feature extraction or feature construction processes (as means of dimensional-
ity reduction and/or as means of search for better representation of the problem) and a
classifier or other type of learning algorithm can be considered as constructive induction
approaches.

2.5. Conclusion on Considered Frameworks

The reductionist approach of viewing data mining in terms of statistics has advantages
of the strong theoretical background and easy-formulated problems. The data compression
and constructive induction approaches have relatively strong analytical background, as well
as connections to the philosophy of science. In addition to the just-mentioned frameworks
an interesting solution is proposed in the microeconomic view on data mining, introduced
by Kleinberg (1998), where a utility function is constructed and trying to be maximized.
The data mining tasks concerning processes like clustering, regression, and classification
fit easily into these approaches.

The inductive databases framework suggests architecture for data mining systems and
allow to view data mining as a process. Association rules and other simple pattern for-
malisms can be described by this approach. However, for example, clustering is harder to
describe in a useful way within the inductive databases framework.

In one way or another, we can easily see the exploratory nature of the frameworks
for the data-mining field. Different frameworks account different data mining tasks, allow
preserving and presenting background knowledge. However, what seems to be lacking in
most of the approaches, are the ways for taking the iterative and interactive nature of the
data mining process into account (Mannila, 2000). Furthermore, none of the considered
frameworks considers data mining in the context of an adaptive system that processes in-
formation.

In the next section we introduce an information systems development framework and
then consider how data mining can be seen as an iterative and interactive development
process within this framework.

492 M. PECHENIZKIY ET AL.

3. DATA MINING AND INFORMATION SYSTEMS FRAMEWORK

3.1. Generations of DM Systems

Present history of data mining systems’ development totals three main stages/gene-
rations (Piatetsky-Shapiro, 2000). Year 1989 can be referred to as the first generation of
data mining/KDD systems when a few single-task data mining tools such as C4.5 decision
tree algorithm (Quinlan, 1993) existed. They were difficult to use and required significant
preparation. Most of such systems were based on a loosely-coupled architecture, where the
database and the data mining subsystems were realised as separate independent parts. This
architecture demands continuous context switching between the data-mining engine and
the database (Imielinski and Mannila, 1996).

Then, the year 1995 can be associated with formation of the second-generation tools-
suits. Data mining as a core part of KDD started to be seen as “the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable patterns in
data” (Fayyad, 1996, 22). Some examples of the knowledge discovery systems that follow
Fayyad’s view on DM as the process are: SPSS Clementine, SGI Mineset (Brunk et al.,
1997), and IBM Intelligent Miner (Tkach, 1998).

Numerous KDD systems have recently been developed. At the beginning of the mil-
lennium there exist about 200 tools that could perform several tasks (clustering, classi-
fication, visualization) each for specialized applications (therefore often called “vertical
solutions”) (Piatetsky-Shapiro, 2000). This growing trend towards integrating data-mining
tools with specialized applications has been associated with the third generation of DM
systems (Fayyad and Uthurusamy, 2002).

Because of increasing number of such “vertical solutions” and possibility to accumu-
late knowledge from these solutions, there is a growing potential for appearance of next-
generation database mining systems to manage KDD applications. These systems should
be able to discover knowledge by selecting and combining several available most suitable
for specific domain KDD techniques. While today’s algorithms tend to be fully automatic
and therefore fail to allow guidance from knowledgeable users at the key stages in the
search for data regularities, the researchers and the developers, who are involved into the
creation of the next generation data mining tools, are motivated to provide a broader range
of automated steps in the data mining process and make this process more mixed-initiative,
in which human experts collaborate more closely with the computer to form hypotheses
and test them against the data (Ankerst, 2002).

Since a data mining system is often aimed to produce solutions not to a single problem
but rather to various real-world problems, it has to be armed with a number of techniques to
be applied for a problem at hand. However, current research has shown that no single tech-
nique can dominate some other technique over all possible data-mining problems (Wolpert
and MacReady, 1996). Nevertheless, many empirical studies report that a technique or a
group of techniques can perform significantly better than any other technique on a certain
data-mining problem or a group of problems (Kiang, 2003). Therefore a good data min-
ing system should be adaptive for solving a current problem impacted by the dynamically
changing environment and being continuously developed towards the efficient utilization
of available DM techniques.

ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS IN DATA MINING 493

3.2. Information Systems Framework

The traditional framework presented by Ives et al. (1980) is widely known and has
been used in the classification of IS research literature. We consider this framework be-
cause:

(1) it is a synthesis of many other frameworks considered before by other researchers
and covers their main elements;

(2) it is helpful in drawing the analogy between the information systems and data
mining systems as a special kind of adaptive information system that processes
data and helps to make use of it;

(3) for us this framework is more substantial that the others since it also focuses on
the development of information systems as we focus on the development of data
mining systems.

Ives et al. (1980) considers an information system in an organizational environment
that is further surrounded by an external environment. According to the framework an in-
formation system itself includes three environments: user environment, IS development en-
vironment, and IS operations environment. There are accordingly three processes through
which an IS has interaction with its environments: the use process, the development process,
and the operation process.

Analogously, a data-mining system that is equipped with a collection of DM tech-
niques and knowledge how to utilize those for various tasks can be considered as a system
with user environment, DM development environment, and DM operations environment.
However, in this paper, we focus on the development process of an artefact for data mining
and leave operation and use processes for further research.

In the information systems research a variety of research methods have been applied.
Davis (2000, 80) expresses this saying that “the field has a richer set of views than other
fields because the positivist philosophy that dominated the American research and the phe-
nomenology philosophy that tended to dominate in Europe were both supported by the
worldwide community”. Even when there are still discussions going on about suitable re-
search methods in the field, we share with many others the opinion that there is room for
many research methods, both hard and soft.

Iivari et al. (1998) relate development process to the constructive type of research be-
cause of their philosophical belief that development always involves creation of some new
artefacts – conceptual (models, frameworks) or more technical artefacts (software imple-
mentations). The research approach is classified as constructive where scientific knowledge
is used to produce either useful systems or methods, including development of prototypes
and processes. Iivari et al. (1998) argue the importance of constructive research especially
for applied disciplines of information systems and computer science, and DM may be con-
sidered as such a discipline.

Nunamaker et al. (1990–91, 94) consider system development as a central part of a
multi-methodological information systems research cycle (Figure 1). Theory building in-
volves discovery of new knowledge in the field of study, however it is rarely contributing
directly to practice. Nevertheless, the built theory often (if not always) needs to be tested in
the real world to show its validity, recognize limitations and make refinements according

494 M. PECHENIZKIY ET AL.

Figure 1. A multimethodological approach to the construction of an artefact for data mining (adapted from
Nunamaker et al., 1990–91, 94).

to observations made during its application. Therefore research methods are subdivided
into basic and applied research, as naturally both are common for any large project (Nuna-
maker et al., 1990–91). A proposed theory leads to the development of a prototype system
in order to illustrate the theoretical framework from the one hand, and to test it through ex-
perimentation and observation with subsequent refinement of the theory and the prototype
in an iterative manner. Such a view presents the framework of IS as a complete, compre-
hensive and dynamic research process. It allows multiple perspectives and flexible choices
of methods to be applied during different stages of the research process.

In the following subsections we consider applying information systems research meth-
ods in the context of the data-mining field. we consider theoretical, constructive and exper-
imental approaches with regard to Nunamaker’s framework in the context of data mining.
We demonstrate how these approaches can be applied iteratively and/or in parallel for the
development of an artefact – a data-mining tool, and contribute to theory creation and the-
ory testing.

Particularly, in the next section we consider the construction of an artefact for data
mining as system development applying multi-methodological information systems re-
search cycle presented in this section.

3.3. Construction of an Artefact for Data Mining

Can we build an artefact that would be useful? If a research question deals with the
verbs like introduce, improve, maintain, cease, extend, correct, adjust, enhance an so on,
the study according to Järvinen (1999, 59) likely belongs to the constructive research.
Indeed these are the actions that researchers in the area of data mining perform when
developing new theories and their applications.

ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS IN DATA MINING 495

From the data mining research point of view the constructive approach can be seen to
help to manipulate and coordinate integrative work (selection and combination) of different
data mining techniques, and to conduct the experimental approach. However, in this paper
we emphasize the goal of a data mining artefact construction as the major one.

Development of an artefact for data mining can be described in terms of initial and
target/final states and the building process itself that includes specification and implemen-
tation stages (and usually it is difficult to see if these stages are performed sequentially,
iteratively or in parallel. The building process aims to minimize the difference between the
target and final states. In our situation the initial state may be described in terms of existing
(available in the system) sets of different data mining techniques, e.g. certain clustering,
feature transformation and classification techniques. And the target state would be a system
that has a possibility adaptively select/construct the most appropriate approach/solution for
a given task according to the specificity of this given task.

It is obvious that in order to construct a good artefact with such adaptivity we need
some background knowledge about the artefact’s components (that is basic data mining
techniques) and their appropriateness for certain dataset characteristics. Beside this we
need also some background knowledge about the artefact’s external environment that are
different real-world problems, often called just datasets.

In data mining a dataset is usually characterised by analysis of its domain, statistical,
information-theoretical properties and simple measures like the number of instances and
attributes. And DM techniques are commonly specified with their requirements, capabili-
ties and/or limitations. Examples of such characteristics are algorithm run-time parameters,
ability of handling misclassification costs, and data types supported. Beside specifications,
DM techniques may be characterised by many representational and functional character-
istics associated either with the expert knowledge about the techniques or with the past
learning experience of a corresponding DM technique. These various characteristics in-
clude attribute types supported, bias/variance profile, incrementality, cost handling sup-
port; efficiency characteristics: training and execution time, training and execution space;
resilience characteristics: scalability, tolerance to missing values, tolerance to noise and ir-
relevant and redundant attributes; and finally practicality characteristics: runtime parameter
handling, interpretability, and transparency (Hilario and Kalousis, 1999).

Thus, it is natural that the theory-creating research has to be performed during which
the basics of available data mining techniques should be elaborated. For this purpose
a literature survey and review commonly are undertaken. This helps to understand the
background of the problem and analyse previous findings in the area. However, such
theory-creating research can be supported also by meta-learning approaches that in (semi)-
automatic way may help to state and check different hypothesis about the relations be-
tween technique’s and dataset’s characteristics. An overview of different meta-learning
approaches can be found, for example, in Hilario and Kalousis (2000).

From the theory development point of view there are possibilities to apply either in-
ductive or deductive approaches, and actually it is reasonable to try their combination in
the sense that it is possible to use the findings from both approaches in order to check
their consistency and guarantee more sophisticated completeness. Inductive theory build-
ing is based on search for trends, generalizations from experiments, whereas deductive
approaches are based on logical inference on a set of axioms/hypothesizes.

496 M. PECHENIZKIY ET AL.

It should be noticed that in some cases it is not possible just to adjust an existing
program for someone’s research purposes and program design and implementation are re-
quired. However it is reasonable to use existing libraries and appropriate tools when possi-
ble. In this situation it might be possible to use tested and validated tools as a core/backbone
for a new tool and the development process can be focused on the new part of the desired
tool.

There are two alternatives to create a tool: to develop it in whole or to develop one
component of the tool after another. The second alternative has the following advantages:
each component can be designed, implemented, tested, and refined independently before
it is included into the meta-approach. The control over the individual components can be
organized and the experiments can be easily performed on separate components also.

Evaluation process is an essential part of constructive research. Usually, experimental
approach is used to evaluate a data mining artefact. We consider the experimental approach
in the next subsection. We will try to show that the experimental approach, however, can be
beneficial for theory testing and can be a means of constructing new pieces of knowledge
and thus contributing to the theory-creating process.

3.4. Experimental Approach: Theory Testing and Artefact Evaluation

By the evaluation of artefact we understand first of all (1) the evaluation of learned
models and meta-level models and (2) testing the constructed theory of different data
processing and machine-learning techniques selection and combination.

As from the theory evaluation as from the artefact evaluation point of view, the gen-
eral principle of evaluation – the new derivation or construct must be better that its best
challenger – is applicable for data mining as well. ‘Goodness’ criterion of a built theory
or an artefact is multidimensional and sometimes is difficult to be defined because of mu-
tual dependence between the compromising variables. However, it is more or less easy to
construct a criterion based on such estimates as accuracy (including sensitivity and speci-
ficity, and various costs matrices) of a built model and its performance (time and memory
resources). On the other hand – it is more difficult or even impossible to include into a cri-
terion such important aspects as interpretability of the artefact’s output because such kinds
of estimate usually are subjective and can be evaluated only by the end-users of a system.

Experimental study can be done in the ‘field’ or in the ‘laboratory’. In the first case
different approaches are tested on so-called real-world datasets with real users. In the sec-
ond case systematically controlled experiments can be organized. Controlled experiments
sometimes might produce more beneficial results for theory creating, since unlike real
world datasets, synthetically generated data allow to test exactly the desired number of
characteristics while keeping all the others unchanged.

Theory testing might be seen here at different levels. A low-level task is to evaluate
how well a built model works. The other task is to analyse how the built model performs
comparing to the other models. Then it is usually necessary to compare the algorithm se-
lected to build the models with other algorithm(s). Finally, when ‘laboratory’ experiments
and evaluation are finished (that are experiments on synthetic datasets in our situation), it
is necessary to go to the field and organize ‘field’ experiments (that would be experiments
on real-world or benchmark datasets).

ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS IN DATA MINING 497

When testing and validating a model, data miners use several techniques. They in-
clude sampling, validation, cross-validation, stratification, Monte Carlo methods, division
a dataset into training, validating and testing sets etc. There are two of the most essential
elements of any experimental design, namely randomization and experimental control (of
all nuisance variables or it is better to say possibility to control adjustable variables and
restrictions of known factors).

The evaluation of a selected approach can be provided either based on the filter par-
adigm, when evaluation process is independent from a learning algorithm and the most
appropriate approach is chosen from available ones according to certain data character-
istics before the algorithm starts, or based on the wrapper paradigm (Kohavi, 1998) that
assumes interaction between the approach selection process and the performance of the
integrative model. In order to compare the two approaches Student’s t-test and McNemar’s
test are used as standard de facto (Dietterich, 1998).

However, the experimental approach benefits not only for the artefact evaluation and
theory testing that has been used for artefact construction but also it can contribute to the
knowledge by producing new pieces of theory about selection and/or combination of DM
techniques for a given dataset. Meta-learning approaches is one good example of such
attempts to contribute to new pieces of theory induction.

In conclusion we would like to notice that it is reasonable to consider how the results
achieved through different research approaches relate to each other and search for contra-
dictions in the results. It can be expected that such joint use of these approaches will give a
better understanding of the introduced research goal and benefit in a more significant and
sophisticated contribution to the knowledge in the area.

4. CONCLUSION

In this paper we considered several frameworks for data mining. These frameworks
are based on different approaches, including inductive databases approach, the reduction-
ist statistical approaches, data compression approach, constructive induction approach and
some others. We considered advantages and limitations of these frameworks. We presented
the view on data mining research as continuous and never-ending development process of
an adaptive DM system towards the efficient utilization of available DM techniques for
solving a current problem impacted by the dynamically changing environment. We dis-
cussed one of the traditional information systems frameworks and, drawing the analogy
to this framework, we considered a data mining system as the special kind of adaptive
information system. We adapted the information systems development framework for the
context of data-mining systems development. Three basic groups of information systems
research methods, applicable for data mining research were discussed, including theoret-
ical, constructive, and experimental approaches. We demonstrated how these approaches
could be applied iteratively for the development of a data-mining system. The theoretical
backgrounds need to be exploited during the constructive work and the constructed artefact
can be used for experimentation. The results of constructive and experimental work can be
used to refine theory. Thus, all the research approaches are heavily connected to each other.

In this paper we considered the development process of a data mining system and
the constructive research as main means that needs to be supported by the theory-testing

498 M. PECHENIZKIY ET AL.

research. Further analysis of IS framework briefly presented in subsection 3.2 can be ben-
eficial in the context of the data mining artefact construction and use.

Beside traditional IS framework considered for data mining, adaptation of a knowl-
edge management framework and knowledge engineering perspective towards data mining
framework construction is the other direction of our further research.

ACKNOWLEDGMENTS

This research is partly supported by the COMAS Graduate School of the Univer-
sity of Jyväskylä, Finland and by the Science Foundation Ireland under Grant No. S.F.I.-
02IN.1I111.

REFERENCES

Ankerst, M., 2002, Report on the SIGKDD-2002 panel the perfect data mining tool: Interactive or automated,
SIGKDD Explorations 4(2), 110–111.

Bensusan, H., 1999, Automatic bias learning: An inquiry into the inductive basis of induction, PhD thesis, School
of Cognitive and Computing Sciences, University of Sussex.

Boulicaut, J., Klemettinen, M., and Mannila, H., 1998, Querying inductive databases: A case study on the MINE
RULE operator, in: Proceedings of 2nd European Symposium on Principles of Data Mining and Knowledge
Discovery (PKDD’98), France, pp. 194–202.

Boulicaut, J., Klemettinen, M., and Mannila, H., 1999, Modeling KDD processes within the inductive database
framework, in: Proceedings of the First International Conference on Data Warehousing and Knowledge
Discovery, Springer-Verlag, London, UK, pp. 293–302.

Brunk, C., Kelly, J., and Kohavi, R., 1997, MineSet: An integrated system for data mining, in: Proceedings of
the Third International Conference on Knowledge Discovery and Data Mining (KDD-97), D. Heckerman,
H. Mannila, and D. Pregibon, eds., AAAI Press, California, pp. 135–138.

Davis, G., 2000, Information systems conceptual foundations: Looking backward and forward, in: Organiza-
tional and Social Perspectives on IT, R. Baskeville, J. Stage, and J. DeGross, eds., Proceedings of the IFIP
International Working Conference on the Social and Organizational Perspective on Research and Practice
in Information Technology, Kluwer, Boston, pp. 61–82.

Dietterich, T., 1998, Approximate statistical tests for comparing supervised classification learning algorithms,
Neural Computation 10(7):1895–1923.

Fayyad, U. M., 1996, Data mining and knowledge discovery: Making sense out of data, IEEE Expert 11(5):20–25.
Fayyad, U. M., and Uthurusamy, R., 2002, Evolving data into mining solutions for insights, Communications of

the ACM 45(8):28–31.
Hilario, M., and Kalousis, A., 1999, Characterizing learning models and algorithms for classification, CUI –

Univercity of Geneva, TR UNIGE-AI-9-01.
Hilario, M., and Kalousis, A., 2000, Building algorithm profiles for prior model selection in knowledge discovery

systems, Engineering Intelligent Systems, Special Issue on Data Mining 8(2), IEEE Press.
Iivari, J., Hirscheim, R., and Klein, H., 1998, A paradigmatic analysis contrasting information systems develop-

ment approaches and methodologies, Information Systems Research 9(2):164–193.
Imielinski, T., and Mannila, H. 1996, A database perspective on knowledge discovery, Communications of the

ACM 39(11):58–64.
Ives, B., Hamilton, S., and Davis, G., 1980, A framework for research in computer-based management informa-

tion systems, Management Science 26(9):910–934.
Järvinen, P., 1999, On Research Methods, Tampere, Opinpaja; http://www.uta.fi/∼pj/.
Kiang, M., 2003, A comparative assessment of classification methods, Decision Support Systems 35:441–454.
Kleinberg, J., Papadimitriou, C., and Raghavan, P., 1998, A microeconomic view of data mining, Data Mining

and Knowledge Discovery 2(4):311–324.
Kohavi, R., and John, G., 1998, The wrapper approach, in: Feature Selection for Knowledge Discovery and Data

Mining, H. Liu and H. Motoda eds., Kluwer Academic Publishers, pp. 33–50.

ON THE USE OF INFORMATION SYSTEMS RESEARCH METHODS IN DATA MINING 499

Lyytinen, K., 1987, Different perspectives on information systems: Problems and solutions, ACM Computing
Surveys 19(1):5–46.

Mannila, H., 2000, Theoretical framework for data mining, SIGKDD Explorations 1(2).
Mehta, M., Rissanen, J., and Agrawal, R., 1995, MDL-based decision tree pruning, in: Proceedings of the First In-

ternational Conference on Knowledge Discovery and Data Mining (KDD 1995), U. M. Fayyad and R. Uthu-
rusamy, eds., AAAI Press, Montreal, Canada, pp. 216–221.

Michalski, R. S., and Wnek, J., 1993, Constructive induction an automated design of knowledge representa-
tion spaces for machine learning. Reports of the Machine Learning and Inference Laboratory, MLI 93–11,
School of Information Technology and Engineering, George Mason University, Fairfax, VA, November.

Michalski, R. S., 1997, Seeking knowledge in the deluge of facts, Fundamenta Informaticae 30:283–297.
Nunamaker, W., Chen, M., and Purdin, T., 1990–91, Systems development in information systems research,

Journal of Management Information Systems 7(3):89–106.
Quinlan, J. R., 1993, C4.5 Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.
Piatetsky-Shapiro, G., 2000, Knowledge discovery in databases: 10 years after, SIGKDD Explorations 1(2).
Tkach, D., 1998, Information mining with the IBM intelligent miner family, An IBM Software Solutions White

Paper; www.acm.org/sigs/sigmod/disc/disc99/disc/ibm/whitefam3.pdf.
Wolpert, D. H., and MacReady, W. G., 1996, No free lunch theorems for optimization, IEEE Transactions on

Evolutionary Computation 1(1):67–82.

FILLING THE KNOWLEDGE MANAGEMENT
SANDWICH: AN EXPLORATORY STUDY OF A

COMPLEX WORK ENVIRONMENT

Henry Linger and Jeremy Aarons∗

1. INTRODUCTION

On 29 January 2004 the first of the Meteosat Second Generation (MSG) satellites
MGS-1 (renamed Meteosat-8) commenced routine operations, beginning a new era in
weather forecasting. The first of three geostationary satellites situated over Europe, it is the
most sophisticated satellite currently operating, providing more precise and detailed data
at more frequent intervals than any previous satellite. As such it will increase the power of
forecasters to predict a range of severe weather events with previously unattainable speed
and accuracy. In addition to these services for professional meteorologists, anyone with a
satellite dish, a PC, and a relatively inexpensive plug-in decoder card can tap into the live
data feed for free. As a result, virtually anybody with access to the right equipment can
forecast the weather for themselves. One possibility that may emerge from this new avail-
ability of data is that individuals could to do the sorts of tasks that are presently a lucrative
business for institutional weather forecasting. Given this ability for almost any individual
to construct their own personalised forecast, one may be tempted to ask, as a recent article
in New Scientist magazine does, “Who needs weather forecasters?” (Mullins, 2004)

The belief that new technology such as these satellites will make weather forecasters
an endangered breed is based on a serious misconception. In particular, the idea that all it
takes to forecast weather is access to more and detailed data is quite wrong. As our stud-
ies of professional weather forecasters have revealed, accurate and informative weather
forecasting requires far more than just the input of detailed meteorological data and its in-
terpretation. Having the raw data feeds can be informative, but more is required in order to
be able to effectively develop a forecast. Forecasting is a complex and distributed cognitive
task (Kelder and Turner, 2004), performed by a team of highly trained and experienced ex-
perts, in an organizational setting that facilitates learning, sharing, and interactive decision

∗ School of Information Management and Systems, Monash University, 26 Sir John Monash Drive, Caulfield
East, Victoria 3145, Australia, henry.linger@sims.monash.edu.au, jeremy.aarons@sims.monash.edu.au.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 501

502 H. LINGER AND J. AARONS

making. Our studies reveal that the challenge of improving forecasting is as much about im-
proving the support for this collaborative process in its organizational setting, as it is about
improving the quality and complexity of the guidance materials (satellite, radar, ground
observations, and numerical prediction data) that are the inputs to the forecast process.

Our aim in this paper is to use a case study of a complex work environment, exem-
plified by weather forecasting, to explore how such complex work practices can be under-
stood and supported. Such knowledge work requires an understanding of the pragmatics
of the activity system, the conceptualisation of the work and an understanding of the or-
ganisational context and the social, cultural and cognitive aspect of the task. In this paper
we argue that task-based knowledge management (Burstein and Linger, 2003) can define
the conceptualisation and pragmatics of the activity system while a bottom-up, disunified
and localised investigation of the activity system defines the epistemological requirements
(Aarons, 2004).

In the next section, we present the case study at the Victorian Regional Office of the
Australian Bureau of Meteorology. The section examines the organizational setting, the
forecasting and informational environment, the forecast process and how the forecast is
actually produced. In the following section the case study is discussed in terms of insights
about the nature of work practices in such a complex environment. The following sec-
tion interprets these insights within a knowledge management framework. The conclusion
brings together the empirical and theoretical understanding of how to support knowledge
work in a complex environment.

2. THE CASE STUDY: WEATHER FORECASTING

2.1. Introduction to the Case Study

This discussion summarises the findings of studies conducted at the Victorian Regional
Office of the Bureau of Meteorology in September 2003. The approach taken was to under-
take an ethnographic study, involving observational studies of forecasters at work, delving
into the messy details of the tasks performed by forecasters, along the lines of Schultze’s
(2000) ethnographic investigation into knowledge work. The aim of this exercise was to
get an overview of how forecasting is currently being conducted, by investigating what
goes on within the activity of the forecaster. This involved developing an understanding of
all the factors that contribute to the construction of a weather forecast. This includes the
all the processes involved in the forecasting task, and the relevant artefacts and actors that
contribute to this task.

To achieve this we first familiarised ourselves with the operational environment within
which forecasters work, including the physical environment, the informational environ-
ment as well as the social environment. The informational environment includes the par-
ticular IT systems (hardware and software) used by the forecasters, as well as the other
technical systems and information sources that forecasters rely on for their forecasting.
The social environment is the interactive social space that the forecaster shares with other
forecasters, other staff, and outside parties.

The study was conducted by observing a meteorologist at work in their normal work-
ing environment, sitting with the forecaster for the duration of a shift, and when possible

FILLING THE KNOWLEDGE MANAGEMENT SANDWICH 503

having the forecaster talk through the tasks being performed. The observational study was
also supplemented by further discussions with the forecasters during breaks in their shift.
These provided the forecaster with opportunities for expressing their understanding and
presenting the way they think they are doing their work, as well as providing a forum for
any clarification and explanation that we required.

Throughout our study we investigated the details of the various tasks and activities
undertaken by the forecaster. In particular, we looked at how the forecaster’s time was
distributed across each particular activity undertaken as part of their shift routine. This in-
volved looking at the details of forecast product preparation, including the use of guidance
materials such as Numerical Weather Predictions (NWP) products and other decision sup-
port tools, as well as the various interactions with other forecasters, and communication
with other parties (eg. media, outside requests for information).

Although this study specifically concerns the Victorian office of the Bureau of Mete-
orology, the findings have been supplemented by further observational studies undertaken
in Tasmania in March 2004. The specific details of the findings here may vary from the
situation in other Bureau offices. However the basic structure and forecast procedure is
essentially the same across the offices (Bally, 2002). Our study is also informed by the
results of two other studies of forecasters. Our initial understanding of forecasting was
heavily informed by Bally (2002), which presented a series of detailed process models of
forecasting work. We also referred to Kelder’s (2003) study of forecasting at the Tasmanian
Regional Office, which characterised forecasting from a Distributed Cognition perspective
(Hutchins, 1995).

2.2. Background: The Forecasting Environment

The Australia Bureau of Meteorology∗ is a federally funded government organization
that operates as an Executive Agency within the Environment and Heritage Portfolio. The
Bureau’s Head Office in located in Melbourne and serves as both an administrative and
operational headquarters. Forecasting is conducted in each of the regional branches, located
in each of the seven State capitals and in Darwin.

In each forecasting Regional Office (R.O.) there is always at least one forecaster on
shift at any time of the day or night. For most forecasters a standard forecasting shift is 12
hours long – in Victoria the shifts are from 7 to 7. A forecaster typically works for two or
three days in a row, and then has at least one day off. On every shift a shift supervisor is
present. This person is a senior forecaster or SPOC (Senior Professional Officer Grade C).
In addition up to three PO2 (Professional Officer Level 2) forecasters may be on shift at
any time, working under the supervision and guidance of the SPOC. At particularly busy
times of the year additional forecasters may also be brought in, such as at the peak of the
fire season.

The SPOC acts in a coordinating role, setting the weather policy for the shift and
reviewing forecasts before they are published. In addition the SPOC performs a number of
other functions, including: warning policy and preparation; analysis and diagnosis; media

∗ For more details see http://www.bom.gov.au.

504 H. LINGER AND J. AARONS

liaison (eg. radio interviews); emergency service liaison; phone calls from key clients;
quality control; and general managing of the R.O.

The PO2 forecasters spend the bulk of their shift working according to a fixed rou-
tine, spending much of their time working on and writing the scheduled forecasts, which
are saved into a work file for review by the shift supervisor before being published. This
routine, however, is often disrupted by a number of other activities, including answering
phone enquiries, updating weather warnings, and helping other forecasters with specialised
tasks such as fire weather forecasting when required.

Although the allocation of tasks between the forecasters on shift is fairly clearly de-
fined, in practice there is a lot of interaction and collaboration between the forecasters, and
there is often sharing or even swapping of tasks. This collaborative environment is well
supported by the physical layout of a typical forecasting office set up. The work spaces are
located close together in an open office environment, so that the forecasters are in close
proximity to each other. This means that each forecaster is always aware of what the other
forecasters are doing, and can easily participate in another forecaster’s task if their assis-
tance is required (Kelder, 2003).

The informational environment is nested within the physical setup of the office space,
and is focused around the forecaster workstation and the multiple screens accessed by the
forecaster during forecasting. The key elements of the informational environment are: a
dual OS environment (Windows and Linux); a forecast preparation system and integrated
data viewer; multiple data viewing consoles; the large synoptic chart; NWP printouts; and
other paper artefacts (shift handover forms, media summaries).

In this informational environment the forecasters have access to a range of numerical
weather prediction systems, which provide crucial inputs to the forecast process. These
NWP models include a number of global weather models, as well as numerous more spe-
cialised and more local scale models.∗ Although there are numerous different systems
feeding into the forecasting process, many of these have been integrated into the Aus-
tralian Integrated Forecast System (AIFS) (Kelly and Gigliotti, 1997; Kelly et al., 2004), a
combination of packages for viewing data, managing databases and preparing and distrib-
uting messages. Within this system there are two main applications used by forecasters: the
data viewer, nicknamed “Kenny”, which integrates the viewing of many different forms of
guidance data within a single system; and “Linkage”, an integrated forecast preparation
package, developed by the Bureau, that brings together all the forms and forecast tem-
plates in a single system for editing and publishing. These applications are accessed using
the multiple screen setup of the forecaster workstation (Figure 1), with which the fore-
caster can view multiple forms of guidance data at once, while simultaneously viewing
and editing the content of forecast products.

Forecasters also consult additional screens strategically located around the office,
which display current radar data and the current ground observations obtained from auto-
matic weather stations. This data can also be accessed from each forecaster’s workstation.
Additionally, each forecaster routinely consults a screen which lists the current alerts and
warnings. This screen display a list of up-to-date weather events that are worthy of special

∗ A summary of the Bureau’s NWP products can be found at http://www.bom.gov.au/nmoc/NWP.shtml More
details can also be found at http://www.bom.gov.au/nmoc/anal prog.shtml [May, 2004].

FILLING THE KNOWLEDGE MANAGEMENT SANDWICH 505

Figure 1. A typical 4-screen forecasting workstation.

notice, such as when wind gusts are over a certain magnitude at a particular location. These
alerts are customisable according the individual forecaster’s particular needs, and provide
further support for the forecasting task.

2.3. The Activity in Focus: The Forecast Process

In brief, the forecast process involves the synthesis and analysis of a large amount of
meteorological data, leading to the production of a number of different forecast products
(Linger et al., 2001). Essentially there are three basic components to the forecast process:

1. data inputs – NWP guidance and other data inputs
2. the activity of the forecaster – applying the Weather Forecast Policy and writing

the forecasts
3. the outputs – forecast products

What the forecaster does is integrate the data inputs to construct a mental model of the
weather system, which then gets translated into the outputs for the weather products (Bally,
2002). This forecasting process relies significantly on the skill and experience of the fore-
caster, who must integrate the many diverse forms of guidance data with their own evolving
mental picture of the weather system. This mental model is held in the forecaster’s memory
and is never made explicit, although it is used to develop representations at various stages
in the forecast process. The most obvious place this occurs is when a new observations
chart appears one of the forecasters on shift sketches out the isobars and fronts by hand in
pencil on the large synoptic chart. The location of isobars and fronts are based on a num-
ber of factors: extrapolation from the previous synoptic chart; guidance from the satellite
picture; NWP guidance; current readings from weather stations located around the state.
This is done routinely every 3 hours, with the charts kept in a large stack before they are
eventually filed away in archives.

During our observational sessions forecasters referenced this chart at fairly regular in-
tervals. It seemed that the forecasters were using the explicit representation of the synoptic

506 H. LINGER AND J. AARONS

chart to help consolidate their own mental model of the weather system. When questioned
about the relevance of the chart, the forecasters stated that the actual process of sketching
the chart was an important part of the process of developing their own mental model of the
weather. This emphasises the importance of the forecaster’s mental model of the evolving
weather system in the forecast process.

This mental model is often referred to as the “Weather Forecast Policy”, and consists
of past, present and future information about weather objects, areas, and points (Bally,
et al., 2004). In a general sense the Policy is both a summary of the current analysis of
available data, including observations and numerical data, and a guide for deciding which
NWP models to rely on for that day’s forecasting, and how to read the outputs of those
models. As such, the Policy defines the framework within which the forecasters situate their
forecasting work. Once the Policy has been set the issued forecasts must remain consistent
with this Policy, unless there is a formal decision to change to Policy.

This conception of the Forecast Policy should be distinguished from another formal
sense in which this term is used. Each day, near the beginning of the morning shift, the
Shift Supervisor prepares a document that is also known as the “Forecast Policy”. This
formal document is accessible by all forecasters from within the forecasting system (AIFS),
and essentially provides a summary of the more intangible Forecast Policy. However for
most purposes the Policy is held in the memory of all forecasters on the shift, and forms
the basis for their forecasting decisions. The key elements of the Policy are also used to
automatically populate a number of forecast products within the AIFS system. (Kelder,
2003: 146) Although the Policy is set in the morning by the Shift Supervisor, it is not a
fixed entity, and the other forecasters have continual input into the process of reviewing
and updating the policy:

“. . . the RFC Shift Supervisor maintains overall responsibility for forecast policy for the
entire State. This forecast policy is developed on an ongoing basis throughout the day
as new information becomes available and provides general guidance to all forecasting
staff Group consultation at various times during the day contributes to the development
of the forecast policy.” (Bureau of Meteorology, 1999b)

During their routine forecasting work the forecasters are continually looking at in-
coming flow of data: the direct observations, satellite and radar images, and the new runs
of NWP models. Through this process they are constantly updating their own mental pic-
ture of the evolving weather system, and constantly reassessing the details of the Forecast
Policy. If it seems that the evolution of weather systems or data models conflicts with the
current Policy, forecasters are able to discuss or query that Policy directly by talking to the
senior forecaster. (Kelder, 2003:112)

2.4. Performing the Activity: Forecasting in the Context of Shift Work

2.4.1. The Routine and Disruptions to the Routine

Although forecasting is a continuous practice it is situated in the context of shift work.
A forecaster’s shift is structured around a routine series of forecasts that must be updated
and published at regular intervals. Additionally, a number of other routine tasks are per-
formed by the forecaster, such as the sketching of the synoptic chart and the updating of

FILLING THE KNOWLEDGE MANAGEMENT SANDWICH 507

NWP printouts. This routine is also regularly disrupted. The most common disruptions are
the numerous telephone calls from clients requesting particular weather information. The
routine is also disrupted when particular non-standard and specialist forecasts are urgently
required at short notice. This most commonly occurs when particular weather warnings
need to be issued and updated at frequent intervals, such as when thunderstorms or tropical
cyclones develop rapidly. Another common form of non-standard forecast, especially in
the summer months, is a spot fire forecast, where a local-scale forecast is issued covering
the vicinity of a particular bush fire. This is a particularly challenging task, as it involves
a detailed and fine grained knowledge of the relevant guidance data, as well as an under-
standing of the local geography of the particular region, and the practical requirements of
those who will rely on the forecast (eg. fire fighters). Another example of an unexpected
forecasting task is when a particular client requests a detailed short term wind nowcast.
The case observed involved the operator of an oil platform in Bass Strait wanting to know
if it would be safe to airlift people in by helicopter.

2.4.2. The Shift Changeover

A forecasting shift begins with a formal shift changeover period, in which the incom-
ing forecasters are briefed. This is a 30–45 minute briefing, where the forecaster ending
the shift passes on all the essential knowledge needed to continue forecasting into the new
shift. This involves the outgoing forecaster summarising the evolving state of the weather
system over the duration of the previous shift, discussing the status of currently issued
warnings, as well as flagging any additional warnings that may need to be issued in the
near future, and reviewing the guidance data with the new forecaster. The review of guid-
ance involves explaining how the various guidance types have been used, and which ones
were seen as significant. This stage also allows the previous forecaster to give an overview
of the justification for the forecasting decisions made during the earlier shift (which is
really the only stage in which justifications are made explicit). The shift handover thus
provides the starting point for the development of the Forecast Policy by the oncoming
forecaster as discussed previously.

2.4.3. Group Meeting for Chart Analysis, Attended by all RO Forecasters

After the Policy has been set the entire forecasting team come together for a meeting
to summarise and discuss the Policy, review the current state of the weather system, and
flag any issues that may be cause for further attention during the forthcoming shift. As
the Bureau staff explained, this meeting is a leftover from past practices, before detailed
displays and sophisticated forecast systems became available and accessible by all fore-
casters. However it still serves the useful function of bringing forecasters up to speed on
current Policy and the issues and events that could arise within the next shift.

At this meeting the shift supervisor talks through the present state of the weather sys-
tem by reviewing satellite data; the issued warnings (eg. wind, thunderstorm, fire, grazier);
and looking at weather features that should be monitored closely, such as the progress of
fronts and the evolution of thunderstorms and other severe storms. As a group, the fore-
casters also review the NWP predictions from the multiple models available to forecasters.
They look at the forecast charts from the five major global models, displaying the outputs

508 H. LINGER AND J. AARONS

Figure 2. The product preparation process (adapted from Bally, 2002).

side-by-side on a projection screen. They also look at the outputs of local models which
give a more detailed analysis of some specific features of the weather system such as wind
vectors.

This group analysis of the guidance data plays an important role in the weather fore-
casting process, as it allows for a shared understanding of the weather system and the status
of NWP guidance, and facilitates group input into the current Forecast Policy.

2.4.4. Forecast Product Production

The production of forecasts products according to the fixed schedule follows the pro-
cess illustrated in Figure 2, from Bally (2002). The stages represented in rectangles are
artefacts, the ovals activities. The starting stage 3.3 Weather Policy is a conceptual and
subjective artefact that is held in the minds of forecasters, not explicitly encoded within a
system. The writing stages 3.4.x are cognitive conceptual activities that occur within the
minds of forecasters and are not explicitly recorded. Only the final forecast outputs are
explicitly and objectively encoded in a physical entity or system.

In writing a routine forecast the forecaster brings up the previously issued forecast
using the Linkage system. This system automatically updates some aspects of the previous
forecast, such as the issue time, and automatically populates the forecast form with some
data derived from the official Forecast Policy. However the system does not automatically
update the text description of the weather – this must be done manually by the forecaster.

This process of drafting the forecast text is a highly complex task. It involves analysing
and synthesising the meteorological data, and summarising the essential elements of fore-
cast within four lines of text (a strict requirement). As a result, the choice of expression and
vocabulary is a particularly difficult and complex task, which requires a detailed knowledge
of all aspects of the forecasting process, as well as an appreciation of how those forecasts
will be read and applied by their clients.

FILLING THE KNOWLEDGE MANAGEMENT SANDWICH 509

3. DISCUSSION: CASE STUDY FINDINGS

Our study has shown that the way forecasts are constructed by forecasters has re-
mained largely unchanged since the initial revolution in weather forecasting, made possible
by profound improvements in accurate satellite imaging and powerful numerical modelling
from the 1950s onwards (Fishman and Kalish, 1994). In particular:

• the evolving ‘mental picture’ of the weather system in the forecaster’s head is of
paramount importance to forecasting

• the interactions between forecasters is a significant factor in the forecast process
• forecast products continue to be time consuming activities as an enormous amount

of time was spent manually editing products, even though this is now done online:
it is a very slow process of retrieving the previous version of each product and
typing the edits to form the updated product

• the forecast process is consistently disrupted, including external phone calls and
the need to produce non-standard forecasts

• the forecaster’s ‘expert knowledge’ of their domain, including their knowledge of
local geography and topology, is a key element in forecast construction

• the forecaster’s expertise is an expression of their training and extensive experi-
ence rather than the volume and diversity of data

Our study has thus shown that forecasting is not only dependent on data but is a com-
plex socio-technical activity that is also knowledge intensive.

Our studies have also revealed that although some new tools have been built over re-
cent years, these tools are essentially designed to facilitate the existing ways of forecasting
rather than to improve the forecasting process. Although the quality and accuracy of guid-
ance data has improved considerably, the NWP models, satellite imagery, and automatic
weather station observations are used selectively for guidance and not to automate the
forecast process. The AIFS system, with its integrated data viewer and forecast prepara-
tion system, provides the facility to incorporate and integrate a large number of data inputs,
and brings together all the forms and forecast templates in a single system for editing and
publishing. However it only streamlines certain aspects of the current forecast process, and
is ill suited to meet some of the future challenges facing weather forecasting. These future
challenges are a result of scientific and technological developments, as well as a renewed
public (and legal) interest in accurate and informative weather forecasting.∗ These have
created a challenge for weather forecasting to meet the contradictory demands inherent in
the forecasting process in terms of:

• the increased work load from the diversity of weather products that need to be
prepared within a fixed timeframe

• the volume of diverse material that needs to be referenced to prepare forecasts
• the management of that material to ensure that relevant material is available dur-

ing the forecast process

∗ Much of the impetus for improving forecasting systems has arisen from two recent investigations into high
profile cases of perceived forecasting problems: the 1998 Sydney to Hobart yacht race tragedy (Bureau of
Meteorology, 1999a) and the 1999 Sydney hailstorm investigation (Bureau of Meteorology, 1999b).

510 H. LINGER AND J. AARONS

• increased demands for justification of forecasts
• the increasing need for meteorologists to exercise judgement and to use their ex-

perience and knowledge to overcome the limitations of scientific knowledge

The tools available to forecasters at present are limited in their scope and can only meet
some aspects of the demands of weather forecasting. The challenge therefore is to find a
way to support the activity of the forecaster in terms of both the pragmatics of the task (the
specifics of the products and the context of work) and the epistemological requirements
of the task (to produce accurate forecasts). The following section presents a two pronged
approach to frame forecasting in terms of knowledge management as a means to meet this
challenge.

4. THEORETICAL REFLECTIONS: THE KM PERSPECTIVE

A complex work environment, as exemplified by weather forecasting, is a socially
and technologically distributed activity that involves intellective work, learning, sharing,
and interactive decision making. Such an environment can be interpreted through a knowl-
edge management lens to view the nature of work as knowledge work and the activity as
knowledge management.

From a knowledge management perspective, the activity system needs to be under-
stood in terms of the structures and process that enables the construction of the required
output (the pragmatics) and an explicit understanding of the knowledge that enables effec-
tive construction of the output (the epistemological requirements)

The pragmatics can be addressed through the Task-based Knowledge Management
(TbKM) framework developed by Burstein and Linger (2003). The framework integrates
two levels of understanding of the activity system, the task:

• the explicit models of the structure and process of a task, as conceptualised by the
actor performing the task to document her understanding of the task

• models that enable the task to be efficiently performed

The TbKM framework provides tangible artefacts to support the intellective work as
well as the practical actions required to produce organisationally defined outcomes. In this
sense the framework supports knowledge work as defined by Iivari and Linger (1999, 2000)
as it:

• allows the object of work to be defined (the inputs, outputs and performance)
• identifies the body of knowledge that underpins the work (the conceptual models)
• allows instantiation both in terms of the item of work
• supports the production of knowledge as an aspect of the outcome (learning)
• represents and inscribes the objects of work (the models) providing the artefacts

with which the actor can perform her work

The TbKM approach has been used successfully in a number of domains including
weather forecasting (Burstein and Linger, 2003). At the Bureau of Meteorology this ap-
proach has contributed to a strategic initiative, the “Forecast Streamlining and Enhance-

FILLING THE KNOWLEDGE MANAGEMENT SANDWICH 511

ment Project” (FSEP) that aims to redevelop forecasting systems to conform with knowl-
edge management principles (Ryan, 2003; Bell, 2003).

However the framework does not provide the means to understand and make sense of
the organisational context and the social, cultural and cognitive factors that are involved in a
complex work environment. Our approach to these epistemological requirements involves
a bottom-up, disunified and localised investigation into the workings of an activity system
(Aarons, 2004), in this case weather forecasting. The investigations are made by a thorough
analysis of the components of the work environment, looking at how those components
piece together, and the processes that flow between those components. This approach can
be characterised as a disunified methodology (Aarons, 2001).

From a knowledge management perspective, the starting point of such an analysis is
to determine precisely what aspects of knowledge are relevant to that particular case, and
to give an account of the factors underlying these knowledge components. This involves
assessing the relevant cognitive, social and pragmatic factors involved in that particular
work activity. From such an analysis a complex picture can be developed, piecing together
the details until they form a complex model of the activity system.

This approach maintains a connection with real-world processes and properties, and
results in models that represent these real processes and properties. Importantly, this ap-
proach acknowledges the significant social dimension of knowledge work in such organiza-
tional and work settings, while retaining the idea that social processes are deeply connected
to real properties and processes. The case study reinforces this theoretical perspective,
highlighting the complexity of the work environment. Our observations show the forecast-
ing task is dialectically grounded in the guidance material and the cognitive models of
the weather and geography. But the conduct of the task is also influenced by social inter-
actions, including disruptions, and the practical activity of writing or drawing as well as
the physical structure of the work setting and the organisational imperatives regarding the
products.

In a more general way, the disunified methodology contributes to building a theoretical
framework for supporting knowledge work that is grounded in reality, but also incorporates
the relevant social, practical, and pragmatic concerns that are central to the work tasks. This
theoretical framework can be extended with the pragmatics that TbKM can contribute.
Combining these two approaches, results in a theoretical framework that supports a theory
of collaborative knowledge work within a realist and pluralist metaphysical framework (as
outlined in Cartwright, 1999). Importantly, the framework, as a model of a complex work
environment, provides the means to study and understand knowledge work and derive the
design criteria for artefacts to support this work.

Figure 3 below illustrates this combination. The sandwich, referred to in the title is a
metaphor to emphasis that each approach, on its own, does not provide the necessary tools
to deal with the complex work environments even though each approach is necessary. In-
dividually, each approach is the bread necessary to make a sandwich. However a sandwich
is only satisfying if it has a filling. Combining the two approaches allows a rich theoretical
and practical understanding of collaborative knowledge work. It is this theoretical frame-
work that is the filling in the sandwich.

The TbKM approach, disunified methodology and the theoretical model of collabora-
tive knowledge work all contribute to answering the general question: How do we study

512 H. LINGER AND J. AARONS

Figure 3. The “Sandwich Approach”.

and support knowledge work in a complex work environment? While this is not a triv-
ial problem in itself, the more challenging issue is to move from an understanding to an
intervention.

5. CONCLUSION

In this paper we have explored a complex work environment in which highly trained
and experienced experts engage in knowledge work using weather forecasting to illustrate
such a setting. Our investigation reveals that as well as the pragmatics of the work task,
forecasters also have epistemological requirements in order to construct accurate and in-
formative forecasts. Based on this work, and our previous studies, we propose a theoretical
framework that supports a theory of collaborative knowledge work that is derived from a
task-based knowledge management framework and the disunified methodology exempli-
fied in the case study. This framework is grounded in the reality of the physical and in-
formational environment but also incorporates the relevant social, practical, and pragmatic
concerns that are central to the work tasks.

The central issue presented in the paper is the importance of the disunified methodol-
ogy to identify the epistemological requirements and the contribution of those requirements
to understanding a complex work environment. Our future work will define and charac-
terise the theoretical framework for collaborative work by integrating the two approaches
identified in this paper.

REFERENCES

Aarons, J., 2001, Thinking Locally: A Disunified Methodology of Science, PhD manuscript, School of Philosophy
and Bioethics, Monash University, (unpublished).

Aarons, J., 2004, The Disunity of Knowledge Work, Proceedings of the Fifth European Conference on Or-
ganizational Knowledge, Learning and Capabilities OKLC2004, Innsbruck, April 2004, (May 1, 2004);
http://www.ofenhandwerk.com/oklc/pdf files/I-5 aarons.pdf.

Bally, J., 2002, Forecast Information Flows Analysis. Bureau of Meteorology internal technical report.
Bally, J., Boneh, T., Nicholson, A., and Korb, K., 2004, Developing an Ontology for the Meteorological Fore-

casting Process, Proceedings of the 2004 IFIP International Conference on Decision Support Systems
(DSS2004), Prato, Italy, (In Press).

FILLING THE KNOWLEDGE MANAGEMENT SANDWICH 513

Bureau of Meteorology, 1999a, Preliminary report on meteorological aspects of the 1998 Sydney to Ho-
bart yacht race, (February 20, 2004); http://www.bom.gov.au/inside/services policy/marine/sydney hobart/
prelrept.html.

Bureau of Meteorology, 1999b, Report by the Director of Meteorology on the Bureau of Meteorology’s Fore-
casting and Warning Performance for the Sydney Hailstorm of 14 April 1999, (February 20, 2004);
http://www.bom.gov.au/inside/services policy/storms/sydney hail/hail report.shtml.

Bell, I., 2003, FSEP Principles, Bureau of Meteorology internal technical report.
Burstein, F., and Linger, H., 2003, Supporting Post-Fordist work practices: a knowledge management frame-

work for supporting knowledge work, Information Technology & People, Special Issue on Organizational
Implications of Knowledge Management Systems.

Cartwright, N., 1999, The Dappled World, University of Chicago Press, Chicago.
Fishman, J., and Kalish, R., 1994, The Weather revolution: Innovations and Imminent Breakthroughs in Accurate

Forecasting, Plenum Press, New York.
Hutchins, E., 1995, Cognition in the Wild, The MIT Press, Cambridge, Mass.
Iivari, J., and Linger, H., 1999, Knowledge work as collaborative work: a situated activity theory view, Proceed-

ings of the Hawaiian International Conference on Systems Science (HICSS’32).
Iivari, J., and Linger, H., 2000, Characterizing Knowledge Work: A Theoretical Perspective, Proceedings of the

Americas Conference on Information Systems AMCIS’2000.
Kelder, Jo-Anne, 2003, Generating Insights for Meteorological Information Systems Design Without Burdening

the Participants, Bachelor of Information Systems Honours Dissertation, University of Tasmania.
Kelder, Jo-Anne and Turner, Paul, 2004, In the eye of the storm: the role of distributed cognition theory for

informing the design of meteorological information system. Presented at ISOneWorld Conference – April
14–16 , 2004 Las Vegas, NV, USA.

Kelly, J., and Gigliotti, P., 1997, The Australian Integrated Forecast System (AIFS): Overview and current status,
Preprints, 13th Int. Conf. on IIPS for Meteorology, Oceanography and Hydrology, pp. 141–144.

Kelly, J., Donaldson, A., Ryan, C. J., Bally, J., Wilson, J., and Potts, R. J., 2004, The Australian Bureau of
Meteorology’s next generation forecasting system, Preprints, 20th International Conference on Interactive
Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, (May, 2004);
http://ams.confex.com/ams/pdfpapers/70519.pdf.

Linger, H., Burstein, F., Kelly, J., Ryan, C., and Gigliotti, P, 2000, Creating a learning community through knowl-
edge management: the Mandala Project, Proceedings of the IFIP WG 8.3 conference “Decision support
through knowledge management”, Sweden, pp. 122–36.

Linger, H., Burstein, F., Ryan, C., and Kelly, J., 2001, Implementing a Knowledge Management System: the
Case of Meteorological Forecasting, in: Knowledge Management for Information Communities, Burstein
and Linger, eds., Australian Scholarly Publishing, Melbourne, pp. 139–153.

Mullins, J., 2004, Outlook good for home forecasting, New Scientist 181(2432):24.
Ryan, C., 2003, The Forecast Streamlining and Enhancement Project. Bureau of Meteorology – internal technical

report.
Schultze, U., 2000, A confessional account of an ethnography about knowledge work, MIS Quarterly 24(1):1.

DETERMINING AN APPROPRIATE APPROACH TO
THE IMPLEMENTATION OF A WFMS

Mehmet N. Aydin∗

1. INTRODUCTION

In Information Systems research, more than three decades the effective use of methods
has been studied. In the 1980s and 1990s, the rationales behind structured, brand-named
methods, the so-called conventional methods, were being questioned as being IT-oriented,
complex, rigid, and inappropriate for today’s organizations.

One of the problems, often cited in the Information Systems Development (ISD) lit-
erature, is that conventional ISD methods adopt ‘one-size-fits-all’ approach to system de-
velopment. We know that every project has different characteristics, so projects are unique
and there is no best way or approach that works for all projects. The truth is that ‘one-size-
fits-all’ paradigm does not work in reality and practitioners need to tailor the methodol-
ogy according to their projects’ needs or characteristics. The central issue in this research
stream and in our paper is how to determine an appropriate approach to the implementation
of a workflow management system (WfMS) so that we can reduce the risk of failures of
such an implementation.

This paper is concerned with the problem of ‘one-size-fits-all’ in the context of imple-
mentation of WfMSs. In other words, we want to illuminate and propose a way to tackle
this problem. For illustration purposes we provide a sample project to explicate the use
of our model. This paper is a kind of a positioning paper in the sense that it frames the
aforementioned research issue and suggests further research topics.

The structure of this paper is as follows. The motivation behind the research has been
outlined in this section. The remainder of the paper consists of three key sections: (i) a
review of related research and the introduction of a model, (ii) elaborations of key con-
structs in the model and (iii) illustrations of the model with a case and conclusions of the
research.

∗ University of Twente, Department of Business Information Systems, School of Business, Public Administra-
tion & Technology, P.O. Box 217 7500 AE Enschede, The Netherlands, m.n.aydin@utwente.nl.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 515

516 M. N. AYDIN

2. REVIEW OF RELATED RESEARCH AND PROPOSED MODEL

Before presenting relevant literature, we should indicate that for many terms used in
this paper, such as ‘development method’, ‘approach’, we adopt their definitions in (Iivari,
Hirschheim, and Klein, 2001), for the terms, ‘workflow’, ‘WfMSs’, we refer to (Stohr and
Zhao, 2001) and (van der Aalst and Hee, 2002).

An ISD approach simply means a high level description of the method including the
goals and the guiding principles, and the beliefs, fundamental concepts, and principles of
a system development process. Whereas an ISD method refers to an organized collection
of concepts, beliefs, values, and normative principles supported by material resources.

As indicated in the previous section, IS research has been working on the issue of
‘one-size-fits-all’ for several years and one can find several theoretical models proposed
to solve the problem of ‘one-size-fits-all’. Most of the models use the idea of tailoring as
a promising and appropriate way to tackle this problem. The idea simply asserts that a
method should be tailored to the project situation at hand (Slooten and Hodes, 1996).

Different paradigms or mechanism have been used to operationalize the way to tailor a
method (Aydin, 2004). In this paper, we do not want to delve into discussions of the existing
models and paradigms behind the proposed models, but rather we stay at an abstract level
and propose a model that can be used in the context of implementation of WfMSs. (Aydin,
Harmsen, Sloten, and Stegwee, 2004) suggest using two complementary perspectives –
the engineering and socio-organizational perspectives – to tailor a method to the project
situation at hand. The former is of interest to the school of method engineering, emphasizes
the structural aspects of the method, and usually employs contingency-based models for
tailoring method. The latter appears to be concerned with a better understanding how a
method and its components are invented on-the-fly. This perspective employs the body of
knowledge contained in the socio-organizational literature (Baskerville and Stage, 2001).

With respect to the research related to development of WfMSs, it is surprising to note
that little research addresses the ‘one-size-fits-all’ issue. In fact, our quick literature review
indicates that both empirical and theoretical research concerning this issue is very limited.
One of the reasons might be that implementation of WfMSs does not require special atten-
tion and we would use the same suggestions as proposed in implementations of typical IS
solutions.

However, Stohr and Zhao point out the need for a study on WfMSs implementation
as one of the research issues in the field of WfMSs (Stohr and Zhao, 2001). One can argue
that WfMSs by nature is different from other systems. In fact, we need to answer first what
really makes WfMSs different from other systems?

(Cardoso, Bostrom, and Sheth, 2003) discuss the difference between WfMSs and ERP
in terms of three dimensions: domain scope, technology scope and system implementation.
Van der Aalst and van Hee explain the need for a specific method for WFSs and state that
‘Existing methods for the development of IS place a strong emphasis upon defining data
structures and the way in which the application is presented to its users. Organisational
change and the (re)design of processes receive limited attention in these methods. (. . .)
A method for developing a workflow system should therefore focus upon the business
process and embrace both the organisation and technology’ (Van der Aalst and van Hee,
2002, p. 211–212).

DETERMINING AN APPROPRIATE APPROACH TO THE IMPLEMENTATION OF A WFMS 517

(Weske, Goesmann, Holten, and Striemer, 2001) analyse a number of WfMSs pro-
jects in empirical settings. They presented problems, issues encountered during six projects
and draw some lessons and propped development methodology for Workflow Application
Development Method (WADM). Their empirical findings provide us a good starting point
for our model.

Before introducing our model, we shall indicate the scope of tailoring and our fo-
cus in this paper. A WADM in principle aims at supporting project participants to achive
project goals in an efficient and effective way. A method is more than just a collection of
stages-activities, deliverables, and techniques. Further, it embeds a certain spirit, a para-
digm describing the way of thinking enacted in the project. The functioning of a method
can be described in terms of: the way of thinking (presuppositions, principles, strategies),
the way of working (modelling tasks, decisions, stages-activities), the way of modelling
(deliverables), the way of supporting (techniques, tools and job aids to be used) and the
way of controlling (a managerial aspect of the project). So, it is not surprising to see that
methods are limited to their ways of thinking, working, modelling, and controlling and
are usually proposed for certain project situations, i.e. those projects having certain char-
acteristics. But, project characteristics are not upfront in practice, they just emerge or are
recognized in the course of a project. In case the method’s preferred characteristics do not
fit the actual project characteristics, then the method does not function properly in an actual
project situation.

In other words, the existing methods do not cope with the uniqueness of each project
situation, this is especially true for WfMSs implementation projects. So, one can expect
the mismatches between the proposed method and the project situation at hand. Clearly,
we need to tailor different aspects of method to better suit the project situation at hand.
The model we propose for tailoring of a WADM is based on the notion of situation-specific
modelling. The picture below illuminates the meaning of situation-specific modelling that
is an essential part of our theoretical basis and shows key constructs underpinning this
notion. The rationale behind these constructs can be justified theoretically in the literature
of DSS (see, for instance, (Mintzberg, Raisinghani, and Theoret, 1976), but needs more
space. So, in this section we will briefly explain these constructs and go into detail about
them in the next section.

The agent is anyone who is involved or is in charge of approach determination. His/her
task is to decide on an appropriate implementation approach and related fragments. He
takes into account the contextual aspect of the situation and the method base. Contextual

Figure 1. A proposed model based on the idea of situation-specific modelling.

518 M. N. AYDIN

aspect can be operationalized using project characteristics, constraints, contingencies and
other factors. A method base includes the formal or structured fragments (prescribed in
method resources) and informal fragments (in some forms in our head). A stimulus is
something that drives the decision (our way of thinking) leading to the selected fragments.
It can be an intention, a success or risk factor, motivation, a constraint, etc. A control
routine describes the interplay between these constructs and plans (routes) our decisions.

For the purpose of this paper, we focus on only the relationships between the context
at hand and the method base, and the way to reach an appropriate implementation approach
to WfMSs implementation. So, we shall first explain these two constructs.

A method base is a conceptual thing, a kind of repository embodies coherent parts of
a method, called method fragment. Namely, the term method fragment refers to a descrip-
tion of a WADM, or any coherent part thereof. A fragment can be either part of prescribed
method or be invented-on the fly. Fragments can be principles, fundamental concepts, prod-
ucts to be delivered, activities needing to be performed, job aids – techniques, tools, hints,
tips - to be used, etc. Some of them are essential in a system development approach; others
are primarily used in the execution of an ISD approach.

The term context refers to a collection of relevant conditions and surrounding influ-
ences that make a project situation unique and comprehensible (Hasher and Zacks, 1984).
Different schools of thoughts use different contextual factors to understand the context
and its implication on an implementation approach that suits the context. For instance, the
method engineering perspective provides a lengthy list but it is apparent that social and
organizational issues are not the focus of attention. The socio-organisational perspective,
however, does put more emphasis on social and organisational elements of the context.
Our aim is to propose those contextual factors that characterize WFMSs implementation
projects. These characteristics will be used as determinants for the selection of appropriate
strategic fragments of a WADM.

3. ELABORATIONS OF KEY CONSTRUCTS IN THE MODEL

3.1. The Way to Contextualize a WfMSs Project Situation

The characteristics to be mentioned here are a starting point, not an end point, for a
better understanding of the project context at hand. Due to space limitation, in this paper
we do not include those characteristics that are related to a project organization such as
management commitment, knowledge and experience with tools, techniques, resistance
and conflict, shortage of means, human resources. Rather we focus on those characteristics,
which appear to be essential for WfMs.

(van der Aalst and Hee, 2002) distinguish unstructured, information centric approaches
(Computer-Supported Cooperative Work – CSCW) and structured process centric ones
(production workflows). (Georgakopoulos and Hornick, 1995) adopt the notion of task
structure, complexity from (Korzeniowski, 1993) as a way to classify WfMSs. Later on,
(Stohr and Zhao, 2001) use similar notions to discuss flexibility spectrum for WFMSs.

As indicated before, (Cardoso et al., 2003) used the three dimensions to characterize a
WfMS and compare it with an ERP. The proposed characteristics are valuable, but appear
to be too generic. For instance, a domain characteristic is mentioned as one of the distin-

DETERMINING AN APPROPRIATE APPROACH TO THE IMPLEMENTATION OF A WFMS 519

Figure 2. The flexibility spectrum for WfMSs (Stohr and Zhao, 2001 p. 287).

guishing factor for WFMSs compare to ERP. They claim that WfMSs are used in usually
ad-hoc and dynamic domains whereas ERP system is more appropriate for static domains.
The term domain refers to a specific industry or a business function such as administrative
processes for school administration.

We believe that the essence of characterization for WfMSs can be related to the follow-
ing factors: stability, formality, complexity of workflow to be studied. These characteristics
can be measured in terms of high, medium and low. Stability refers to an extent to which
the goals, procedures, roles will not change over time enabling a stable specification of the
requirements to develop a WfMSs. By formality we mean that to what extent the existing
or proposed rules, procedures are clear, agreed and documented by project participants,
especially by the users, modelers and system developers. Complexity refers to a level of
complexity in terms of number of activities to be included in the model, a number of dif-
ferent parties involved in a workflow, a degree of dependency with other systems.

3.2. Determining an Appropriate Implementation Approach Using Method
Fragments

We identify four fragment types and relate them to the aspects of a method. These
types are as follows: strategic fragments referring the way of thinking, product fragments
referring the way of modelling, process fragments referring the way of working, and tech-
nical fragments referring the way of controlling and supporting in the implementation of
a WfMS. Two levels are considered for method tailoring (see Figure 3): the scenario level
at which essential aspects of an approach are formulated and the route map level at which
tactical and operational fragments are configured.

The focus on this paper is on tailoring strategic fragments and related methodical
aspects, including the way of thinking. For other fragments, especially process and prod-
uct fragments, van der Aalst and van Hee proposed a method, named IPSD (Interactive,
Process-oriented system development). Their proposed method uses some features or as-
pects of typical Business Process Reengineering methods and agile ISD methods. These
features are, for instance, user involvement, prototyping, incremental and evolutionary de-
velopment, a cyclical process. With this method one can find a number phases, corre-
sponding deliverables, activities etc. It partially includes a number of techniques, but lacks
management controlling related methodical aspects.

520 M. N. AYDIN

Figure 3. The fragments as building blocks for a method.

Another WADM is proposed by (Weske et al., 2001). It is similar to IPSD, but the
method is proposed especially in order to counteract the problems identified in real projects.
These two studies will provide a basis for an initial method base and its fragments specific
to WADM. Besides these studies, we use our insights gained in a large-scale IT organisa-
tion in which several packaged WfMS have been implemented. We conducted in-depth in-
terviews with a project manager who was responsible for the use of an agile method for the
implementation of well-known WfMS in one of the leading financial institutes in Europe.
Consequently, we were investigating which parts of method were perceived as challenging
or difficult to use such a method in the implementation of WfMSs. Recently, (van der Aalst,
Weske, and Wirtz, 2003) and his colleagues studied strengths and weaknesses of modelling
approaches by taking into three kinds of factors: with respect to coverage of perspectives,
support for flexibility and analysis issue. The modelling fragments are the models devel-
oped using well-known techniques including UML, WF-nets, Workflow Evolution.

We consider the principles and the essential techniques of a method as essential frag-
ments to determine an appropriate implementation approach. In this case, several decisions
need to be made concerning with the suitability of each principles and essential techniques.
So, we propose the following fragments and corresponding decision variables as a starting
point to determine an appropriateness of the method fragments to be enacted in a WfMS
implementation. We further classify them into several aspects such as modelling aspect,
design-development aspect and user engagement aspect. Consequently, we have the fol-
lowing:

Strategic fragments which are related to modelling aspects:

• Modelling scope (the boundary of target system and dimensions): the extent to
which the approach considers tracing of several perspectives such as functional,
information, process, organisational and operation (see (Curtis, Kellner, and Over,
1992) and (Jablonski and Bussler, 1996) as mentioned in (van der Aalst et al.,
2003 p. 2) and (Stohr and Zhao, 2001 p. 285)).

• Approach orientation (the orientation of problem-solving system): (problem or
solution orientedness) and social aspect (technical-administrative or social-orga-
nisational) (see (Offenbeek and Koopman, 1996)).

DETERMINING AN APPROPRIATE APPROACH TO THE IMPLEMENTATION OF A WFMS 521

• The analysis starting point (knowledge acquisition strategy): current situation or
future situation (direct acceptance of user requirements, actual system is a starting
point, possibly from the point of view of the old system, determining information
requirements from scratch (starting from perspective of the object system).

• Re-use (design) strategy: using a reference (architecture) model, or a new archi-
tecture or combination of both.

Strategic fragments which are related to design-development aspects:

• Dividing strategy: increment strategy (how to partition the business process into
increments containing workflows).

• Realization strategy: the way to realize a number of increments: at once (no sub-
system), concurrently (parallel), overlapping, consecutively (subsystems are de-
veloped one after another, incremental).

• Development strategy: conversion strategy: linear, overlapping, throw-away, keep-
it prototyping, evolutionary or reverse engineering.

• Delivery strategy: big bang (at-once), incremental, evolutionary.

Strategic fragments which are related to ‘stakeholder engagement’ aspects:

• Validation strategy: (immediate acceptance, definition of norms and test cases, by
means of which assessment takes place whether the chosen solutions meet the
requirements; prototyping; validation by usage).

• Engagement strategy: apply interaction model of van Offenbeek and in particular
apply for the user engagement (degree of user involvement and responsibility).

The mechanism that relates the dominant characteristics of the context at hand to the
choice of an appropriate option for each strategic fragment is the heart of the tailoring.
Such a mechanism requires a tailoring rationale that reflects the relationships between the
dominant characteristics and the fragments. For the sake of simplicity we shall pinpoint
how the incremental-iterative strategy can be determined for a WfMS with an illustrative
case.

4. ILLUSTRATION OF THE MODEL USING A CASE PROJECT

The sample case was extracted from an interpretive field study, described in detail
elsewhere (Aydin et al., 2004). The sample project was about the implementation of a
well-known WfMS for the fulfilment process in one of the leading financial institutes in
the world. The fulfilment process is triggered by a request from the teller via different
channels, including customer contact centre through phone, e-mail or face-to-face contact
(for a visual representation of the system see Figure 4).

The process covers many business transactions, which are shared by different orga-
nizational units and include specific business services such as payment, money transfer.
These services are partly automated and integrated with back-end systems, which were
typical mainframe systems, for instance Mainframe/ OS390. This process was subject to
improvements in terms of attaining better-streamlined business transactions. In fact, the
organization had first used CSCW (Lotus Notes) for this process, but it turned out that due

522 M. N. AYDIN

Figure 4. A workflow management system that integrates the front- and back- end systems of the company.

to the nature of the process they needed a WfMS. So, a well-known WfMS was chosen
before the actual start of the project.

The (the development and target) infrastructure, modelling tools (typical object-orien-
ted modelling tool used for all IT projects), were new to the project participants, including
the project manager. In addition, the existing (business, process, information and technol-
ogy) architecture was either incomplete or not specific to that process.

The project manager was supposed to use an agile method for this project. The project
manager was not very knowledgeable about the method, and this type of projects. The
organization assigned an expert to help this project manager in order to ensure method ad-
herence in this project. Namely, the expert worked with the project manager to determine
an appropriate approach for the project at hand. The idea was that if they determine an ap-
propriate implementation approach and formulate some countermeasures against possible
problems encountered in the project then the risk of failures would be reduced.

Our investigation in this project situation was limited to early stages of project and we
conducted in-depth interviews with the project manager, the expert (a method engineer).
First, we realized that they used a kind of checklist to be aware of possible implementation
problems in case an agile method is to be used. After the thorough analysis of the project
situation at hand, the following characteristics were identified as dominant:

• Introducing new technology.
• High dependency on external party; the supplier.
• A large number of different parties to involve and manage.
• Focus on connecting to current architecture instead of focus on new architecture.
• The nature of workflow partly is subject to change and partly formally defined

and very complex.
• Focus on user guidance instead of focus on developer guidance.

Then the following issues were addressed in their project analysis:

• Communication with large number of different parties.
• Finding the right representatives of parties involved.

DETERMINING AN APPROPRIATE APPROACH TO THE IMPLEMENTATION OF A WFMS 523

• To set up decision making and escalation path.
• Focus too much on technical implementation instead of organizational implemen-

tation.
• Substantial customization needed to meet specific requirements, losing out-of-the

box characteristics.

They also specified challenging principles of the method. They were as follows:

Table 1. Perceived problems concerning the realization of principles of an agile method in
the implementation of a WfMS

For the focus of this paper, we shall show how the principle of iterative and incremental
development was modified and realized in this project. The method basically recommends
that ‘many-increments with iterations’ is an ideal development strategy for an agile system
development’. This strategy suggests that a solution can be split into components that are
based on prioritized requirements (Slooten and Hodes, 1996). More formally, an increment
is a part of the WFMS that is delivered to, and used by, a user before the total system is
operational. Having iterations means that some stages and corresponding activities need
to be repeated through incorporating continuous feedback from the user. Such an iterative
aspect of a development strategy contributes to the achievement of fitness for business
purpose, which is another principle of the method.

The expert noted that some workflows were partially stable, formal and clear enough
to develop the system in a linear way. But for some workflows iterations were needed. So,
they decided to use the hybrid development as an appropriate approach for the implemen-
tation of the WfMS. The term hybrid underscores the mixture of typical agile development
strategy (iterative and incremental systems development) and a linear development strategy
in such a project context. Now, we shall discuss the implication of this case and conclude
the paper with some research issues.

5. CONCLUSIONS

In the previous section, we have just explicated how the dominant characteristics were
influential on the development strategy, which is one of the examples of strategic frag-

524 M. N. AYDIN

ments, which correspond a particular type of method fragments. Of course, for a complete
approach determination one should take into account all relevant fragments. This paper
does neither claim the completeness of fragments that constitute implementation approach
and nor the completeness of dominant characteristics for the context in which a WFMS
to be implemented. We intend to provide an initial list of dominant factors and relevant
methodical aspects for WfMS. The proposed model and its key constructs are derived
from the literature of decision support system and are considered as fundamentals of the
notion of situation-specific modelling. This notion is rooted in the discipline of the social-
psychology which serve as a promising theoretical ground for advancing in DSS.

The case in the previous section is used to illustrate how the model can be applied in
real implementation of a WfMS along with an agile method. One of the research opportu-
nities in this respect is to test the model in other WfMSs implementations with other agile
methods. Namely, one should investigate the use of other agile methods in different WFMS
implementation settings to further discern the role of the key constructs described in the
model. For instance, one can find new dominant characteristics and/or new aspects of im-
plementation approach. Another research opportunity is to formulate the relationships be-
tween dominant project characteristics and fragments of implementation approach. These
relationships can be formulated in terms of heuristics and shared with other practitioners
in a large-scale IT organization. The elicitation, formulization of heuristic knowledge is
another research topic.

ACKNOWLEDGEMENT

I am grateful for the comments by Wil van der Aalst, Frank Harmsen, Kees van
Slooten, and Robert Stegwee in this paper.

REFERENCES

Van der Aalst, W. M. P., Weske, M., and Wirtz, G., 2003, Advanced topics in workflow managements: Issues,
requirements, and solutions, Journal of Integrated Design and Process Science 7(3).

Van der Aalst, W. M. P., and Hee, K. v., 2002, Worklfow management: Models, methods, and systems, Cambridge,
MIT press.

Aydin, M. N., Harmsen, F., van Slooten, K., Stegwee, R., 2004, Appropriate Delivery of Advice and Guidance
on Method Adaptation, in: AMCIS 2004, Proceedings of the Americas Conference on Information Systems,
New York, USA.

Aydin, M. N., 2004, Evolving Support Practices for Method Adaptation, in: Proceedings of the IFIPDSS 2004,
Prato, Italia.

Baskerville, R., and Stage, J., 2001, Accommodating emergent work practices: Ethnographic choice of method
fragments, in: In realigning research and practice: The social and organizational perspectives, B. Fitzger-
ald, N. Russo, and J. I. DeGross, eds., Kluwer Academic Publishers, Boston, pp. 11–27.

Cardoso, J., Bostrom, R. P., and Sheth, A., 2003, Workflow management systems vs, ERP systems: Differences,
commonalities, and applications (September 10, 2003); http://citeseer.nj.nec.com/ 531507.html.

Curtis, B., Kellner, M. I., and Over, J., 1992, Process Modelling, Communications of the ACM 35(9):75–90.
Georgakopoulos, D., and Hornick, M., 1995, An overview of workflow management: From process modelling to

workflow aautomation infrastructure, Distributed and Paralled Databases 3:119–153.
Iivari, J., Hirschheim, R., and Klein, H. K., 2001, A dynamic framework for classifying information systems

development methodologies and approaches, Journal of Management Information Systems 17(3):179–218.
Jablonski, S., and Bussler, C., 1996, Workflow Management: Modelling Concepts, Architecture and Implementa-

tion, International Thomson Computer Press.

DETERMINING AN APPROPRIATE APPROACH TO THE IMPLEMENTATION OF A WFMS 525

Korzeniowski, P., 1993, Workflow software automates processes, Software Magazin.
Mintzberg, H., Raisinghani, D., and Theoret, A., 1976, The structure of “unstructured” decision processes, Ad-

ministrative Science Quarterly 21:246–275.
Offenbeek, M. A. G. v., and Koopman, P. L., 1996, Scenarios for system development: Matching context and

strategy, Behaviour & Information Technology 15(4):250–265.
Slooten, K. v., and Hodes, B., 1996, Characterizing IS development projects, in: Method engineering: Principles

of method construction and tool support, S. Brinkkemper, K. Lyytinen and R. J. Welke, eds., Chapman &
Hall, Atlanta, pp. 29–44.

Stohr, E. A., and Zhao, J. L., 2001, Workflow automation: Overview and research issues, Information Systems
Frontiers, 3(3):281–296.

Weske, M., Goesmann, T., Holten, R., and Striemer, R., 2001, Analysing, modelling and improving workflow
application development processes, Software Process Improvement and Practice 6:35–46.

ADDRESSING TACIT KNOWLEDGE IN
ISD METHODOLOGIES

Fiona M. Murphy and Larry Stapleton∗

1. INTRODUCTION

This paper identifies a gap in ISD methodologies regarding the exclusion of tacit user
requirements in the development of information systems (IS). It recognises that this will
lead to IS failure, since given that tacit requirements are not considered or incorporated,
these systems will not address these types of requirements. In the mid 90’s Clegg et al.,
(1997) argued that 80–90% of IT investments do not adhere to the performance objectives
of the user. They identified a number reason for systems failure, one of them being the
poor articulation of user requirements. Tacit knowledge is inarticulable (Wong and Rad-
cliffe, 2000) and subjective (Baumard, 1999). Therefore requirements that result from tacit
knowledge use are omitted from consideration in current ISD processes. This paper iden-
tifies three characteristics and five acquisition dimensions of tacit knowledge that have a
significant impact upon the ISD process. Four well-known ISD methodologies are then
critiqued in relation to these. This leads to a revised perspective on current ISD method-
ologies, which challenges the traditional view regarding the development of systems.

2. CHARACTERISTICS AND ACQUISITION DIMENSIONS OF TACIT
KNOWLEDGE AND THEIR IMPACT ON ISD

This section defines tacit knowledge, and identifies how it can be transferred through-
out the organisation. The major characteristics and acquisition dimensions of tacit knowl-
edge and the impact they have on the development of IS are identified. Tacit knowledge is
non-codifiable intelligence that is acquired through the informal take-up of learned behav-
iours and procedures (Howells, 1996). It is defined as “knowing more than we can tell”,
meaning that we know how to execute a certain task, but we cannot explain to another
person (s) how to successfully perform that task (Polanyi, 1961, p. 93). Tacit knowledge

∗ ISOL Research Centre, Waterford Institute of Technology, Cork Road, Waterford, Republic of Ireland,
lstapleton@wit.ie or fmmurphy@wit.ie.

Information Systems Development: Advances in Theory, Practice and Education
Edited by O. Vasilecas et al., Springer, 2005 527

528 F. M. MURPHY AND L. STAPLETON

is completely embodied in the individual; it is inherent in their practice and expertise. It
can only be a transmitted through proficient execution and through a learning cycle that
involves demonstrating and imitating (Fleck, 1997).

Stapleton (2001) states that many methodologies employed in ISD continue to focus
on the creation of an information-processing machine. Social aspects and how they impact
upon ISD are often ignored. Consequently, certain areas of knowledge have generally been
omitted from consideration in current ISD methodologies. Tacit knowledge plays a major
role in organisational information processing and decision-making that computer-based
IS are designed to specifically support. Consequently, it follows that ISD must address
tacit knowledge if it is to comprehensively support organisational information processing.
However, tacit knowledge does not fit into the structured, rationalistic, and mechanistic
viewpoints, which dominate many approaches to ISD. In the literature a number of impor-
tant attributes for tacit knowledge were identified and a tacit knowledge framework was
developed. These traits can be divided into three characteristics and five acquisition di-
mensions of tacit knowledge for this research. The three characteristics are implicitness,
personal and non-measurability, while the dimensions for acquiring tacit knowledge are
experiencing, interacting, showing-how and contextual learning which is sub-divided into
social and cultural learning. Each of these are important aspects of organisational knowl-
edge, which impact upon various aspects of ISD. This paper will now review each of these
in turn, focusing upon their impact upon ISD.

2.1. Implicitness and its Impact on ISD

Throughout the literature tacit knowledge has been defined as a nebulous process,
intuitive (Howells, 1996). It is highly idiosyncratic (Roberts, 2000), subsidiary awareness
(Polanyi, 1961), is inarticulable and non-analytical (Wong and Radcliffe, 2000). It is deeply
rooted in the ideals, values or emotions of individuals and is typically learned and trans-
ferred through experience (Nonaka and Konno, 1998). When developing an IS the analyst
must take this type of know-how into consideration. It is from this knowledge that the user
will ‘see’ the outcome of his actions before they are implemented.

2.2. Personal and its Impact on ISD

This has been defined as person-embodied (Howells, 1996; Wong and Radcliffe 2000),
second nature, and intuitive (Wong and Radcliffe, 2000). Tacit knowledge is subjective
and also includes good feeling [s] (Grant and Gregory, 1997). This form of knowledge is
inbuilt into the individual’s subconscious and may or may not be based on past experiences.
The personal trait of tacit knowledge can be linked to Senge’s ‘Mental Models’ (Polanyi,
1966). Senge describes mental models as “intuitions and ‘gut instincts’ that are difficult to
communicate and share” (Senge and Fulmer, 1993, p. 22). Tacit knowledge is embodied
in individuals within the organisation. It is this knowledge that the individual uses to make
his decision. Senge (1990) states it is the individual’s mental models that allow him to
make sense of the world and also to determine what action should be taken. IS support
the decision-making process, therefore the personal knowledge residing in each individual
within the organisation who will be using the new IS needs to be considered. An emphasis

ADDRESSING TACIT KNOWLEDGE IN ISD METHODOLOGIES 529

upon the individual’s personal knowledge is therefore critical if we are to address tacit
knowledge in the ISD process.

2.3. Non-Measurability and its Impact on ISD

Tacit knowledge is difficult to quantify (Howells, 1996), is un-codifiable, and dynamic
(Howells, 1996; Grant and Gregory, 1997). Also, it escapes observation and measurement,
as it is elusive and indeterminate (Baumard, 1999). This poses a problem for the analyst
conducting the requirements phase of ISD. Requirements capture is traditionally carried
out at the start of new systems development. However, since tacit knowledge is elusive
and does not remain static, therefore this paper suggests that the requirements phase be
conducted throughout ISD so as to include tacit knowledge.

Implicitness, personal and non-measurable are the three characteristics of tacit knowl-
edge and the impact they have upon the ISD process. The following are the five acquisition
dimensions of tacit knowledge identified from the literature and the impact each has on
ISD.

2.4. Interacting and its Impact on ISD

This acquisition dimension is described as an ‘in the corridor’ style of learning that
is codified in local practices and communities (Wong and Radcliffe, 2000). It is culture
bound; the knowledge is developed interactively through socialisation between individual
co-workers (Grant and Gregory, 1997; Wong and Radcliffe, 2000). User interaction can
take the form of gossip and norms i.e. this is the way we do things here. User interaction
allows for knowledge to be shared within the enterprise on an informal basis. Schein (2001)
has stated that it is the basic assumptions of the organisation that define what the worker
pays attention to, the meanings of different things, emotional reactions to situations, and
the actions to take in various types of situations. IS supports the decision-making needs of
the organisation. According to Turban et al., (1999) the purpose of an IS is to provide solu-
tions to problems within the organisation. However, according to Krackhardt and Hanson
(1993), it is the informal networks of the organisation that are taken advantage of when
unexpected problems arise within the organisation. Consequently to develop information
systems without taking this form of interaction into account will undermine the develop-
ment of the new IS. It is through interaction that people get a better understanding of how
things are performed within the organisation.

2.5. Experiencing and its Impact on ISD

This acquisition dimension of tacit knowledge is identified as accumulative knowl-
edge, derived from experience (Roberts, 2000; Howells, 1996). This tacit know-how is
gained from experiences through trial and error (Howells, 1996; Roberts, 2000) and there-
fore it cannot be learned from books. It is only through experience that the user will be able
to decide on the best course of action to pursue. Polanyi states “[experiential knowledge]
guides integration of clues to discoveries” (Polanyi, 1966, p. 2). In ISD the user and analyst
try to identify the best course of action to follow based on successful past experiences or
failures. Experiential knowledge is highly skilled and cannot be learned from reading user

530 F. M. MURPHY AND L. STAPLETON

manuals or books (Baumard, 1999). It is from past experiences that the user will be able to
identify the right choice of action to pursue in relation to the decision-making process that
IS support. Therefore when investigating requirements for ISD the analyst must include
this area of knowledge into the methodology being used for developing the information
system.

2.6. Contextual Learning and its Impact on ISD

Contextual learning is the knowledge that resides in individuals about how they per-
ceive themselves in their society or organisational culture. It allows us to make sense of
the world (Polanyi, 1962). It is transferred through informal local practices amongst co-
workers and does not reside individually amongst workers but at an organisational level
(Howells, 1996) – it is specific only to that particular organisation (Cohen and Levinthal,
1990). Contextual learning can be further divided into social and cultural learning.

In the literature social learning has been defined as an informal way of learning
through direct contact with co-workers (Roberts, 2000; Howells, 1996). It is through a
connection with society that humans develop common interests, traditions, and beliefs etc
that govern their role and place in their environment. Social learning governs the assump-
tions users’ make about themselves, others and their environment. It is from this that user’s
modify their theories-in-use, i.e. the theory that governs their actions. In the literature cul-
tural learning has been defined as an informal learning of behaviours within the organ-
isation through socialisation with workmates (Roberts, 2000; Baumard, 1999). This tacit
knowledge form has been described as being critical knowledge that is firm specific (Cohen
and Levinthal, 1990). It includes the language that is used, the customs and traditions that
evolve, and the rituals the workers employ in a wide variety of situations (Schein, 1992).

Failure to identify the contextual learning dimension of tacit knowledge would clearly
weaken IS Development, for ISD to be successful, how the workers view themselves, make
sense of their society (Polanyi, 1962), and how they learn this knowledge must be identified
within, for example the requirements phase of ISD (Checkland, 1999).

2.7. Showing-How and its Impact on ISD

Showing-how has been described as learning by watching, learning by doing and
learning by using (Grant and Gregory, 1997; Howells, 1996). This acquisition dimension
allows tacit knowledge to be transferred through demonstration, imitation and practice
(Roberts, 2000; Polanyi, 1961). Schön (1987; 1983) suggests that through observations
and skilful execution of performances and the individual’s reflection on what has taken
place, a description of tacit knowledge required to carry out the task can be made. This
then allows for the tacit knowledge to be transferred from one person to the next. But
these descriptions or constructions are attempts to make explicit the “intelligence that be-
gins by being tacit and spontaneous. . . descriptions are conjectures that need to be tested
against observation of their originals. . . ” (Schön, 1987, p. 25). By comparing their descrip-
tion with an original the individual will learn how to perform the task at hand. Therefore
this area of tacit knowledge allows know-how that is inexpressible to be passed between
workers through guided imitation of an action (Polanyi, 1961). It is through illustration,
replication and practice that the show-how feature of tacit knowledge is made available to

ADDRESSING TACIT KNOWLEDGE IN ISD METHODOLOGIES 531

others. Therefore show-how is an important acquisition dimension of tacit knowledge that
needs to be identified within ISD, by enabling people to learn how to use the new systems
in innovative ways, perform old tasks effectively and so on. At present knowledge that can
only be transmitted through this medium is being omitted from the development of IS.

In conclusion there are three characteristics and five acquisition dimensions of tacit
knowledge that have been identified within the literature. It is apparent that these facets
of tacit knowledge are not detached from each other. It is also visible that each impacts
upon ISD. Failure to include these tacit knowledge forms when developing an IS would
result in a system that neglects to meet all the knowledge support requirements of the
organisation. Furthermore not to meet all these needs suggests that ISD does not (or cannot
in its present form) deliver satisfactory effective systems. However, this framework needs
more empirical work in order to establish and refine it as a unified model of tacit knowledge
for ISD, this is for future work. The next section gives a brief account of four current ISD
methodologies and the extent to which each addresses the tacit knowledge characteristics
and acquisition dimensions identified above.

3. OVERVIEW OF ISD METHODOLOGIES AND THE EXTENT TO WHICH
EACH ISD METHOD ADDRESSES TACIT KNOWLEDGE

This section provides a brief overview of the different systems analysis and design
methodologies that were critiqued in relation to the characteristics and acquisition dimen-
sions of tacit knowledge that were discussed earlier. All of these issues impact upon each
methodology in different ways, resulting in information systems that do not adhere to all
the users requirements. As mentioned previously, tacit knowledge plays a major role in the
information processing and decision-making needs of the organisation. Therefore since
computer-based IS are designed to support these organisational needs, tacit knowledge
must be included in the ISD process. Each methodology was selected as representative of
a particular type of ISD approach.

3.1. UML / UP

Larman (1998) states, object-orientated (OO) analysis and design emphasizes a prob-
lem domain and logical solution from the object’s perspective. The OO modelling approach
that this paper investigates is the Unified Modelling Language / Unified Process (UML /
UP) approach. Although barely a methodology, UML / UP was chosen for review as it is
widely used in industry for systems development. UP is a software development process
that is component based and uses the UML modelling standard. UML is a language for
specifying, visualizing and constructing the artefacts of software systems. Larman (1998)
states, the requirements phase of an OO methodology defines requirements that are un-
ambiguous. Tacit knowledge is ambiguous and elusive; therefore to capture systems re-
quirements with this approach is to exclude the tacit knowledge inherent to the user. Also
requirements are identified through various electronic and paper documents. These are all
explicit forms of knowledge, where the systems analyst can readily identify unambiguous
requirements. Therefore the implicitness of tacit knowledge is largely ignored. Avison and
Fitzgerald (1995) state with this approach there is a problem of users not really know-

532 F. M. MURPHY AND L. STAPLETON

ing what they require the new system to do. The system functions of the OO method de-
scribe what the system is supposed to do (Larman, 1998). These functions once identified
should be listed in logical interrelated groupings. However the soft knowledge that is user-
embedded is not taken into account, and the personal knowledge of the user is omitted
within this approach. With most ISD methodologies developers do not initially understand
the current system and its environment. To overcome this, the system’s users assist in the
requirements capture for the new system. Bruegge and Dutoit (2000), state since the en-
vironment is dynamic, developers using this approach should encapsulate all assumptions
they make about the environment at this stage. However, tacit knowledge is difficult to
define and quantify; all assumptions about the environment cannot be described with use
cases. Therefore the non-measurability of tacit knowledge is not taken into consideration.

Bruegge and Dutoit (2000) state the requirements phase describes the system and
its interaction with the environment, including users, work processes and other systems.
However, the literature (Paech, 1998; Bruegge and Dutoit, 2000) listed four levels of de-
scription for requirements elicitation and none identify the importance of the interaction
between users in transferring knowledge. The interacting dimension of tacit knowledge is
not considered within this ISD approach. The system model is developed from the user’s
perception of reality (Bruegge and Dutoit, 2000). UML / UP does not take into account the
experiential knowledge of the user in any explicit way. It identifies users, scenarios, use
cases, relationships between use cases and non-functional requirements, nowhere does it
incorporate techniques for exploring the experiences gained from prior successes or fail-
ures in working with IT. Explicit requirements are incorporated without a deep understand-
ing of the experiences behind these requirements. Therefore experiential know-how is not
identified in the requirements phase of this approach. This method identifies how systems
developers view users, and from this develop detailed and concrete models that the fu-
ture system will support. The developer thus may get a deeper understanding of how the
user interacts with the current system, but neither social or cultural learning, which im-
pacts upon both the ISD process and the effectiveness of the system after implementation
is considered. The users’ contextual learning, whether cultural or social, is omitted from
this approach. The scenario in which the user operates is identified within the analysis and
design stage of ISD, and these scenarios are concrete, focused, descriptions of a system fea-
ture. Showing-how involves the transfer of certain knowledge types through observation,
imitation and practice. This formally inexpressible knowledge type cannot be described as
a system scenario. Therefore UML / UP does not allow for the tacit knowledge dimension
showing-how to be included within ISD. In summary, UML / UP fails to address in any
coherent or comprehensive way, any of the major characteristics or dimensions of tacit
knowledge as set out earlier in this paper.

3.2. SSADM

SSADM stands for Structured Systems Analysis and Design Methodology and is a
data-driven methodology that places great emphasis on data modelling and the database.
This methodology was chosen for review here, as it is one of the most widely used struc-
tured systems methodology. Avison and Fitzgerald (1995) identify the following major
steps in SSADM: Feasibility Study, Requirements Analysis, Requirements Specification,

ADDRESSING TACIT KNOWLEDGE IN ISD METHODOLOGIES 533

Logical System Specification, and Physical design. SSADM is a highly structured method-
ology and it provides very detailed rules and guidelines for project development staff.
SSADM investigates requirements through a number of different fact finding techniques
(Avison and Shah, 1997; Goodland and Slater, 1995) that include interviewing people,
studying existing documentation and problems, and analysing questionnaire responses.
However, although the requirements may be expressed in narrative form, the analyst us-
ing SSADM expresses these in an independent implementation form, which will create a
‘logical’ requirements statement (Goodland and Slater, 1995). From this it can be deduced
that only explicit data is given thought to with this ISD approach, since tacit knowledge
cannot be easily expressed, therefore SSADM does not take into account the implicitness
of tacit knowledge. The personal characteristic of tacit knowledge consists of intuition and
hunches, but SSADM only considers the facts and information that can be articulated by
the current users of the system. This explicit knowledge is gathered through the performing
of interviews, by analysing system documentation, and responses to questionnaires (Avison
and Shah, 1997). This tacit knowledge dimension is not considered by SSADM. SSADM
defines requirements that can be expressed in a “quantifiable and measurable way so that
they can be tested” when the system is delivered to the user (Goodland and Slater, 1995,
p. 77). With this approach the analyst uses questionnaires to identify user requirements
(Avison and Shah, 1997). However, tacit knowledge is non-quantitative and resists codi-
fication and therefore this type of knowledge cannot be gathered by statistical measures.
Non-measurable knowledge is not considered within SSADM.

In SSADM the majority of requirements are identified through one-to-one discussions
between the users and the analyst. Avison and Shah (1997) state interviews allow for a de-
tailed description of specific aspects of the situation under investigation, which provides an
in-depth understanding of any business area under review. SSADM identifies requirements
that can be measured and tested before implementation (Goodland and Slater, 1995). How
the user interacts with his co-worker and fellow users to allow knowledge to be transferred
is not considered. Therefore the interacting acquisition dimension of tacit knowledge is
omitted. SSADM investigates current processing and data in the requirements analysis
phase but fails to incorporate the knowledge gleaned from past experiences. Therefore the
experiential know-how of the user is another dimension of tacit knowledge that is not con-
sidered in this methodology. The analyst is concerned with the facts about the organisation
or the organisational section that is of concern within the ISD project (Avison and Shah,
1997). This includes when the information is required, and by whom, what it consists of, its
purpose, and the activities that create and produce the data. The knowledge that the users
have in relation to the social and cultural context in which they operate is not considered.
Within the SSADM methodology, the analyst examines existing literature and documenta-
tion that might relate to the area under investigation. Only explicit data is considered, so
the showing-how acquisition dimension of tacit knowledge is overlooked. In summary, like
UML/UP, SSADM largely ignores tacit knowledge.

3.3. Soft Systems Methodology (SSM)

Soft Systems Methodology (SSM) was developed as an approach to tackling the messy
problems managers have to deal with (Checkland and Holwell, 1993). The aim of this

534 F. M. MURPHY AND L. STAPLETON

methodology is to create a learning cycle, which would result in an improvement in so-
cial concern within the organisation (von Bulow, 1989). In 1990 Checkland revised the
SSM 7 Stage Model and presented the four-activities model of SSM. The four activities
model begins with defining the problem including culturally and politically and ends with
taking action in the situation to bring about improvement. Checkland (1981) states that
unstructured problems should not be put into an explicit format but that they should be
handled without a firm description; unstructured problems should be alleviated rather than
solved. The ‘comparison stage’ of SSM allows problems that are ambiguous and cannot
be clearly articulated be debated about and explored until a solution reveals itself. Im-
plicit problems may be alleviated within this methodology, but the tacit requirements of
the user are not identified. Therefore the implicitness of tacit knowledge is not fully taken
into account within the SSM methodology. SSM does allow for debate and discussion be-
tween the system’s stakeholders, but it does not explicitly identify the personal knowledge
held by the current systems users. Therefore the personal characteristic of tacit knowl-
edge is not considered comprehensively within SSM. Checkland (1981) states the systems
approach is a part of the scientific tradition and it takes the assumption that the world con-
tains structured wholes, which can maintain their identity under different conditions. Tacit
knowledge, does not maintain its structure, as it is dynamic and ambiguous. Consequently,
the non-measurability characteristic of tacit knowledge is not taken into account within
SSM.

The interacting dimension is included to some extent within the SSM methodology,
through the approaches it recommends for involving users. It is from this that the analyst
can view the interaction between users that allows for the transfer of tacit knowledge. Avi-
son and Fitzgerald (1995) maintain, within SSM organisational change results in a learning
process when theory and practice meet and affect each other. This is important for the trans-
ferral of tacit requirements, as tacit knowledge is included in the expertise and performance
of the user. This analysis of past experiences is carried out in the comparison of root defi-
nitions of the relevant system with the conceptual model. This stage provides the systems
developer with the means to reconstruct the past sequence of events and compare them
with what had happened post-implementation, which is carried out through debate and dis-
cussion. From this it can be deduced that the experiential dimension of tacit knowledge
is considered within SSM. An observed social system consists of logical congregations of
linked activities and relationships, such as those of a community (Checkland, 1981). How-
ever, with the four-activities model (Mode 2) the cultural stream of analysis is implied in
stage 1 of the model, i.e. defining the problem situation (Checkland, 1999). From this it can
be concluded that the contextual learning dimension of tacit knowledge is considered im-
plicitly to some degree within SSM. The analyst conducting the requirements investigation
becomes a participant in the relevant user group; within SSM the roles of the subject and
the researcher can be switched (Checkland, 1981). This allows the researcher to become
the practitioner and to understand the process of change. This is relevant to finding cer-
tain tacit requirements of the user (s), especially tacit knowledge forms that are expressed
and conveyed through show-how. However, these requirements that are needed to develop
the system are not built upon, they are only identified so as to allow the users to become
researchers, so that they themselves may get a better understanding of the processes in
place. Therefore, showing-how is considered to some degree within SSM. This method-

ADDRESSING TACIT KNOWLEDGE IN ISD METHODOLOGIES 535

ology considers the experiencing dimension of the user; and it also takes into account to
varying degrees the other seven issues. However, tacit knowledge is not explicitly looked
at within this method. In conclusion, Checkland’s SSM Methodology considers all of the
characteristics and dimensions of tacit knowledge to some degree.

3.4. ETHICS

From her work at the Tavistock Institute, Mumford developed a socio-technical ap-
proach called ETHICS, which is an acronym for Effective Technical and Human Imple-
mentation of Computer-based Systems. ETHICS consists of 6 stages, which start with a
diagnosis of needs and conclude with reports for the company, which describe the the-
ory and practice of the research undertaken (Mumford, 2000a). Mumford also developed
QUICKethics as a method for requirements analysis for managers. QUICKethics provides
a method for identifying the implicitness of tacit knowledge at top-level management –
information requirements of managers are identified through face-to-face interviews and
discussions, followed by group meetings. “Cross-validation of different archives can lead
to the first inkling that there is something non-expressed [tacit] in an organisation’s his-
tory” (Baumard, 1999, p. 90). It is through user debate and discussion that the implicit
dimension of tacit knowledge can be identified and explored with this approach. Accord-
ing to Mumford (2000a) personal information is collected through individual face-to-face
interviews and discussions with managers, followed by group meetings to identify prior-
ity management information needs. QUICKethics identifies management needs through 4
steps, which allows managers to self-reflect on their needs, provides an opportunity for
self-identification and encourages group discussions and decisions. Therefore the personal
aspect of tacit knowledge is an explicit requirement of the ETHICS methodology. This
approach identifies system requirements through debate and discussion, and participation
between the user and analyst. However tacit knowledge cannot be recorded or measured
and escapes observation (Baumard, 1999). Therefore non-measurability is not considered
in the ETHICS method.

According to Mumford (2001), people at any level in an organisation can play a major
role in the development of successful work systems. Mumford (1993) states that instead
of just being the system ‘designer’, the system analyst also takes on the tasks of being
teacher, advisor and learner. By participating with the users in the design of the new sys-
tem the analyst can identify the user interaction that enables tacit knowledge to be trans-
ferred. Therefore the interaction dimension of tacit knowledge is central within ETHICS.
Mumford states that system users can design the system properly but will require training
and help to do so. User involvement is essential to the ETHICS methodology as it is the
users that have the skills of knowing about their own work and system, and have a stake in
the design of the new system. Within ETHICS, Mumford recommends task variety, which
involves giving a user one or more tasks to perform or by rotating several different peo-
ple around a number of different tasks. This recycling of knowledge-workers may lead to
the removal of tacit competencies for a particular process, although over time a level of
cross-skills will develop. This approach, rather than focussing on the importance of deep
experiential knowledge could be based on developing people who are ‘jacks of all trades’
but ‘master of none’. ETHICS is a socio-technical approach in that it gives equal credence

536 F. M. MURPHY AND L. STAPLETON

to social and technical issues. Within this methodology the context is identified through
user participation, which is considered an important feature of the design process (Mum-
ford, 2000a). The contextual learning dimension of the user is considered to some degree
within this approach. As stated previously the designer’s role is not the traditional role. The
analyst together with the user develops the system. This participation on all sides allows
for the relationship between users and the system to be highlighted. However nowhere in
this approach is the showing-how dimension of tacit knowledge explicitly taken into ac-
count. This methodology considers the interaction between users. The other dimensions of
the tacit knowledge framework are included to some degree, however not in great detail.
Summarising, ETHICS addresses, to a greater or lesser degree, various characteristics and
dimensions of tacit knowledge.

This section gave a broad overview of some of the current ISD methodologies that are
covered by the literature and critiqued these methodologies in relation to the dimensions
of tacit knowledge that were developed earlier. The next section summarises these find-
ings in order to assess the extent to which major ISD approaches considers tacit forms of
knowledge based upon a similar approach taken by Galliers (1992).

4. SUMMARY OF ANALYSIS

Figure 1 summarises the extent to which each methodology addresses various aspects
of ISD. From Figure 1, the average totals of the hard methodologies averages at 1 meaning
that these ISD approaches do not consider to any extent any form of tacit knowledge. The
average totals for the soft approach to system design is 3, meaning that they are so-so in
their identification of the characteristics and acquisition dimensions of tacit knowledge.
The soft approach may not explicitly state tacit knowledge inclusion but tacit knowledge
is indirectly included in the development of IS. Each tacit knowledge characteristic and
acquisition dimension is given an overall average total in relation to the ISD methods
analysed. The implicit and personal characteristics, and the contextual learning acquisition
dimensions rate as 2, meaning that they are not considered within ISD. The experiencing
and interacting dimensions of tacit knowledge are rated the highest with them averaging
at 3, these acquisition dimensions are so-so in relation to ISD approaches – they are in-
directly considered to some degree. The showing-how dimension and the non-measurable
characteristic are the lowest ranking at 1, neither of these two forms of tacit knowledge are
considered at all within ISD.

Overall there is an apparent gap between ISD methodologies being used and tacit
knowledge. Tacit knowledge is important for the successful development of an information
system, as it identifies the rationality behind the decision being made by the user. Therefore
since information systems support the process of decision-making, this area of knowledge
needs to be included in ISD.

5. CONCLUSION

This paper set out to explore the extent to which current ISD approaches address tacit
knowledge. From the literature, three characteristics and five acquisition dimensions of

ADDRESSING TACIT KNOWLEDGE IN ISD METHODOLOGIES 537

Figure 1. The ISD methods analysed in relation to the dimensions of tacit knowledge.

tacit knowledge were identified and the impact each has on the ISD process was high-
lighted. Next five current ISD approaches were critiqued in relation to the extent each
addressed tacit knowledge. The result of this evaluation is that there are significant gaps in
all ISD methodologies assessed, with soft systems approaches scoring significantly higher
than hard systems approaches. ETHICS has the highest total for tacit knowledge inclusion.
From the summary of analysis (Figure 1), it is evident that none of the ISD methodolo-
gies evaluated considers tacit knowledge important for IS development. The total averages
for each characteristic and dimension individually is low, the lowest being the showing-
how dimension and non-measurable characteristic, with the experiencing and interacting
dimensions of tacit knowledge being the highest. From this it can be deduced that current
IS technologies fail to take into account the tacit knowledge of the users. It is the user’s
tacit knowledge that enables an organisation to maintain its competitive advantage by en-
abling the user to generate better decisions. At present certain areas of knowledge have
been omitted from consideration in current ISD approaches. The traditional view of ISD
is that it creates information systems that support the decision-making and information
processing needs of users. Tacit knowledge plays a large part in generating the decisions
to be considered. This knowledge form is critical for ISD and should be taken into account
for successful IS development and implementation. Therefore the tacit knowledge forms
of the user needs to taken into account throughout the entire ISD process.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the comments and advice of the reviewers.

REFERENCES

Avison, D. E., and Fitzgerald, G., 1995, 2nd Ed., Info Systems Development: Methodologies, Techniques & Tools,
McGraw-Hill, London.

Avison, D. E., and Shah, H. U., 1997, The Info Systems Development Life Cycle, McGraw-Hill, London.
Baumard, P., 1999, Tacit Knowledge in Organisations, Sage Publications, London.

538 F. M. MURPHY AND L. STAPLETON

Bruegge, B., and Dutoit, A. H., 2000, Object-Orientated Software Engineering: Conquering Complex and Chang-
ing Systems, Prentice Hall, New Jersey.

Checkland, P., and Holwell, S., 1993, Info mgt & organisational processes: an approach through soft systems
methodology, Journal of Info Systems 3:3.

Checkland, P., 1981; 1999, Systems Thinking, Systems Practice, Wiley, England.
Clegg, C., Axtell, C., Damodaran, L., Farbey, B., Hull, R., Lloyd-Jones, R., Nicholls, J., Sell, R., and Tomlinson,

C., 1997, Info tech: a study of performance & the role of human & organisational factors, Ergonomics
40:851.

Clegg, C. W., 2000, Socio-technical principles for system design, Applied Ergonomics 31:463.
Cohen, W. M., and Levinthal, D. A., 1990, Absorptive capacity: a new perspective on learning & innovation,

Admin Science Quarterly 35:128.
Fleck, J., 1997, Contingent knowledge & tech development, Tech Analysis & Strategic Mgt 9:383.
Galliers, R. D., 1992, Choosing information systems research approaches, in: Info Systems Research, R. D. Gal-

liers, ed., Blackwell Scientific, Oxford.
Goodland, M., and Slater, C., 1995, SSADM Version 4: A Practical Approach, McGraw Hill, London.
Grant, E. B., and Gregory, M. J., 1997, Tacit knowledge, the life cycle & international manufacturing transfer,

Tech Analysis & Strategic Mgt 9:49.
Howells, J., 1996, Tacit knowledge, innovation & tech transfer, Tech Analysis & Strategic Mgt 8:91.
Krackhardt, D., and Hanson, J. R., 1993, Informal networks: the company behind the chart, Harvard Bus Review,

p. 104.
Larman, C., 1998, Applying UML & Patterns: An Intro to Object-Orientated Analysis and Design, Prentice Hall,

New Jersey.
Mumford, E., 1993, Designing Human Systems for Health Care: The ETHICS Method, Eight Associations,

Cheshire.
Mumford, E., 2000, A socio-technical approach to systems design, Requirements Engineering 5:125.
Mumford, E., 2001, Advice for an action researcher, Info Tech & People 14:12.
Nonaka, I., and Konno, N., 1998, The concept of “ba”: building a foundation for knowledge creation, California

Mgt Review 40:40.
Paech, B., 1998, The four levels of use case description, Proceedings of the 4th International Workshop on

Requirements Engineering: Foundations for Software Quality, Pisa, Italy.
Polanyi, M., 1961, Knowing and being, Mind N. S. 70:458.
Polanyi, M., 1962, Tacit knowing: it’s bearing on some problems of philosophy, Review of Modern Physics

34:601.
Polanyi, M., 1966, The logic of tacit inference, Philosophy 41:1.
Roberts, J., 2000, From know-how to show-how? questioning the role of info & communication tech in knowledge

transfer, Tech Analysis & Strategic Mgt 12:429.
Schön, D. A., 1983, The Reflective Practitioner, Basic Books, New York.
Schön, D. A., 1987, Educating the Reflective Practitioner, Jossey-Bass, California.
Senge, P. M., 1990, The Fifth Discipline: The Art & Practice of the Learning Organisation, Century Business,

Great Britain.
Senge, P. M., and Fulmer, R. M., 1993, Simulations, systems thinking & anticipatory learning, The Journal of

Mgt Development 12:21.
Schein, E. H., 1992, 2nd Ed., Organisational Culture & Leadership, Jossey-Bass, California.
Schein, E. H., 2001, Uncovering the levels of culture, in: The Organisational Behaviour Reader, J. S. Osland,

D. A. Kolb, and I. M. Rubin, eds., Prentice Hall, New Jersey.
Stapleton, L., 2001, Info Systems Development: An Empirical Study in Irish Manufacturing Companies, Disser-

tation Submitted for the Degree of Doctor of Philosophy of the National University of Ireland, Dublin.
Turban, E., McLean, E., and Wetherbe, J., 1999, 2nd Ed., Info Tech for Management, Wiley, New York.
Von Bulow, I., 1989, The bounding of a problem situation & the concept of a system’s boundary in soft systems

methodology, Journal of Applied Systems Analysis 6:90.
Wong, W. L. P., and Radcliffe, D. F., 2000, The tacit nature of design knowledge, Tech Analysis & Strategic Mgt

10:247.

AUTHOR INDEX

Aarons Jeremy, 501–513
Anaya Víctor, 137–148
Aydin Mehmet N., 477–486, 515–525
Backlund Per, 125–136
Bellström Peter, 265–276
Benediktsson Oddur, 463–476
Berniunas Raimondas, 199–205
Black Geoffrey, 55–61
Box Ilona, 439–451
Bygstad Bendik, 89–101
Caplinskas Albertas, 341–351
Carew Peter J., 77–88
Ceponiene Lina, 289–301
Chen-juan Guo, 353–363
Dalcher Darren, 463–476
Debenham, J., 149–160
Dzemydiene Dale, 427–438
Feuerlicht George, 115–123
Gasperovic Jelena, 341–351
Gonzalez-Perez, C., 149–160
Grundspenkis Janis, 207–216
Harmsen Frank, 477–486
Henderson-Sellers, B., 149–160
Hriberšek Janko, 453–462
Ifinedo Princely, 161–172
Iivari Juhani, 15–27, 415–426
Jian-feng Yan, 353–363
Kazemikaitiene Egle, 427–438
Kirikova Marite, 403–414
Kirshner Hagai, 377–388
Knapp Gábor, 365–375
Krogstie John, 43–53
Kurkela Osmo, 415–426
Kuusik Rein, 315–325
Lane Cristianne, 55–61
Lang Michael, 277–288
Laukaitis Algirdas, 199–205

Letelier Patricio, 137–148
Lin Yun, 389–401
Linger Henry, 501–513
Lister Raymond, 439–451
Lois László, 365–375
Loucopoulos Pericles, 1–13, 253–264
Makna Janis, 403–414
Matulevičius Raimundas, 327–339
Melninkaite Vida, 173–184
Mirbel Isabelle, 103–113
Mlynkova Irena, 63–76
Murphy Fiona M., 527–538
Navarro Elena, 137–148
Nemuraite Lina, 289–301, 303–314
Nilsson Anders G., 29–40
Ovaska Päivi, 185–197
Paradauskas Bronius, 303–314
Parent Michel, 41–41
Pechenizkiy Mykola, 487–499
Pilkauskas Vytautas, 217–228
Pokorny Jaroslav, 63–76
Porat Moshe, 243–252, 377–388
Pranevicius Henrikas, 217–228
Puuronen Seppo, 487–499
Rava Karin, 315–325
Remeikis Nerijus, 173–184
Roost Mart, 315–325
Skucas Ignas, 173–184
Stapleton Larry, 77–88, 527–538
Stegwee Robert A., 477–486
Strašunskas Darijus, 389–401
Szakadát István, 365–375
Thorbergsson Helgi, 463–476
Tran, Q.-N. N., 149–160
Tsymbal Alexey, 487–499
van Slooten Kees, 229–241, 477–486

539

540 AUTHOR INDEX

Vasilecas Olegas, 199–205
Veskioja Tarmo, 315–325
Visser Arjan, 229–241
Vorisek Jiri, 115–123
Wan Kadir Wan M. N., 253–264

Werber Borut, 453–462
Wojtkowski, W. Gregory, 55–61
Wojtkowski Wita, 55–61
Zhan-huai Li, 353–363
Zupancic Joze, 453–462

INDEX

ABC
method, 230, 232
system, 231–240

ABM method, 232
activity-based, 229–241
adaptability, 280, 349, 480
adaptation process, 89, 97, 477–485
advisory information system, 427
agent

behaviours, 155
communication protocol, 153, 154
factory, 149–160
open, 154–160, 305

agent-based systems, 160, 215
agent-oriented information systems, 149–160
Altman’s

process oriented model, 80
theory, 80

assertion rule, 263
assessment

case, 350
method, 450

assignment requirements, 449
atomic, 199–205, 305, 307
audit

methodology, 93, 94
process, 92–96
quality, 93

auditing process, 96, 97
axioms, 344, 430

behavioural
classifiers, 290
conflicts, 271

broadcasting, 366–375
business

modelling, 29–40, 275, 345, 403–414
process, 1–11, 120, 403–413, 522
requirements, 46, 201
rule, 253–264
solutions, 31
system, 6, 310, 345, 349

cardinality, 70, 254–263
case

diagrams, 158
modelling, 130, 282, 449

clustering, 239, 489–495
co-development, 1–11
code-generation, 43, 47
coding, 26, 129, 155, 243–252, 471, 490
collecting requirements, 281
communication process, 187
compositional modelling, 429
compression

scheme, 490
system, 243

computer-based systems, 29, 535
concept-space, 393, 397, 398, 400
conceptualisation, 344, 406–408, 502
conflict resolution, 276
constraints-preserving inlining, 70
consumer requirements, 426
cost

charging, 238, 239
matrices, 496
price, 232, 235
reduction, 231–236, 240

541

542 INDEX

CRUD matrices, 439–449, 451
customization process, 111–113
customize method, 103, 112
customizing traceability, 137

data-centred, 49
data-mining system, 488–497
database

agents, 213
diagrams, 467
mining systems, 492
modelling, 131
schemes, 73
script, 202
systems, 63–76, 279, 311

datasets, 489–496
decentralized, 236, 315, 317, 318, 319
decision

matrix, 181
tree, 173–175, 177–183, 490–499

deductive database, 489
design-oriented, 16, 91
developmental framework, 81
dialectic process, 80
digitization, 365–385
disadvantage, 65–70, 367
domain-oriented primitives, 344, 349
domain-specific, 21, 349, 350

educational, 56–61, 165, 209, 337, 413, 414, 473
electronic

banking, 421
communication, 18
shopping, 420

employee productivity, 455
encapsulation, 441, 444, 445
encoded, 214, 245, 246, 248, 508
encoding scheme, 365–367, 369–375
engineering, 38, 152, 160, 339
entity-relationship diagrams, 266, 271
epistemological

adequacy, 348, 350
primitive, 347, 348
requirements, 510–512
schemes, 348
sufficiency, 346, 347

ethics, 83–88, 535–538
expressive

adequacy, 345–348
modelling, 410

extensibility, 203, 349, 350, 406

filtering agent, 212, 213
forecast

charts, 507
policy, 506–508
process, 502–506, 509
systems, 507

forecasting
process, 504, 505, 508
system, 509, 511, 513

foreign keys, 68, 69

generic-tree mapping, 64
graph transformation, 297

ill-structured
problem, 11
issue, 485

inductive database framework, 489, 491
information

agents, 215
communication, 4
modelling, 31, 127
requirements, 521, 535

inner-product, 377–385
integral system, 433
intelligent

agent, 157, 160, 208, 212–215
systems, 12, 215

interaction-oriented system, 156

JMining system, 203, 205

language engineering, 428
layered multimedia, 353
LegoDB

mapping, 68–73
system, 73

linguistic system, 344–349
logistics process, 218–220
longitudinal

case, 92, 99
process, 92, 99

mapping
method, 74
rules, 70, 72
XML, 63

messaging agents, 213
messaging system, 223
meta

artefacts, 21–25

INDEX 543

classes, 140–152
data, 173, 214, 254, 365–375
design, 23, 24
learning, 495, 497
requirements, 23, 24

method adaptation, 125, 477–485, 524
methodological requirements, 150
methodology framework, 149
metric, 110, 120, 405, 463–475
mining

framework, 498
system, 488–497

model-based, 248, 429–438
model-driven, 3, 43–52, 298, 314
modelling

flexibility, 406, 408
hypermedia systems, 279

multiagent, 152–160, 207–215
multilayer neural networks, 175, 180
multimedia

database, 353
networks, 244
systems, 243–360

neural
networks, 173–183, 401
systems, 56, 61

neuroscience, 55–61
non-linear systems, 279
non-UML artifact, 148
non-UML compliant notations, 152
notations, 344, 403–404
numerical modelling, 509

object-orientated, 531, 538
object-relational mapping, 69–74
OCL, 291–314
OLAP, 204–205
OMG’s model-driven, 43, 299
OMT, 186, 196
ontological

adequacy, 348
completeness, 342–350
primitives, 343–349
sufficiency, 346

ontology
based DSS, 427–437
engineering, 390

outsourcing, 30, 118–123, 189, 231

perceived quality, 415–425

pre-requisites, 115–123
pre-traceability, 139, 148
precedence metric, 108–109, 113
preconditions, 307–308
process

engineering, 149, 160
framework, 93, 151
modelling, 8, 113, 408, 414, 524
oriented, 93

protocol, 153–159, 201, 223, 290
pruned

decision trees, 181, 490
tree, 174, 177

quality
criteria, 481
methodology, 149
requirements, 6

refinement, 104, 152, 165–374, 392–398, 479,
493–495

requirements
databases, 333
metadata, 338
modelling, 1
traceability, 137–148, 333

reuse, 104–113, 130, 133, 152, 210, 331–338
role-based

framework, 323, 324
meta-model, 319

role-model, 321–324

schema-driven, 68–75
supply chain, 120
synchronization, 223, 315, 317
system

requirements, 2, 6, 281, 531
quality, 417, 455

tacit requirements, 527, 534
task-based, 502, 510, 512
the-matic maps, 58
tier jmining, 200
traceability

graph, 137–143
information, 138–148
links, 138–148
matrix, 333
metamodel, 138–147
profile, 142

transitive rules, 395

544 INDEX

UML
diagrams, 289–301
metaclass, 140

UML-based, 147–148, 160

V-model, 466–474
value chain, 33

warehousing, 331, 498

workflows, 518–523

XML
artifacts, 223
language, 430
storage, 63
based, 374–375
transformations, 73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

